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The brain is a slave to sense; we see and hear things that
are not there and engage in ongoing correction of these
illusory experiences, commonly termed pareidolia. The
current study investigates whether the predisposition to
see meaning in noise is lateralized to one hemisphere or
the other and how this predisposition to visual
false-alarms is related to personality. Stimuli consisted of
images of faces or flowers embedded in pink (1/f) noise
generated through a novel process and presented in a
divided-field paradigm. Right-handed undergraduates
participated in a forced-choice signal-detection task
where they determined whether a face or flower signal
was present in a single-interval trial. Experiment 1
involved an equal ratio of signal-to-noise trials;
experiment 2 provided more potential for illusionary
perception with 25% signal and 75% noise trials. There
was no asymmetry in the ability to discriminate signal
from noise trials (measured using d′) for either faces and
flowers, although the response criterion (c) suggested a
stronger predisposition to visual false alarms in the right
visual field, and this was negatively correlated to the
unusual experiences dimension of schizotypy. Counter
to expectations, changing the signal-image to
noise-image proportion in Experiment 2 did not change
the number of false alarms for either faces and flowers,
although a stronger bias was seen to the right visual
field; sensitivity remained the same in both hemifields
but there was a moderate positive correlation between
cognitive disorganization and the bias (c) for “flower”
judgements. Overall, these results were consistent with
a rapid evidence-accumulation process of the kind

described by a diffusion decision model mediating the
task lateralized to the left-hemisphere.

Introduction

Humans have a remarkable ability to detect
meaningful patterns in visual stimuli, with a particular
predilection toward seeing faces whether one is actually
present or not: seeing a face in the clouds, a man on
the moon, or Jesus on a piece of toast are common
archetypes of hallucinations of faces, a phenomenon
termed face-pareidolia (Liu, Li, Feng, Li, Tian, & Lee,
2014; Partos, Cropper, & Rawlings, 2016; Rieth, Lee,
Lui, Tian, & Huber, 2011). Following on from our
previous study (Partos et al., 2016), the work presented
here aims to investigate further these individual
differences in perceptual experiences and the influence
of personality, with a particular focus on the role of
hemispheric asymmetries.

Pattern recognition in vision

One could argue that the primary role of vision is
to extract meaning, often from an input containing
substantial amounts of uncertainty. The meaning
that is imposed on that input can depend on our
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internal templates of prototypical stimuli (Gosselin &
Schyns, 2003; Smith, Gosselin, & Schyns, 2012), our
expectations and learned probabilities about the visual
environment (Balcetis & Dunning, 2006; Cella, Taylor,
& Reed, 2007; de Lange, Heilbron, & Kok, 2018;
Grossberg, 2000; Kersten, Mamassian, & Yuille, 2004;
Lau, 2008; Reed et al., 2008; Rieth et al., 2011; Schmack
et al., 2013), contextual cues or prior visual input
(Rensink, 2000; Yuille & Bulthoff, 1996) and on random
neural fluctuations in functionally relevant areas of
cortex (Hesselmann, Kell, & Kleinschmidt, 2008;
Hesselmann, Sadaghiani, Friston, & Kleinschmidt,
2010; Wild & Busey, 2004). Each of these processes are
also subject to influence by other factors, some of which
can be attributed to the personality of the individual.

For instance, a compelling belief in the paranormal
is, perhaps unsurprisingly, associated with a greater bias
toward seeing faces in photographs of natural scenes
(Riekki, Lindeman, Aleneff, Halme, & Nuortimo,
2012) and to imposing order in random motion and
everyday events (Bressan, 2002; Riekki, Lindeman,
& Raij, 2014). Believers also have a tendency to see a
face in a jumbled image and to see a word in a jumble
of letters (Krummenacher, Mohr, Haker, & Brugger,
2010). Overall, this observation implies a state of
seeing meaning when it is not actually present in the
input and that this “meaning creation” can be related
to a particular belief system influencing both the
expectations and templates imposed on the input.

We have recently shown that the personality
dimension of Schizotypy (Claridge, 1997; Mason
& Claridge, 2006; Mason, Claridge, & Jackson,
1995; Meehl, 1962), which can be closely related to
paranormal beliefs (Genovese, 2005; Hergovich, Schott,
& Arendasy, 2008), mediates both sensitivity and bias
in the detection of faces embedded in pink (1/f) noise
(Partos et al., 2016). Here we extend this work and
examine whether there is any evidence for lateralization
of this effect, something we might expect from the
face-processing literature.

Lateralisation of face perception

It goes without saying that the ability to detect,
discriminate, and recognize a face is crucial to successful
social cohesion for humans (Freiwald, Duchaine,
& Yovel, 2016), and although there are well-known
highly functional people who fail to recognize faces
(prosopagnosia, e.g., Brad Pitt, Chuck Close, Dr Karl
Kruszelnicki, “Dr P” in The Man Who Mistook His
Wife For a Hat (Sacks, 1985) and Sacks himself), it can,
nonetheless, be a challenging perceptual deficit.

Anatomically, there is strong evidence for
face perception being lateralized to the right
cerebral hemisphere (Benton & Van Allen, 1968;

McCarthy, Puce, Gore, & Allison, 1997; Rhodes,
Michie, Hughes, & Byatt, 2009; Rossion, Hanseeuw, &
Dricot, 2012; Schiltz & Rossion, 2006; Yovel, Tambini,
& Brandman, 2008; Zhang, Li, Song, & Liu, 2012).
Furthermore, as is the case with many aspects of
imagination, false perception, or hallucination, the
brain areas responsible for the perception of illusionary
faces seem to be substantially similar to those involved
in actual face perception (Li et al., 2009; Rieth et
al., 2011; Summerfield et al., 2005). As with actual
face perception, the right fusiform gyrus consistently
responds during instances of illusionary face perception
(Li et al., 2009; Summerfield et al., 2005), regardless
of the visual elements (such a colour, texture, shape,
etc.) of the object in which the face is perceived
(Taubert, Flessert, Wardle, Basile, Murphy, Murray, &
Ungerleider, 2018).

Consistent with the contralateral connection between
the visual hemifields and the cerebral hemispheres, the
lateralisation of actual face perception to the right
hemisphere produces a left visual-field (LVF) advantage
for facial recognition where recognition is faster in the
LVF (Hay, 1981; Hemond, Kanwisher, & Op de Beeck,
2007; Leehey, Carey, Diamond, & Cahn, 1978) and is
positively correlated with the size of the right fusiform
gyrus (Yovel et al., 2008). If this lateralization of face
perception leads to a left visual-field advantage for facial
recognition, and the same right hemisphere areas of the
brain are responsible for illusory face perception, then
presentation–hemifield may influence the prevalence of
illusionary face perception. In one of the few studies
to investigate this suggestion (Rieth et al., 2011),
participants were initially trained to detect true face
images embedded in noise, before being presented with
noise-only stimuli (comprised of randomly distributed
dark blobs) during the experimental trials. By analysing
the distribution of the dark blobs in the noise stimuli,
Rieth et al. (2011) found illusionary face perception was
more prevalent when the dark blobs appeared to the
left of the central fixation cross. These results suggest
the existence of a left–hemifield bias for illusionary face
perception; however, the study only presented stimuli to
the central portion of participants’ visual field and did
not explicitly lateralise the stimulus presentation.

Recent work has examined patterns of functional
magnetic resonance imaging (fMRI)–activity during
decisions about object identity and characterised
two distinct processes; evidence-accumulation
activity that increased as objects were revealed and
recognition-activity that remained low until objects
were recognized (Ploran, Nelson, Velanova, Donaldson,
Petersen, & Wheeler, 2007). Subsequent work with
face stimuli aligned the accumulation component
with the identification of the face-likeness of an
image and the recognition component with the more
categorical recognition of a face and its constituent
features (Meng, Cherian, Singal, & Sinha, 2012). It
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was further suggested that these two components of
the process of facial recognition are lateralised to the
left and right fusiform gyri respectively. Both these
studies used the Diffusion model of decision making to
characterise the accumulation of information leading
to the binary decision (Ratcliff, 1978; Ratcliff &
McKoon, 2008; Ratcliff, Smith, Brown, & McKoon,
2016). These studies raise a second possibility which
is that if illusory face perception is more a process
of evidence accumulation leading to an erroneous,
false-positive response when anticipating a face, a
right visual-field predisposition to see a face would
be observed. This suggestion is consistent with some
degree of lateralization to the left hemisphere when a
face is seen purely through task-based suggestion in
white noise stimuli (Smith et al., 2012).

The current study

The study described here examines the lateralization
of illusory face perception using a divided field
paradigm to isolate the presentation of stimuli to
the left or right visual hemifield (Bourne, 2006). The
stimuli were similar to those previously used (Partos
et al., 2016) with the addition of pictures of flowers,
as well as faces as signal images; this was to examine
whether facial recognition reflects a more general
pattern recognition ability. It is not unreasonable to
consider that the right hemisphere advantage for facial
recognition may actually be a property of a right
hemisphere advantage for generic familiar-pattern
recognition (Levine, Banich, & Koch-Weser, 1988),
holistic (relative) processing of disparate features
(Bradshaw & Sherlock, 1982) or visuospatial task
performance (Corbetta & Shulman, 2002; de Schotten
et al., 2011). To examine this proposal, orchids
were chosen as an alternative meaningful stimulus
because their recognition requires the organization of
constituent parts to form a pattern (petals, stalk, etc.),
they possess similar bilateral symmetry and complexity
to faces and retain the natural structure inherent in
faces.

The two accounts introduced above allow us to
generate two predictions about the lateralisation of
illusory face/flower perception. On the one hand, if
the false perception of a signal in noise is a product
of specific face-processing mechanisms then we would
expect to see a left-visual field advantage in the task
specifically for faces and an interaction between visual
field and signal-type (face/flower); on the other hand, if
the percept, both real and false, is more of a process
of evidence-accumulation leading to a decision about
meaning in a noisy input then we would expect to see a
right-visual field advantage for both faces and flowers
and no interaction between visual field and signal-type.

General methods

Participants

Twenty-six undergraduate students (22 female), aged
between 18 and 48 years (M = 21.54, SD = 6.25),
completed Experiment 1 in exchange for course credit;
29 different undergraduate students (24 female), aged
between 17 and 58 years (M = 21.31, SD = 8.77),
completed Experiment 2. All participants had normal
or corrected-to-normal vision and were righthanded
(Exp 1: M = 9.88, SD = 0.43; Exp 2: M = 9.76,
SD = 0.64) as assessed by the Flinders Handedness
Survey (FLANDERS; (Nicholls, Thomas, Loetscher,
& Grimshaw, 2013)). The study had ethical approval
from the Flinders University Social and Behavioural
Research Ethics Committee, and informed consent
was obtained before participant involvement in the
experiment.

Apparatus

All image manipulation, coding, and presentation of
experiments was carried out using Matlab (MathWorks,
2017), the GNU Image Manipulation Program and
Psychophysics Toolbox (Brainard, 1997; Kleiner,
Brainard, Pelli, Ingling, Murray, & Broussard, 2007;
Pelli, 1997). Presentation hardware was a Dell Optiplex
3020 (with an AMD Radeon R5-240 graphics card)
driving a Dell liquid-crystal display monitor (Dell,
Inc., Round Rock, TX, USA) of 470 mm width and
300 mm height, at a frame rate of 60 Hz and working
resolution of 1680 × 1050 pixels. The mean luminance
of the display (and the stimulus images) was 45cd/m2

and the Commission Internationale de l’éclairage
(CIE) coordinates of the white point (0.35, 0.33). The
voltage to luminance relationship of the display was
approximately linear over the range used through the
standard gamma correction for the graphics card; this
correction was considered adequate given the nature
of the stimuli and the task of the observer (Partos et
al., 2016); we have collected data using these stimuli on
fully-calibrated Cathode Ray Tube (CRT) equipment
with the same results. The numerical keypad on the
righthand side of a standard USB keyboard was used
to record responses. An adjustable chinrest ensured
viewing distance of 570 mm in the darkened observing
booth. The researcher observed participants using
a closed-circuit camera to ensure ongoing attention
throughout the session.

Psychophysical stimuli

Monochrome pictures were combined with artificially
generated two-dimensional noise to create visually
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Figure 1. Examples of face and orchid images positioned on white noise backgrounds placed in 4 of the 8 possible positions (Left-top,
right-mid/top, left-mid/bottom, right-bottom).

degraded images using the novel pixel-by-pixel method
of combining the signal and noise (Partos et al.,
2016). This spatial degradation process meant that
prespecified proportions of image pixels were randomly
designated as either signal or noise pixels within a
given image. Thus the degree to which the individual
signal pixels correlate across space to generate a
meaningful representation was degraded rather than
the degree to which a single pixel in space is able to
represent the signal by the signal-to-noise amplitude
ratio within in the pixel. The extent to which the visual
system can discriminate between individual pixels and
the precise signal pixel to noise pixel structure will
influence the effective difference between these two
processes. We have found this method of using noise
to be particularly effective in disrupting the visibility
of faces and other natural objects (Partos et al., 2016),
and we consider that this approach has parallels to the
phase-(mis)alignment method where the continuity
of edges across spatial scale is disrupted to introduce
uncertainty in facial recognition (Hansen, Farivar,
Thompson, & Hess, 2008; Kovesi, 2000; Morrone &
Burr, 1988). Our method can also be conceptualized
as a form of masking where the noise background has
a percentage of pixel-sized holes that are replaced by
signal (pixels), which in turn resembles the “bubbles”
method used to examine the integration of spatially
disparate information in tasks of recognition (Gosselin
& Schyns, 2001).

One male and one female facial image displaying
neutral expressions in a frontal pose were sourced from
the Karolinska Directed Emotional Faces Database
(Goeleven, De Raedt, Leyman, & Verschuere, 2008;
Lundqvist, Flykt, & Ohman, 1998). Images were
cropped along the jaw and hair lines to remove all
information outside of the face (see Figure 1). Two
images of donkey orchids (Diuris), chosen for their
bilateral symmetry, were sourced online. These images
were cropped to remove all information outside of the
petals (see Figure 1). All images were standardized to
a height of 150 pixels and converted to grayscale, and

the mean luminance was matched to the average of all
four (original) images. The width of the images varied
slightly between the face (110 pixels) and orchid (120
pixels) categories.

To create each stimulus, the normalized eight-bit
monochrome signal image was placed within a 400
× 400 pixel grid of random two-dimensional noise
of similar dimensions and mean luminance and with
an amplitude spectrum of 1/f (where f is the spatial
frequency) to create pink-noise. The signal image was
placed in eight possible locations within the grid, with
four to each of the left and right sides of the center
line. Within each side, the signal image could be placed
at four different elevations (top, mid/top, mid/bottom,
bottom). Figure 1 shows an example of each of the
faces and orchids for half of the different possible signal
locations. A companion 1/f noise-only image was also
created with the same mean and range of pixel values
and the same root mean-squared (RMS) contrast as
the composite signal image. RMS contrast is generally
used for nonperiodic stimuli (Frazor & Geisler, 2006;
Kukkonen, Rovamo, Tiippana, & Nasanen, 1993)
and for our images was in the range 0.25 to 0.35.
These two images (noise-only and signal-in-noise) were
then combined to create a composite image where a
percentage of pixels were from the signal-in-noise image
and the remainder from the noise-only image. This then
creates a unique test image where a given proportion
of the pixels carry the signal image embedded in the
noise at a given location. To generate a stimulus set with
signal images close to approximate detection threshold
over the subject cohort, the composite face images
comprised 16 each of 44%, 46%, 48%, and 50% noise
pixels, and the composite flower images comprised 16
each of 38%, 40%, 42%, and 44% noise pixels (because
they were less immediately visible during pilot testing).
The image generation process meant that each image
was unique and the actual visibility of a signal was
dependent on that process; the rationale for choosing
four levels of noise was to cover a range from almost
invisible to just visible across the signal stimuli for
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Figure 2. Flow-chart depicting the creation of the final stimulus set used in the experiment. Fc = central frequency of octave band,
c/deg = cycles per degree of visual angle. In this example only one face image is shown.

all subjects while keeping the number of trials to a
manageable level within the group design (Partos et al.,
2016). A further 1/f noise-only image was also paired
with each signal image as its nonsignal counterpart
(also scaled in RMS to the signal image). Finally, all
images were then band-pass Gaussian-filtered with an
octave bandwidth at half-height centered on 1.5 cycles
per degree (cpd) (6.3 cycles per face or flower image
under our viewing conditions). Although this final stage
of filtering may change the effective contrast of a given
image, the same will be true for both signal-in-noise
and noise-only images because the noise profiles are the
same, and both faces and flower images are similarly
scaled in size. We confirmed that the RMS contrast
remained in the range 0.25 to 0.35, and as final check
we visually examined all stimuli to ensure that no
consistent overall contrast difference indicated the
presence of a signal and thus provided a cue in the task.

As pointed out by one of our referees, a center
frequency of 6.3 cycles per image is quite low for facial
recognition (identity judgement), which is generally
considered to be around eight to 16 cycles per image
vertically, but is about right for the range of frequencies
thought to signal configural face properties (detection
– our current task), thought to be between two and
eight cycles per image (Dakin & Watt, 2009). We also
previously found a center frequency of 6.3 cycles per

signal image with to be most effective at inducing false
alarms for faces while retaining reasonable sensitivity
to signal when it was actually present (Partos et al.,
2016). Using the same stimulus profile also facilitated
replication of our original experiment.

In summary, a total of 128 unique images of
each signal type (face/flower), distributed over four
pixel-noise levels, were created along with 256 unique
noise-only images. Each complete stimulus-image
subtended 4.2° square of visual angle with the signal
face or flower subtending 1.57° in height within that
image at the 570 mm viewing distance. Stimuli were
presented for 180ms in a rectangular temporal envelope.
The stimulus generation process is briefly summarized
in Figures 1 to 3; for further details see Partos et al.
(2016).

Questionnaires

FLANDERS
The FLANDERS is a 10-item self-report

questionnaire assessing handedness (Nicholls et al.,
2013). Scores range from −10 to +10. Only participants
scoring within the right-handed range of +5 to +10
were included in this study.
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Figure 3. Examples of final images at 44% noise for faces, 38% noise for orchids.

Short Oxford-Liverpool inventory of feelings and
experiences (O-LIFE)

Schizotypy was measured using the short O-LIFE
(Mason, Linney, & Claridge, 2005); a 43-item,
yes/no response measure. The O-LIFE has four
subscales: Unusual Experiences (UnEx), Cognitive
Disorganisation (CogDis), Introvertive Anhedonia
(IntAnh), and Impulsive Nonconformity (ImpNon).
The four subscales have concurrent validity ranging
between 0.90 and 0.94 (Mason et al., 2005).
Unusual Experiences questions measure positive
psychotic-like symptoms, e.g., “Do you feel that
your accidents are caused by mysterious forces?”
Cognitive Disorganization questions measure positive
disorganized symptoms, e.g., “Are you easily distracted
from work by daydreams?” Introvertive Anhedonia
questions measure negative symptoms, e.g., “Has
dancing or the idea of it always seemed dull to
you?” Impulsive Nonconformity questions measure
impulsive/antisocial symptoms, e.g., “Do you often
overindulge in alcohol or food?”

Design

Experiments 1 and 2 were both presented as two
blocks (face or flower) of 256 trials each. The 256 trials
were presented in random order and each unique image
appeared once. The order of block presentation was
counterbalanced across participants. Each block was

a 2 (stimuli type: signal, noise) × 2 (visual field: LVF,
RVF) within-subjects factorial design with dependent
variables of accuracy, response bias and response
time; the continuous schizotypy measure produced
dependent variable scores across the four subscales.
Importantly for the measure of the false alarms, the
participants were made aware of the signal-type in each
block i.e., they knew what to expect and look for in the
stimuli.

Procedure

Participants were told the study was investigating
differences in facial and general pattern recognition, but
to avoid any effects of expectation other than those
measured, the interest in visual field differences and the
topic of the schizotypy questionnaire were not initially
disclosed (the O-LIFE questionnaire was given after
the experimental procedure). Participants were seated
at the desk in the testing room and asked to complete
the FLANDERS (Nicholls et al., 2013) and then
adjust the chinrest to suit. The task was outlined to
participants and they were asked to respond as quickly
and accurately as possible using the keyboard.

The task required participants to fixate on a cross
in the center of the monitor. On a single trial, a
stimulus appeared for 180ms (rectangular temporal
envelope) to either the left or right at 1.96° from the
fixation point to the inner edge of the stimulus image.
Participants were asked to report whether the image
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contained a signal object (face/flower) or no object.
Responses were given using the “8”/up and “2”/down
keys on the numerical keypad on the righthand side
of the conventional keyboard. Both the meaning
of these responses (stimuli present/absent), and the
hand with which participants responded (left/right),
were counterbalanced across participants. The next
trial began 1000 ms after a response was recorded.
Measures were taken of response time and accuracy.
Participants were given eight practice trials during
which they received feedback, before beginning the
first experimental block. No feedback was given during
experimental trials. Participants completed the second
block immediately after the first. Upon completing
both blocks, participants were asked to complete the
O-LIFE questionnaire at their own pace.

Analyses

Analyses were broadly the same for both experiments
and performed using JASP (JASP_Team, 2020). We
report frequentist and Bayesian statistical values here
both for consistency with previous literature and to
take a contemporary approach to behavioral data
analysis. Bayesian statistical analysis is more tolerant
to non-normal distributions of data and to smaller
sample sizes and gives a more nuanced expression of
any effects shown in the data. For the conventional
analysis we report the p-value and an estimate of the
effect size (partial Eta-squared η2

p) where appropriate.
For the Bayesian analysis we report Bayes Factors
BF10, BFM and BFincl as appropriate. The Bayes factor,
BF10, indicates the likelihood that the data is explained
by the alternative hypothesis (compared to the null)
while BFM expresses the change from prior to posterior
model probabilities for a given model as a result of
the collected data. The former factor (BF10) is more
commonly used but there are instances where it is
meaninglessly high and it is more informative to report
the BFM. BFincl (also known as the BAWS factor) is
most appropriate for the repeated measures analysis of
variance (ANOVA) detailed below and is equivalent
to BF10 for the single model conditions (JASP_Team,
2020; Jeffreys, 1961; Wagenmakers, Love, Marsman,
Jamil, Ly, Verhagen, Selker, Gronau, Dropmann,
Boutin, Meerhoff, Knight, van Kesteren, van Doorn,
Epskamp, Matzke, de Jong, van den Bergh, Sarafoglou,
Steingroever, & Derks, 2018a; Wagenmakers, Marsman,
Jamil, Ly, Verhagen, Love, Selker, Gronau, Šmíra,
Epskamp, Matzke, Rouder, & Morey, 2018b). We
highlight any inconsistency in the reports between the
two methods and leave the reader to draw their own
conclusions based on both methods of analysis. The full
dataset and analyses are freely available on the Open
Science Framework.

Definitions
Throughout the article we use the term stimulus

type to refer to whether the stimulus image was a
signal-image (i.e., contained a face or a flower) or a
noise-image (contained neither). Signal type refers to
whether the signal image was a face or a flower.

Discrimination performance
D-prime (d’) and bias (c) were calculated to give a

measure of sensitivity and bias respectively in the task
(Macmillan & Creelman, 1991). The d′ was calculated
using the following:

d ′ = z (HR) − z (FAR) , (1)

where HR indicates hit rate (probability of responding
“present” to signal stimuli), FAR indicates false alarm
rate (probability to responding “present” to noise
stimuli), and z indicates the transformation of HR and
FAR into z scores. A larger d′ indicates more accurate
discrimination between signal and noise stimuli. A d′ of
0 indicates performance at chance.

The criterion term (c) provides a measure of bias, or
a participant’s tendency to respond “present” or “not
present” (Macmillan & Creelman, 1991). The c was
calculated using the following:

c = −z (HR) + z (FAR)
2

. (2)

Negative c values indicate a bias toward a “signal
present” response, and positive c values indicate a
bias toward a “signal absent” response. A c value of 0
denotes an unbiased response.

Reaction time
Mean reaction time was calculated by averaging

reaction times for correct responses. This is inevitably
a cautious measure in the current experiment given the
keyboard hardware but will, on average, indicate any
speed accuracy trade-offs present in the data and is
suitable for the level of analysis we adopt.

Schizotypy
Scores for each of the four subscales of the short

O-LIFE were summed. This produced individual
subscale scores ranging from 0 to 12 for Unusual
Experiences, 0 to 11 for Cognitive Disorganization,
0 to 10 for Introvertive Anhedonia, and 0 to 10 for
Impulsive Nonconformity. On all O-LIFE subscales,
higher scores indicate greater prevalence of relevant
traits.
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Experiment 1

Experiment 1 examined the basic effect of the
lateralization of seeing meaning in noisy images. Stimuli
were blocked into Faces or Flowers, so the participants
knew what they were looking for and were presented
with a 1:1 ratio of signal-in-noise to noise-only images.

Results

Group sample characteristics

Assumptions of normality were verified using the
Shapiro-Wilk test, kurtosis and skewness values, and
visual inspection of corresponding histograms, normal
Q-Q plots and box-plots. The majority of samples were
normally distributed with a nonsignificant Shapiro
Wilk result (p > .05) and kurtosis and skewness
values within 2 SD of the mean. For the samples that
produced a significant Shapiro-Wilk result and extreme
kurtosis and skewness values (samples for d′ (flower
stimuli to LVF), c (flower stimuli to LVF), and reaction
time (noise stimuli in face block to LVF and to RVF))
visual inspection of corresponding figures showed the
data to be suitably distributed for use of ANOVAs,
which are robust against nonnormally distributed data
with similar sample sizes to that of the present study
(Schmider, Ziegler, Danay, Beyer, & Bühner, 2010).
Assumptions of sphericity were met by design for all
ANOVAs reported here because there were only two
levels of any within-subjects factor.

Sensitivity to meaning

Sensitivity (d′) scores were examined using a repeated
measures ANOVA (and Bayesian equivalent) with the
signal type (face, flower) and visual field (LVF, RVF) as
within-subjects factors; the results are shown in Figure
4. In short, subjects were more sensitive to the presence
of a flower than a face in both left and right visual fields,
with no difference seen between the two hemifields.

Specifically, there was a significant, large main effect
of signal type on d′ (F(1, 25) = 26.80, p = 2.363e-5, η2

p
= 0.517; BF10 = 1.470e+6, BFM = 13.444) which was
greater for flowers (M = 0.791, SD = 0.49) than for
faces (M = 0.277, SD = 0.45). There was no significant
effect of visual field on the d′ value (F(1, 25) = 1.618e-4,
p = 0.990, η2

p = 6.472e-6; BF10 = 0.202, BFM =
4.236e-7) and no significant interaction between signal
type and visual field (F(1, 25) = 1.065, p = 0.312, η2

p =
0.041; BFincl = 0.476, BFM = 0.319).

Figure 4. Mean d’ for LVF and RVF across face and flower signal
type blocks for the Bayesian ANOVA. Vertical lines represent
± 95% credible intervals.

Figure 5. Mean c for LVF and RVF across face and flower signal
type blocks for the Bayesian ANOVA. Vertical lines represent
± 95% credible intervals. Positive or negative scores indicate
bias towards a ‘signal not present’ or ‘signal present’ response,
respectively.

Bias in the response

The bias in the response (C) was also examined
through a repeated-measures ANOVA; the results for
the Bayesian variant are plotted in Figure 5. These data
express how a subject responds to a noise-only trial in
either the “face” or the “flower” block. Overall, the
expectation of a “face” elicited more false-alarms than
expectation of a “flower” in both hemifields. There
was also a difference between the two hemifields, with
noise-only stimuli in the right visual field having a
greater likelihood to elicit a false alarm (indicated by a
lower value of c) for both faces and flowers.
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Figure 6. Mean Reaction time in seconds for LVF and RVF across
face and flower signal (upper) and noise (lower) type blocks for
the Bayesian ANOVA. Vertical lines represent ± 95% credible
intervals. Note that in the noise stimulus type (lower figure)
there were no signal images per se, just the expectation that
they may be one.

Specifically, there was a significant, large main effect
of visual field on the bias (F(1, 26) = 11.5, p = 0.002,
η2

p = 0.315; BF10 = 66.07, BFM = 2.078). Although
both visual fields showed a bias toward a “signal not
present” response (indicated by a positive value of c),
this value was larger for stimuli presented to the LVF
(M = 0.329, SD = 0.48) compared to the RVF (M =
0.09, SD = 0.45) indicating more false alarms in the
latter. No significant effect on bias was found for signal
type (F(1, 25) = 3.532, p = 0.072, η2

p = 0.124; BF10
= 1.147, BFM = 0.024), and there was no significant
interaction between signal type and visual field (F(1, 25)
= 1.866e-4, p = 0.989, η2

p = 7.463e-6; BFincl = 0.803,
BFM = 0.803).

Reaction time

The time taken to respond correctly was examined
using the repeated measures ANOVA and Bayesian
variant with signal type (face, flower), visual field (LVF,
RVF), and stimuli type (noise, signal) as within-subjects
factors (as above). Although there was no significant
difference in reaction time found in the conventional
ANOVA for signal type, visual field, stimulus type or
for any interaction between these factors, the Bayesian
alternative did suggest reasonable evidence for an
effect of signal type (face, flower) (F(1, 25) = 3.345, p
= 0.079, η2

p = 0.118; BF10 = 32.768, BFM = 18.145)
where it takes longer to respond to “face” in both visual
fields. Examination of the mean raw reaction times
for correct (hit, correct reject) and incorrect (miss,
false-alarm) responses shows incorrect to have slightly
longer response times than correct responses (Correct
0.584s ± 0.039; Incorrect 0.621s ± 0.055); there was
no speed-accuracy trade-off in the data. Overall mean
reaction times to either signal or noise images (stimulus
type) are plotted in Figure 6.

The relationship between personality and
performance

To examine whether schizotypy, sensitivity, and
response bias were related to one another, a Pearson r
correlation analysis between scores on each of the four
O-LIFE subscales, d′ and c for both faces and flowers
was calculated. To adjust for multiple comparisons
across the subscales, the critical p-value was Bonferroni
adjusted to .0125 (0.05/4). Only the “face” blocks
showed any significant relationship between schizotypy
and performance, i.e., when the subjects were expecting
to see faces. Furthermore, only the Unusual Experiences
dimension of schizotypy showed any significant
correlation (shown in bold in Table 1). There was no
expectation for schizotypy to be associated with visual
field asymmetry for this task so the data are grouped
across both right and left visual fields, but split between
face and flower. These data are summarized below
in Table 1.

The data in Table 1 suggest that the higher the
Unusual Experiences (UnEx) score, the greater the
likelihood of seeing a face in a noise-only. This result
is represented graphically for the bias collapsed across
the hemifields for the Bayesian correlation in Figure 7
and replicates the original result for this relationship
between Unusual Experiences and the likelihood of
seeing faces in noise (Partos et al., 2016).

To examine this effect further, linear regressions
(both conventional and Bayesian) were calculated for
the bias (c) for faces across both hemifields against
each schizotypy subscale. We examined all data for
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Unusual experiences Cognitive disorganization Introvertive anhedonia Impulsive nonconformity

d’ face
Pearson’s r −0.302 −0.050 −0.346 −0.189
p-value 0.133 0.807 0.084 0.354
BF10 0.710 0.250 1.007 0.366

c face
Pearson’s r −0.559 0.101 −0.112 −0.328
p-value 0.003 0.622 0.585 0.102
BF10 15.771 0.273 0.281 0.866

d’ flower
Pearson’s r −0.242 −0.368 −0.012 −0.132
p-value 0.233 0.064 0.955 0.519
BF10 0.478 1.233 0.244 0.296

c flower
Pearson’s r −0.292 −0.174 −0.171 −0.187
p-value 0.148 0.396 0.404 0.361
BF10 0.656 0.342 0.339 0.362

Table 1. Pearson’s r correlations between face/flower stimulus types and the Schizotypy subscales. Bold face indicates significant
correlations (Bonferroni corrected for multiple comparisons).

Figure 7. Bayesian Pearson r correlation between Unusual
Experiences subscale of schizotypy and response bias for trials
in the faces block collapsed across the hemifields.

multicollinearity; the variance inflation factor (VIF)
was below 2 (max 1.484) and the tolerance above 0.6
(min 0.674) in all cases, so multicollinearity was not an
issue. The full details are presented in the online dataset
and model comparisons of the Bayesian regression
summarized in Table 2 and Figure 8 below. The best
model fit and the subscale with the largest unique
influence on the data by far is Unusual Experiences
(BF10 = 25.494, BFM = 13.894) supporting the strong
correlation between this personality trait and the
likelihood of seeing illusory faces in noise.

Figure 8. Posterior coefficients for Bayesian Linear Regression of
response bias (C) for Faces against the four schizotypy subscales
across both hemifields. Vertical bars are ±95% credible
intervals.

Experiment 2

Experiment 2 examined the role that the actual
proportion of signal images to noise images in the
stimulus set might have upon the occurrence of false
alarms across a trial block in a given subject. We have
previously shown that the expected proportion (when
the actual ratio remained at 1:1) has the predictable
effect of moderating the number of false alarms in
all participants (Partos et al., 2016); if they expected
more signal images than were actually present, subjects
made more false alarms. Here we examine the converse,
whether the proportion of trials containing signal versus
the proportion of trials containing only noise presented
in across the stimulus block affects the results when
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Model comparison

Models P(M) P(M|data) BFM BF10 R2

Null model 0.200 0.066 0.284 1.000 0.000
Unusual 0.050 0.422 13.894 25.494 0.312
Unusual + CogDis 0.033 0.178 6.281 16.118 0.372
Unusual + CogDis + Introvert 0.050 0.067 1.355 4.017 0.383
Unusual + Introvert 0.033 0.059 1.815 5.332 0.316

Table 2. Model comparison (top five in order of best fit) for Bayesian Linear Regression of bias (c) for faces against the four schizotypy
subscales (forced entry covariates, model comparison to null using BIC).

the subjects expect the actual proportions to be equal.
In this second experiment there were three times the
number of noise-only trials compared to signal trials;
importantly, the instructions remained identical to
Experiment 1 and the subjects were expecting an equal
number of noise to signal images (as in Experiment 1).
All other conditions remain the same as Experiment 1.

Results

Group sample characteristics

Assumptions of normality were verified using the
same tests as in Experiment 1: the majority of samples
were normally distributed (Shapiro Wilk, p > .05;
kurtosis and skewness values within 2 SD from the
mean). The samples for c (face stimuli to LVF; flower
stimuli to RVF) and reaction time (noise stimuli in
face block to LVF and to RVF) produced a significant
Shapiro-Wilk result and extreme Kurtosis and Skewness
values although, as in Experiment 1, inspection of
corresponding figures showed the data to be suitably
distributed for use of ANOVAs (Schmider et al., 2010).

Sensitivity to meaning

Sensitivity to the presence of a signal image (d′)
was analyzed using the same ANOVA approach as
in Experiment 1. The results are broadly the same as
Experiment 1 with sensitivity being greater for flowers
than faces in both hemifields (Figure 9).

Specifically, there was a significant main effect of
signal type on discrimination (F(1, 28) = 33.387, p
= 3.330e-6, η2

p = 0.544; BF10 = 1.056e+6, BFM =
10.209), and sensitivity was significantly greater for
flowers (M = 0.75, SD = 0.51) than for faces (M = 0.33,
SD = 0.34). There was no significant effect of visual
field on discrimination (F(1, 28) = 0.025, p = 0.875, η2

p
= 8.944e-4; BF10 = 0.197, BFM = 1.349e-7) and no
significant interaction between signal type and visual

Figure 9. Mean d’ for LVF and RVF across face and flower signal
type blocks for the Bayesian ANOVA. Vertical lines represent
± 95% credible intervals.

field (F(1, 28) = 3.67, p = 0.07, η2
p = 0.116; BFincl =

0.633, BFM = 0.633).1

Bias in the response

The response bias (c) was examined similarly to the
sensitivity; the results are plotted in Figure 10. Again,
the data largely mirror Experiment 1, although there is
a stronger effect for faces in the right visual field. This
indicates that individuals were more likely to see a face
in a noise-only image in the right visual field, and this
effect was exacerbated specifically for this stimulus-type,
i.e., a noise-only image when the subject was looking
for faces.

There was a significant main effect of visual field on
bias (F(1, 28) = 9.876, p = .004, η2

p = 0.261; BF10 =
4.486, BFM = 1.388). Both visual fields showed a bias
toward a “not present” response for both stimulus types
when combined, but this bias was greater for stimuli
presented to the LVF (M = 0.23, SD = 0.45) compared
to the RVF (M = 0.07, SD = 0.51); the RVF showed
a bias toward saying a face was “present” in the face
stimulus-block, indicated by a c value less than 0. No
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Figure 10. Mean c for LVF and RVF across face and flower signal
type blocks for the Bayesian ANOVA. Vertical lines represent
± 95% credible intervals. Positive or negative scores indicate
bias towards a ‘not present’ or ‘present’ response, respectively.

significant effect on bias was found for signal type (F(1,
28) = 2.999, p = 0.097, η2

p = 0.261; BF10 = 1.376,
BFM = 0.343), and there was no significant interaction
between signal type and visual field (F(1, 28) = 1.70, p
= 0.203, η2

p = 0.057; BFincl = 0.425, BFM = 0.882).

Reaction time

Reaction time was analyzed using the same ANOVA
approach as in Experiment 1 with the results shown
in Figure 11. As in Experiment 1, there was no evidence
for any speed-accuracy trade-off in the data (Mean
reaction times: Correct 0.702s ± 0.075; Incorrect 0.73s
± 0.07). There was a significant effect of response time
in that correct identification of faces being present was
significantly slower than flowers in both hemifields (F(1,
28) = 4.770, p = 0.037, η2

p = 0.146; BF10 = 305.819,
BFM = 18.319). The interaction between visual field
and stimulus type (signal, noise) was just significant
(F(1, 28) = 4.939, p = 0.035, η2

p = 0.150; BFincl =
0.403, BFM = 0.356) and suggestive of a faster response
to a signal stimulus in the right visual field compared to
the left for faces and flowers (see Figure 12). Overall,
mean reaction times were faster in Experiment 1 than
Experiment 2 by around 100 ms (grouped marginal
means from Bayesian ANOVA: Exp 1 = 0.584 ± 0.04,
Exp 2 = 0.702 ± 0.075; T-test = 0.002, F-test = 0.109).

The relationship between personality and
performance

As above, a Pearson’s correlation between the scores
on each of the four O-LIFE subscales, d′ and C for
both faces and flowers was calculated to examine the

Figure 11. Mean Reaction time in seconds for LVF and RVF
across face and flower signal (upper) and noise (lower) type
blocks for the Bayesian ANOVA. Vertical lines represent ± 95%
credible intervals. Note that in the noise stimulus type (lower
figure) there were no signal images per se, just the expectation
that they may be one.

relationship between personality and performance on
the task. The only significant correlation in this data
was a positive relationship between the response bias for
the flower stimuli and the Cognitive Disorganization
subscale, indicating that the higher the score, the less
likely the individual was to indicate a “flower” present
in a noise stimulus or the more conservative their
response. When Bonferroni-corrected for multiple
comparisons, however, this relationship did not reach
significance in terms of the p value, although the Bayes
factor (BF10 = 3.344) suggested moderate evidence
of the relationship. Table 3 shows the results of the
correlations in brief, the full data set is available online,
and Figure 13 plots the correlation for the Bayesian
variant.



Journal of Vision (2020) 20(10):11, 1–20 Cropper et al. 13

Unusual experiences Cognitive disorganization Introvertive anhedonia Impulsive nonconformity

d’ face
Pearson’s r −0.030 0.022 −0.081 0.238
p-value 0.876 0.911 0.678 0.214
BF10 0.233 0.232 0.499 0.482

c face
Pearson’s r −0.314 0.181 −0.114 −0.053
p-value 0.097 0.346 0.557 0.785
BF10 0.859 0.352 0.231 0.239

d’ flower
Pearson’s r 0.040 −0.164 −0.039 −0.049
p-value 0.835 0.396 0.842 0.801
BF10 0.236 0.325 0.171 0.238

c flower
Pearson’s r 0.121 0.437 −0.012 0.135
p-value 0.532 0.018 0.952 0.484
BF10 0.278 3.344 0.195 0.291

Table 3. Pearson’s r correlations between face/flower stimulus types and the Schizotypy subscales. Bold face indicates significant
(uncorrected) correlations.

Model comparison

Models P(M) P(M|data) BFM BF10 R2

Null model 0.200 0.364 2.292 1.000 0.000
CogDis 0.050 0.364 10.864 3.995 0.191
CogDis + Introvert 0.033 0.054 1.652 0.888 0.201
Unusual + CogDis 0.033 0.046 1.413 0.765 0.192
CogDis + Impulse 0.033 0.045 1.372 0.744 0.191

Table 4. Model comparison (top five in order of best fit) for
Bayesian Linear Regression of bias (C) for Flowers against the
four schizotypy subscales (forced entry covariates, model
comparison to null using BIC).

A linear regression (conventional and Bayesian)
was calculated for the bias (c) for both face and
flower stimuli against the schizotypy subscales.
Multicollinearity was not an issue with the VIF below
2 (max = 1.270) and the tolerance above 0.6 (min
= 0.788). Table 4 shows the top five models for the
Bayesian regression, and Figure 14 plots the posterior
coefficients and credible intervals. The data is best
described uniquely by the Cognitive Disorganization
subscale, supporting the moderate relationship brought
out by the correlation.

Discussion

The experiments presented here examined the effect
of signal location in either visual hemifield on the
ability to detect either a face or a flower in noise and
the role that personality has upon the task through
the lens of the schizotypy subscales. We presented

equal proportions of signal and noise images in a
trial-block in the first experiment and three-times as
many noise-only images in in the second experiment.
Across both experiments, sensitivity (d′) was greater
for flowers than faces, but there was no lateralization
for either signal-type. In Experiment 1 there was a
visual-field asymmetry seen in the likelihood to see a
signal when one was not present (c). This predisposition
to visual false alarms was biased toward the right visual
field more than the left for both faces and flowers
and positively correlated to the Unusual Experiences
schizotypy subscale (Partos et al., 2016). Experiment
2 showed a similar right visual field bias to false
alarms, with a stronger bias toward saying “face’
when none was present for all subjects, but this did
not correlate to the Unusual Experiences subscale;
there was a moderate positive relationship between the
Cognitive Disorganization subscale and the bias score
when the subject was expecting a flower (indicating
a lower likelihood of saying “flower” in a noise-only
image). Finally, although there was no asymmetry in
sensitivity (d′) there was a moderate suggestion of
a faster response to a signal (both face and flower)
in the right visual field in Experiment 2. In terms of
the predictions made in the introduction these data
support an evidence-accumulation explanation of
seeing meaning in a noisy input, particularly when
seeing something when it is not actually there.

Accumulation of evidence or recognition of an
object?

The lack of any apparent advantage in the task
for stimuli presented in the left visual hemifield is,
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Figure 12. Mean Reaction time in seconds for LVF and RVF
across signal and noise trials for face (upper) and flower (lower)
type trials for the Bayesian ANOVA. Vertical lines represent
± 95% credible intervals.

on the face of it, inconsistent with the literature on
face detection and identification but fits with the
recent observations on object/face identification and
evidence accumulation (Meng et al., 2012; Ploran et
al., 2007). When one considers the task at hand, this
makes some sense. The decision made by the subject
was whether there was a stimulus present in the noise;
they knew whether that stimulus was meant to be a
face or a flower on a given trial and the task was a
yes/no signal-present task. This decision is a necessary,
but not sufficient, process for the recognition of a
face or a flower (or any object), which tends to have
been the more demanding task that the majority of
the literature has been concerned with. One of the
novel aspects of this study is that the stimuli are
specifically constructed to maximize the likelihood of
seeing something when it is not necessarily there, akin

Figure 13. Bayesian Pearson r correlation between Cognitive
Disorganization (CogDis) subscale of schizotypy and response
bias for trials in the flowers block across both hemifields.

Figure 14. Posterior coefficients for Bayesian Linear Regression
of response bias (C) for Flowers against the four schizotypy
subscales across both hemifields. Vertical bars are ±95%
credible intervals.

to seeing faces in the clouds or hearing your name
spoken in a crowded room full of voices (Partos et al.,
2016). The spatial structure of the noise mimics the
statistics of natural scenes and, arguably, the operation
of natural systems such as the brain. The signal is
embedded in the noise on a pixel-by-pixel basis to
create meaning that evolves through correlation across
space as the signal-pixel–to–noise-pixel ratio increases.
The task of the subject is to decide if a signal is present
in the noise as quickly and accurately as possible.
This process of making a binary decision in a noisy
stimulus has been formalized in several ways, but one
model that has gained traction as an explanatory
framework for much of the data is the Drift Diffusion
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Model of binary decisions (Ratcliff, 1978; Ratcliff &
McKoon, 2008; Ratcliff et al., 2016). The success of the
Diffusion model lies in its transparent simplicity and
that has been effective in linking both behavioral and
neurophysiological data within the same framework
(reviewed in Ratcliff et al. (2016)). Given its use in
explaining the imaging data corresponding to object
and facial recognition (Meng et al., 2012; Ploran et
al., 2007) we discuss its potential in explaining our
data here, but recognize that other models of signal
detection in noise (e.g., the Linear Amplifier model
and its variants, or the more similar Linear Ballistic
Accumulator model) may work equally well (Donkin,
Brown, Heathcote, & Wagenmakers, 2011; Lu &
Dosher, 2008).

The Diffusion Decision Model is a process whereby
one of two alternative outcomes is chosen after a period
of time of indecision, during which the (simulated)
neural activity drifts toward one or other of the
opposed alternatives as evidence is accumulated. This
change in the activity (nominally in polarity around
a resting potential of zero) has a rate of change over
time (the ‘drift rate’) and a decision may be made
when the activity reaches a particular threshold level.
This level is generally balanced in magnitude either
side (+/-) of zero. The time taken to reach the decision
can be affected by both the rate and the threshold and
careful titration of the stimulus properties and the task
in relation to the decision allows significant insight
into the underlying process. The particular stimulus
structure used here, the relatively short presentation
time for the task and the speeded response makes the
data ideal for explanation in terms of the Diffusion
model.

While it is notoriously hard to correlate the behavior
of any computational model to neural activity, the
Diffusion model is arguably a reasonable representation
of the way in which neurons change their membrane
potential until a point at which an action potential is
initiated, constituting the “decision” to pass that signal
on. Two neurons with equal and opposite sensitivity
could constitute the primary components of a simple
diffusion process. The model is more commonly related
to a more global measure of activity in certain regions
of the brain; it is this second form of implementation
that provides a possible explanation for our data within
the context of facial and object recognition measured
with fMRI (Meng et al., 2012; Ploran et al., 2007).

It is equally hard to equate imaging data to
underlying neural activity on anything but a gross scale.
However, when subjects are shown gradually appearing
images and asked to respond as soon as they recognize
the image, fMRI of bilateral occipital brain areas
(including the fusiform gyri) shows a change in blood
flow consistent with accumulation of information to
a point at which a decision can be made (Ploran et
al., 2007). Other areas showed evidence for a more

sudden peak activity at the point of image recognition
(Ploran et al., 2007), suggesting a separation between
and functional localization of discrimination (signal
from noise) and recognition. Although the images
used in these experiments were not confined to faces,
later imaging studies showed a distinction between
left and right fusiform gyri in their accumulated
activity to stimuli varying in their resemblance to a
face (Meng et al., 2012). Activity in the left fusiform
gyrus corresponded with the degree to which a given
stimulus resembled a face, whereas activity in the right
fusiform gyrus peaked at the point at which a “face”
decision was made and endured after the left fusiform
activity had abated (Meng et al., 2012). This second
result is consistent with the topography of the EEG
activity when subjects saw a face in white noise through
pure suggestion; no face ever being present (Smith et
al., 2012). Overall these results suggest a lower-level
evidence-accumulation role of the left fusiform before
face categorization and recognition by the right
fusiform gyrus (McCarthy et al., 1997; Rhodes et al.,
2009; Yovel et al., 2008; Zhang et al., 2012), and we
suggest an evidence-accumulation process of the kind
described by the Diffusion model lateralized to the left
hemisphere mediates the illusory percept of faces and
flowers seen in our stimuli. The lack of any left-visual
field advantage in the results or of any interaction
between visual-field and signal-type suggests that the
deeper facial recognition process mediated by the right
fusiform gyrus, apparent in much of the face processing
literature, is not fully engaged in our task and having a
negligible effect on our data. The increased incidence
of false-alarms in the right visual field, particularly for
faces but also for flowers, suggests this illusory image
response may be an error of evidence-accumulation
leading to a false alarm rather than an error of signal
recognition per se: an observation we consider to be
consistent with the stimulus and task properties.

Personality, laterality and false-alarms

The framework provided by Diffusion model to
contextualize the data presented here might also
make sense of the personality data and the increased
likelihood to respond “face” to a noise-only stimulus,
i.e., make a visual false alarm, which is affected by
both personality and visual field. We have previously
shown that the Unusual Experiences dimension of
the schizotypy subscales is positively correlated to the
likelihood to make a visual false alarm (and therefore
negatively correlated with c) and to see a face in
noise when one is not actually present. This result
is replicated in Experiment 1 and suggested in the
data of Experiment 2; the current results also show a
greater bias toward making a false-positive result in
the right visual field for both faces and flowers. This
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lateralization of the original result (Partos et al., 2016)
is consistent with the suggestion that the majority of
the measured response in the current data is mediated
by the left fusiform gyrus (Meng et al., 2012; Ploran et
al., 2007); both correct and incorrect responses being
mediated by the same underlying mechanism, it is just
the ultimate decision made that differs. Wheras both
faces and flowers showed similar bias, the expectation
of a face was slightly more likely to elicit a false alarm;
this is again consistent with the original result and also
the observations concerning the lateralized activity of
the fusiform gyri particularly in response to face stimuli
(McCarthy et al., 1997; Rhodes et al., 2009; Yovel et
al., 2008; Zhang et al., 2012). We, and others, have
suggested that a higher score in positive schizotypy
elicits perceptual properties consistent with a noisier
system (Badcock, Waters, Maybery, & Michie, 2005;
Koychev, Deakin, Haenschel, & El-Deredy, 2011;
Partos et al., 2016; Winterer, Coppola, Goldberg, Egan,
Jones, Sanchez, & Weinberger, 2004) and the effect that
the internal noise has on perceptual decision-making
(Pelli, 1981). Given our explanation above in terms of
evidence accumulation and the Diffusion model, we
would expect this role of personality to follow the same
pattern of lateralization as seen more generally leading
to more illusory signals in the right visual field when
that predisposition is present in the individual.

Discrepancies

There are some discrepancies in the current work
both with the larger body or literature on face
recognition, between Experiments 1 and 2, and with
our previous work. These differences, we suggest, are
founded in both the proposed underlying mechanisms
at play and the precise experimental conditions used in
the collection of each data set.

The most interesting discrepancy, that with the
larger body of literature on face perception, is largely
explained by the explanation for our data offered above
regarding the task at hand and the particular stimulus
properties. We would expect the more commonly
observed left-visual field advantage to return if the task
were facial recognition. To examine this suggestion,
we also conducted a study where the task was “face or
flower” and the stimulus always contained an image
(either face or flower) and so an object recognition
process must be engaged to complete the task. We found
no lateralizing effect of visual field on either d′ or c (data
available on request). There was, however, no explicit
return of the proposed left visual field advantage in
recognition which could be a product of the stimulus
structure and the task: generally speaking the left-visual
field advantage is found for more traditional “face”
stimuli and recognition of specific facial properties.

The only difference between Experiments 1 and 2
was in the signal-in-noise to noise-only image ratio
(1:1 compared to 1:3, respectively); although the
subjects were not told of this change they would clearly
build up a frame work of the stimulus-presentation
statistics through recent experience. A likely outcome
of this mismatch between expectations and evidence
is an increase in uncertainty in the response, which
is consistent with the overall longer reaction times in
Experiment 2. These expectations, explicit and implicit,
have been shown to affect what we see (Cella et al.,
2007; Partos et al., 2016; Smith et al., 2012). The
discrepancy in the results between Experiments 1 and
2 was principally in the lack of any correlation of bias
(c) with Unusual Experiences (although c remained
lateralized to the right visual field) and a negative
correlation between Cognitive Disorganization and
likelihood to see a flower in a noise-only image (a
positive correlation with c).

It is worth noting that the directions of most
correlations were the same between Experiments
1 and 2 and, furthermore, they were largely also
consistent with the original study for faces (Partos et
al., 2016). The reduced effect of Unusual Experiences in
Experiment 2 is actually consistent with the observation
that subjects higher in this subscale score were less likely
to make false alarms to word stimuli when presented
with fewer signal stimuli than expected (Cella et al.,
2007). This interaction may have had a moderating
effect on the relationship between the false alarms to
faces and Unusual Experiences. Combined with the
result that overall all subjects made more false-alarms
to faces in the right visual field in Experiment 2 makes
this lack of interaction less concerning.

The positive correlation of the bias score (c) with
Cognitive Disorganization in Experiment 2 was
moderate (BF10 = 3.344) and indicated that the higher
the score in this subscale, the more conservative the
responses in the flower blocks (see also Partos et al.
(2016), Experiment 1). We originally suggested in
Partos et al. (2016) that this result might be an effect
of increased social anxiety and neuroticism (which
correlates positively with Cognitive Disorganization
(Claridge et al., 1996)) and subjects being more
conservative in their responses, particularly when there
appear to be fewer signal images than expected, as is
the case in the current Experiment 2. The increased
visibility of the flower stimuli relative to the face
stimuli (shown by the higher sensitivity scores), possibly
because of the elongated petal forming a visible
streak in the image acting as a cue, may explain why
this relationship was principally confined to flowers.
Subjects were possibly more aware of the greater
number of noise stimuli in a flower block which then
moderated their responses accordingly. Although every
effort was made to make the all the signal-images
equally visible for given percentage of noise-pixels for
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both faces and flowers, the image generation process
makes this close to impossible even through pilot testing
because each image is spatially unique. We feel that this
spatial property of the stimuli is an important factor
in the use of these stimuli and potentially mirrors the
internal representation of any noisy stimulus; the basis
on which the system must decide whether a signal is
present or not.

Conclusions

The data presented here suggest that the left visual
field advantage previously shown for tasks of facial
recognition is diminished and, in some cases, reversed
when the task is a simpler signal-detection task. We have
contextualized the data in terms of the task at hand, the
complementary roles of the left and right hemispheres
in the process of image detection, discrimination and
recognition, and the rapid evidence accumulation
process well described by a process along the lines of
the Diffusion Decision model.

Keywords: vision, pareidolia, noise, signal detection
theory, lateralization, Diffusion Decision model,
psychophysics
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Footnote
1Strictly speaking, and as pointed out by one of our reviewers, these values
should be d′a and ca due to the (likely) unequal variances of signal and
noise stimuli in Experiment 2. However, the conclusions for the statistical
analysis will remain the same because the numbers will be in the same
proportions. For consistency with Experiment 1 we chose to keep d′ and c
as the raw calculations.
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