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Abstract: DspA/E is a type three effector injected by the pathogenic bacterium Erwinia amylovora
inside plant cells. In non-host Arabidopsis thaliana, DspA/E inhibits seed germination, root growth,
de novo protein synthesis and triggers localized cell death. To better understand the mechanisms
involved, we performed EMS mutagenesis on a transgenic line, 13-1-2, containing an inducible dspA/E
gene. We identified three suppressor mutants, two of which belonged to the same complementation
group. Both were resistant to the toxic effects of DspA/E. Metabolome analysis showed that the 13-1-2
line was depleted in metabolites of the TCA cycle and accumulated metabolites associated with cell
death and defense. TCA cycle and cell-death associated metabolite levels were respectively increased
and reduced in both suppressor mutants compared to the 13-1-2 line. Whole genome sequencing
indicated that both suppressor mutants displayed missense mutations in conserved residues of
Glycolate oxidase 2 (GOX2), a photorespiratory enzyme that we confirmed to be localized in the
peroxisome. Leaf GOX activity increased in leaves infected with E. amylovora in a DspA/E-dependent
manner. Moreover, the gox2-2 KO mutant was more sensitive to E. amylovora infection and displayed
reduced JA-signaling. Our results point to a role for glycolate oxidase in type II non-host resistance
and to the importance of central metabolic functions in controlling growth/defense balance.

Keywords: Arabidopsis thaliana; Erwinia amylovora; type II non-host resistance; type three effector;
DspA/E; glycolate oxidase; peroxisome; photorespiration

1. Introduction

During evolution, plants have developed a sophisticated and multi-layered immune
system that enables them to perceive and counteract potential invaders. The basal line
of defense relies on the recognition of structural microbial components, i.e., bacterial
flagellin, fungal chitin and lipopolysaccharides, commonly designated as microbe- or
pathogen- associated molecular patterns (MAMPs or PAMPs) [1], by specific cell surface-
localized receptors named Pattern Recognition Receptors (PRRs) [2,3]. A classic example
of a PAMP-PRR interaction is the recognition of the conserved twenty-two amino acid
epitope of flagellin, defined as FLG22, by the leucine-rich repeat receptor-like kinases (LRR-
RLKs) Flagellin-sensitive 2 (FLS2) [4]. This line of defense, defined as PAMP-Triggered
Immunity (PTI), consists in a complex signaling network mediated by mitogen-activated
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protein kinases (MAPK), calcium-dependent protein kinases (CPK or CDPK) as well as
phytohormones such as salicylic acid (SA), jasmonic acid (JA) and ethylene (ET). PTI
activation leads to a set of induced responses that reinforce pre-formed defenses [5,6].
Callose deposition, cell wall modifications along with a rapid increase in cytosolic [Ca2+]
and reactive oxygen species (ROS) accumulation are common responses triggered during
PTI [7–9]. Although PTI ensures protection against a wide range of pathogens, successful
pathogens can overcome this first line of defense by injecting inside the plant cell effector
molecules interfering with PTI activation [10,11]. In response, resistant plants deploy
intracellularly localized receptors called nucleotide-binding leucine-rich repeat receptors
(NLRs), encoded by R genes. The recognition of virulent effectors leads to the activation
of the second layer of immunity defined as Effector Triggered Immunity (ETI) [12]. ETI is
generally stronger than PTI in magnitude and is associated with increased expression of
defense genes and hypersensitive response (HR), culminating into a programmed cell death
(PCD) at the site of infection [10,13]. Moreover, PTI and ETI are closely interconnected,
require common signaling components and mutually potentiate each other [14,15]. ETI
has been found to be effective almost exclusively against biotrophic and hemibiotrophic
pathogens but not against necrotrophic pathogens [16].

When a plant species is entirely resistant to all genetic variants of a pathogen, this is
defined as non-host resistance. Although the underlying molecular mechanisms are not
fully understood, it is considered as one of the most robust forms of resistance. This defense
strategy is regulated by multiple genes, and it is multi-layered, often involving both PTI
and ETI activation [17–20]. Based on the absence or presence of HR, non-host resistance is
classified into type I or type II, respectively [18]. The more complex HR-dependent type II
non-host resistance is triggered when pathogens can overcome basal plant defenses. In HR
activation, a crucial role is played by the bacterial type III secretion system (T3SS) which
translocates an array of proteinaceous type three effectors (T3Es), directly into the plant
cell cytosol [21]. So far, many T3Es from several gram-negative bacteria were reported to
modulate PTI- and ETI-associated immune responses, phytohormone signaling, plant gene
expression and cell death [22]. On the other hand, type II non-host resistance resembles the
incompatible gene-for-gene interaction theory, by which, via R genes, resistant plants can
recognize T3Es that trigger HR and cell death [20].

Erwinia amylovora is a bacterial necrotrophic plant pathogen causing the fire blight
disease of apple, pear and other rosaceous plants. The pathogenicity of E. amylovora
strongly depends on the intracellular delivery of T3Es by T3SS. Although at least four T3Es
are deployed by E. amylovora during plant infection, only T3E DspA/E is fundamental
for pathogenicity, as a mutant strain lacking the DspA/E effector is non-pathogenic [23].
Furthermore, DspA/E-dependent E. amylovora growth in host plants is associated with the
triggering of necrosis and ROS accumulation, suggesting a role for DspA/E-triggered cell
death in disease. When expressed directly in plant cells, both host and non-host, either
transiently [24] or in transgenic plants [25], DspA/E triggers cell death evoking the HR
and activates defense. We previously generated and characterized A. thaliana transgenic
plants expressing DspA/E under an estradiol-inducible promoter [25]. Understanding the
mechanisms underlying DspA/E cell death and its role during the infection process could
lead to the identification of new targets for plant protection against E. amylovora. Here, we
performed ethyl methanesulfonate (EMS)-mediated mutagenesis of the DspA/E-expressing
A. thaliana 13-1-2 line and we identified and characterized DspA/E suppressor mutants. We
show that two allelic mutants display non-synonymous mutations in the Glycolate Oxidase
2 (GOX2) gene, encoding a glycolate oxidase enzyme involved in photorespiration and
non-host resistance [26,27]. We show that these point mutations in GOX2 suppress DspA/E-
associated phenotypes. Interestingly, the mutations harbored by the two suppressor lines
led to a decrease in GOX activity using both in vitro purified recombinant proteins and
in vivo leaf soluble protein extracts. We discuss the role of GOX2 in DspA/E-triggered cell
death and in non-host resistance and the links between these processes.
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2. Results
2.1. Identification of DspA/E Suppressor Mutants

We previously generated and characterized two transgenic lines, 13-1-1 and 13-1-2,
expressing DspA/E under the control of an estradiol-inducible promoter [25]. Estradiol-
induction of DspA/E in A. thaliana is toxic for plants (Figure 1a) and ultimately leads to
plant cell death. In order to identify the mechanism(s) by which DspA/E triggers plant
cell death, we subjected line 13-1-2 to EMS, which induces random point mutations in the
genome. Approximately 125,000 M0 seeds of 13-1-2 were treated overnight with either
0.2% or 0.4% EMS, rinsed in water, sterilized and grown in vitro for two weeks. Viable
seedlings were transferred to soil and the M2 progeny was recovered (Figure 1b). M2
seedlings were sown in vitro on 10 nM estradiol, a condition in which original 13-1-2 seeds
do not germinate due to DspA/E toxicity (Figures 1a and 2a). Each putative mutant was
backcrossed to the parental line and the progeny was sown on estradiol to identify recessive
mutations (Figure S1a).

Figure 1. Design of screening for DspA/E-suppressor mutants. (a) Seeds of control plants (Ctr) and
of a transgenic line with the dspA/E gene under an estradiol-inducible promoter (13-1-2, described
in [25]) were sown on MS medium (1% sucrose) with the indicated concentration of estradiol. Pictures
were taken two weeks after sowing; (b) Outline of DspA/E suppressor mutant selection. The 13-1-2
transgenic line was EMS mutagenized, and the F2 progeny was sown on 10 nM estradiol to identify
DspA/Esuppressor mutants. Further molecular characterization was performed to identify mutants
in which DspA/E was expressed at least at the same level as in the parental 13-1-2 line. Created with
Biorender (https://biorender.com/ accessed on 1 February 2022).

https://biorender.com/
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Figure 2. Identification of Arabidopsis mutants suppressing DspA/E-induced toxicity. Seedlings
were grown for two weeks on MS medium with 1% sucrose with (+) or without (-) 5 µM estradiol:
(a) The parental 13-1-2 line does not germinate in the presence of estradiol contrary to the control line.
The DspA/E-resistant mutants I-18 and II-36 show a similar phenotype to the control line. The scale
bar indicates 0.25 cm; (b) Expression of dspA/E gene in mutants is similar or higher to parental line
13-1-2 or higher. Seedlings were treated with 5 µM estradiol (+) or not (-) for 24 h before sampling for
RNA extraction and qRT-PCR analysis. Transcript level was normalized to A. thaliana APT1 gene.
Stars indicate significant difference from control plants (Mann–Whitney, p-value < 0.05). Similar
results were obtained in at least three independent experiments.

2.2. Phenotypical Characterization of Suppressor Mutants

We identified three putative recessive mutants (I-18, II-36 and I-40) in which the
DspA/E transgene was expressed at a level similar to the parental 13-1-2 line (Figure 2b).
The three mutants were crossed with each other, and progeny were tested for their resistance
to DspA/E. The progeny of crosses from mutants I-18 and II-36 were all resistant to DspA/E
toxicity since they germinated on estradiol (Figure S1), indicating that these two mutations
constitute a complementation group. The progeny of all crosses with the third mutant,
I-40, were sensitive to estradiol, indicating that this mutant did not belong to the same
complementation group as mutants I-18 and II-36 (Figure S1b). The two mutants belonging
to the same complementation group, I-18 and II-36, were selected for further analysis.

The 13-1-2 transgenic line displays several phenotypes associated with the expres-
sion and the toxicity of DspA/E including inhibition of de novo protein synthesis and
inhibition of root elongation [25]. In order to determine which aspects of DspA/E toxicity
were affected in the two selected suppressor mutants, I-18 and II-36, we compared their
phenotypes with that of the 13-1-2 parental line following estradiol-induced DspA/E ex-
pression. Root tips of one-week-old seedlings were treated with estradiol for 10 min and
root growth was measured 24 h after treatment. As described previously, the 13-1-2 line
showed a complete inhibition of root growth per day following the induction of DspA/E
expression (Figure 3a). Following estradiol treatment, both suppressor-mutants showed
root growth similar to mock-treated control conditions (without estradiol), indicating that
these mutants were resistant to the toxicity of DspA/E for root growth (Figure 3a). We then
analyzed the capacity of DspA/E to suppress de novo protein synthesis using 35S-labeled
methionine. As previously described [25], when DspA/E expression was induced in the
parental 13-1-2 line, de novo protein synthesis was stopped 3 h following the estradiol
treatment (Figure 3b). In both suppressor mutants, de novo protein synthesis was not
blocked following the induction of DspA/E expression, indicating that these mutants
are resistant to the toxic effect of DspA/E on de novo protein synthesis. Altogether, our
data show that DspA/E toxicity and associated cellular phenotypes are abolished in both
suppressor mutants identified.
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Figure 3. Characterization of phenotypes associated with DspA/E toxicity in suppressor mutants.
(a) Dose-response of root growth inhibition in the parental 13-1-2 line and in the two selected
suppressor mutants. Root growth of mutants is not affected by dspA/E expression in mutants I-18
and II-36. Bars represent standard deviation (SD), n = 20 seedlings; similar results were observed
in at least three independent experiments. Stars indicate significant difference to untreated control
according to Mann–Whitney (p-value < 0.05); (b) Translation is not inhibited by DspA/E in suppressor
mutants. Ten-day-old seedlings were treated with DMSO (-) or 5 µM estradiol (+) for 3 h and
labelled with 35S methionine. Total protein extracts (10 µg per sample) were separated by SDS-PAGE
and stained with Coomassie blue (bottom panel); 35S methionine incorporation was detected by
autoradiography (top panel). Similar results were obtained for two biological replicates. The picture
corresponds to a single gel.

2.3. Identification of Causal Mutations in the Glyoclate Oxidase 2 Gene

In order to identify the causal mutations leading to suppression of DspA/E toxicity,
we adapted the Shoremap strategy described previously [26]. For this, we crossed each
suppressor mutant with the parental 13-1-2 line. The F1 progeny of this cross was then self-
pollinated and the F2 progeny was analyzed to identify individuals resistant to DspA/E
toxicity. After sowing on 100 nM estradiol, 100 F2 individuals that germinated on estradiol,
and thus resistant to DspA/E toxicity, were sampled and pooled for genomic sequencing.
This was performed in parallel for both the I-18 and the II-36 suppressor mutants.

Illumina sequencing of the pools of F2 individuals bearing the I-18 and II-36 suppressor
mutations was performed at a 40× depth. Sequence analysis was performed using the
CLC genomics workbench software. In parallel, the parental 13-1-2 line was sequenced
in order to eliminate single nucleotide polymorphisms (SNPs) already present. We then
identified the SNPs present in the F2 pool of each suppressor mutant. We found a region of
chromosome 3 in which the percentage of SNPs in both suppressor mutants was between
80 and 100% (Figure S2). This region contained five candidate genes and detailed analysis
of the SNPs present in both suppressor mutants showed that only one gene had SNPs
leading to non-synonymous mutations in both suppressors; the At3g14415 gene encoding
GLYCOLATE OXIDASE 2 (GOX2). In the II-36 mutant the identified SNP led to a Ser27Phe
mutation in the GOX2 protein, while in the I-18 mutant the identified SNP led to an
Ala96Val mutation (Figure 4a,b). A multiple sequence alignment analysis showed that both
mutations altered conserved amino acids of GOX enzymes from different plant species,
including a GOX enzyme from Malus domestica (Figure 4c).
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Figure 4. Mutations in the GOX2 gene responsible for the suppression phenotype (a) GOX2 gene
and position of the two-point mutations and of the gox2-2 T-DNA insertion; (b) A structural model
of AtGOX2 based on the 3D-structure of Spinacia oleracea GOX (PDB 1AL7); (c) Multiple sequence
alignments of AtGOX2 with other orthologous protein sequences. Amino acids sequences were
retrieved from NCBI, and multiple alignments were performed by “Clustal omega” with default
parameters. The alignments were visualized through “Jalview” workbench (version 2.11.1.4) using the
beta strand propensity coloring scheme (yellow: high strand propensity, blue: low strand propensity).
At: Arabidopsis thaliana, Bo: Brassica oleracea, Bv: Beta vulgaris, Cs: Camelina sativa, Md: Malus domestica,
Gs: Glycine max.

2.4. The Knock-Out gox2-2 Mutant Is Allelic to the DspA/E Toxicity Suppressor Mutants

In order to confirm that mutations in the GOX2 gene were responsible for the loss
of DspA/E toxicity in A. thaliana seedlings, we crossed both the parental 13-1-2 line and
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the suppressor mutants with the gox2-2 T-DNA KO line described previously [27]. When
crossed with the parental 13-1-2 line, the F1 progeny were unable to germinate on estradiol,
as expected since the gox2-2 mutation is recessive. When the gox2-2 mutant was crossed with
the I-18 suppressor mutant, the F1 progeny was able to germinate on estradiol (Figure 5a).
Similar results were obtained when the gox2-2 mutant was crossed with the II-36 suppressor.
Thus, the gox2-2 KO mutant was unable to functionally complement the suppressor mutants
for the susceptibility to DspA/E toxicity. This result is consistent with the fact that DspA/E
toxicity in A. thaliana requires GOX2.

Figure 5. gox2-2 mutants are allelic to suppressor mutants and mutations in GOX2 suppress DspA/E
toxicity in A. thaliana. (a) Seedlings were grown for 7 days directly on 5 µM estradiol. The control line
(wt) and the three parental lines are shown on the left. As expected, the parental 13-1-2 line does not
germinate on estradiol while the three other lines do. The F1 progeny of the 13-1-2 x gox2-2 cross does
not germinate on estradiol while the F1 progeny of the I-18 x gox2-2 cross is able to germinate on 5 µM
estradiol. All genotypes were able to germinate on MS without estradiol. Each cross was performed
at least in triplicate and 2 to 5 seeds per cross were tested. A representative seedling is shown for
the DspA/Eresistant genotypes; (b) GOX activity increases following infection of 5-week-old rosette
leaves inoculated with wild-type E. amylovora (Ea). This increase is not observed in response to the
Ea dspA/E-deficient mutant (d) and is not observed in the A. thaliana gox2-2 mutant. m: mock; Ea:
wild-type E. amylovora; d: E. amylovora dspA/E-deficient mutant. For each condition, four pools of
three rosette leaves were analyzed; (c) GOX activity in the suppressor mutants. GOX activity was
measured in vitro. It was strongly reduced in the gox2-2 mutant and in the II-36 suppressor mutant.
In the I-18 we observed a slight reduction that was not significant. For each condition, four pools
of 20 seedlings were analyzed; (d): GOX activity of GOX2 recombinant proteins bearing mutations
found in I-18 (A96V) and II-36 (S27F) mutants. (b–d): * indicates significant difference with the
wild-type (Mann–Whitney, p-value < 0.05).

In A. thaliana, GOX enzymes, involved in photorespiration, have been attributed to a
family of five genes; however, only three of them have been shown to convert glycolate
to glyoxylate; GOX1-3 [28]. The GOX2 protein has been shown to be involved in non-
host resistance [27], and this role is believed to be linked to ROS production since GOX
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enzymatic activity generates H2O2 [29,30]. We tested the global GOX activity in A. thaliana
leaf extracts inoculated or not with E. amylovora. We found that in response to E. amylovora
infection, there was an increase in the extractable GOX activity of leaf extracts (Figure 5b).
Since A. thaliana rosettes contain both GOX1 and GOX2 [28], it was not possible to determine
whether the observed increase in GOX activity is essentially due to GOX2 alone. However,
smaller increase in GOX activity in the gox2-2 following inoculation with E. amylovora could
indicate that this is the case (Figure 5b). We then compared leaf GOX activity in wild-type
plants and the gox2-2, I-18 and II-36 mutants. As expected, the gox2-2 KO mutant showed
a 47% reduction in GOX activity compared to the control wild-type line (Figure 5c). This
was also true for the II-36 suppressor mutant in which a 30% reduction in GOX activity
was observed. In the I-18 suppressor mutant the leaf GOX activity was 15% lower than in
wild-type; however, this difference was not significant, suggesting that the I-18 mutation
might not affect global GOX activity.

2.5. GOX2 Is Required to Induce JA-Dependent Defense and Confers Non-Host Resistance to
E. amylovora

GOX2 has been previously shown to be involved in non-host resistance [27]. We
therefore analyzed the response of the gox2-2 mutant to E. amylovora infection. As expected,
gox2-2 was more susceptible to E. amylovora (Figure 6a). This was correlated with a reduc-
tion in electrolyte leakage in the mutant in response to E. amylovora infection (Figure 6b),
which is consistent with a reduction in defense response reminiscent of type II non-host.
We then analyzed the expression of two defense-signaling marker genes, CHI-B and PR1,
both previously shown to be induced in wild-type plants in response to E. amylovora infec-
tion [19]. We found that the SA-dependent PR1 gene was unaffected in the gox2-2 mutant
while the JA-dependent CHI-B gene was less induced in the gox2-2 mutant background
(Figure 6c). Furthermore, GOX enzymes catalyze reactions that oxidize different 2-hydroxy
acid substrates and all produce H2O2. In the case of GOX2, H2O2 production occurs in
response to infection by non-adapted pathogens [27]. However, we did not find any differ-
ence in response to E. amylovora in terms of H2O2 accumulation detected by DAB staining
at the level of gox2-2 leaves when compared to wild-type leaves (Figure 6d).

T3Es are injected into the plant cytoplasm; however, their final localization within the
plant cell can be in the cytosol and/or in different organelles. Motif search in the DspA/E
protein sequence showed the presence of several organelle-targeting signals including
a peroxisome targeting signals (PTS) [31]. However, previous works trying to establish
the intracellular localization of DspA/E were unsuccessful, probably due to the toxicity
of this protein for eukaryotic cells [25,32,33]. Since GOX2 suppresses DspA/E toxicity, it
was decided to check the subcellular localization of the GOX2 protein. Its revpresumed
peroxisomal localization is based on the presence of a typical C-terminal tripeptide required
to address proteins into peroxisomes [34] and its presence in peroxisomal proteomes [35]
but its subcellular localization has not been confirmed by other means. We constructed a
GOX2::GFP fusion under the native GOX2 promoter and transformed protoplasts obtained
from a stable transgenic line bearing a peroxisomal RFP marker [36]. Our results confirm
that GOX2 is indeed peroxisomal (Figure 7).
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 Figure 6. GOX2 is involved in non-host resistance against E. amylovora. (a) Bacterial titers of wild-type
E. amylovora in A. thaliana leaves 24 hpi. Bacterial titers in the gox2-2 mutant were 1 log higher than in
wild-type leaves; (b) Conductivity in A. thaliana leaf discs 24 hpi following infection with wild-type E.
amylovora (Ea) or mock-inoculation (m). Conductivity was significantly lower in leaves of the gox2-2
mutant, indicating lower electrolyte leakage; (a,b): * indicate significant difference from wild-type
plants (Mann–Whitney, p-value < 0.05); (c) Expression of CHI-B and PR1 genes in mock (m) or E.
amylovora (Ea)-inoculated leaves 24 hpi, relative to the APT reference gene, in arbitrary units (AU);
(d) H2O2 in leaf tissue detected by DAB (left panel) and DCFH-DA (right panel) staining. An increase
in H2O2 accumulation is observed in leaves 24 h following infection with wild-type E. amylovora (Ea)
in wild-type A. thaliana leaves (wt). A similar effect is observed in the gox2-2 background. For each
type of staining a total of 15 leaves per condition were analyzed (representative pictures are shown).
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Figure 7. GOX2 is peroxisomal. Transient expression of a GOX2::GFP C-terminal fusion in A. thaliana
protoplasts from a stable line expressing a RFP-tagged peroxisomal marker [37]. Pictures are single
confocal optical sections plane. The RFP, GFP fluorescence and chloroplast autofluorescence are
color-coded in red, green and blue, respectively. Scale bar = 30 µm.

2.6. DspA/E-Triggered Cell Death Is Associated with Strong Metabolite Changes

In order to better understand the mechanisms underlying both DspA/E triggered cell
death and its suppression by the two suppressor mutants, we performed a metabolomic
analysis by GC-MS. Seedlings of the 13-1-2 parental line and of the two suppressor mu-
tants were either mock-treated (without estradiol) or treated with increasing estradiol
concentrations. The results show that DspA/E expression in the 13-1-2 parental line leads
to depletion in metabolites associated with the TCA cycle, such as fumarate and citrate
(Figure 8). In the 13-1-2 parental line an accumulation of metabolites associated with cell
death and defense such as pipecolate and stigmasterol was observed (Figure 8). Other
metabolites showed an altered accumulation in response to DspA/E expression such as
salicylate and several organic acids (Figure 9). Interestingly, TCA cycle intermediates accu-
mulated more in the suppressor mutants than in the 13-1-2 parental line. On the contrary,
cell-death and defense-associated metabolites showed levels in the suppressor mutants
comparable to the control line (Figures 8 and 9).
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Figure 8. Metabolite accumulation in the 13-1-2 parental line and in the two suppressors. Metabolite
accumulation was measured by GC-MS. 10-day old seedlings of the parental 13-1-2 line and of the
two suppressor mutants were mock-treated or treated with different concentrations of estradiol (as
indicated) to induce DspA/E expression. For each condition, four pools of 20 seedlings were sampled
24 h following treatment. Values correspond to the mean of three biological replicates, bars to the
standard error. Differences in mean were tested in a two-way ANOVA test combined with Tukey’s
comparison post-hoc test; significantly different means appear with different letters (p-value < 0.05).

Altogether, our data show that expression of DspA/E in A. thaliana seedlings leads
to important modifications of the metabolome and that part of these modifications of
metabolite levels in response to DspA/E expression were lost in both suppressor mutants
(Figures 8 and 9).
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Figure 9. Metabolite accumulation in transgenic lines. DspA/E expression was induced by estradiol
treatment in the 13-1-2 line and in the II-36 suppressor and metabolite levels in each of these genotypes
was compared to that in the control line without DspA/E. Each square corresponds to log fold
accumulation in one condition versus the indicated control condition. Square 1 (left): parental 13-1-2
DspA/E line vs. control line; square 2 (right): II-36 suppressor vs. control line.

3. Discussion

The pathogenicity of E. amylovora depends on its T3SS which injects type three effectors
(T3Es) inside the plant cell; among them, the T3E DspA/E plays a major role since a
DspA/E-deficient mutant is non-pathogenic [23]. In host plants, DspA/E causes a rapid
oxidative burst associated with disease [38,39]. In the model plant A. thaliana, E. amylovora
is able to multiply transiently in a T3SS-dependent manner [40]. However, A. thaliana can
restrict bacterial growth by triggering an active type II non-host resistance that includes
callose deposition, cell death and expression of defense signaling pathway genes [19]. In
a previous study, we generated the transgenic A. thaliana line 13-1-2 expressing dspA/E
under an estradiol-inducible promoter and showed that DspA/E plays an important role
in triggering non-host resistance in A. thaliana [25]. However, the exact mechanisms by
which DspA/E triggered cell death in the line 13-1-2 remained to be elucidated.
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In the present study, we EMS mutagenized the 13-1-2 line and identified two inde-
pendent suppressor mutants, I-18 and II-36, that were resistant to DspA/E-inhibition of
seedling germination. Further characterization of these two mutants showed that they
were rescued for all phenotypes associated with DspA/E expression that were tested:
inhibition of germination, inhibition of root elongation, and inhibition of de novo protein
synthesis. To further understand the mechanisms at play, we performed a metabolomic
analysis of the 13-1-2 line and of the two suppressor mutants (Figure 8). Interestingly,
we observed that the TCA cycle was strongly affected in the 13-1-2 line when DspA/E
was expressed, which could explain the lack of germination of transgenic seeds in these
conditions [41,42]. In contrast, both suppressor mutants showed higher accumulation of
TCA cycle intermediates such as fumarate, 2-oxoglutarate, malate and succinate (Figure 8),
thus perhaps explaining their capacity to germinate while expressing DspA/E. Indeed,
there is increasing evidence of that metabolites such as TCA cycle intermediates can act
as signaling intermediates [43]. Another key feature of the metabolomic response of A.
thaliana seedlings to the expression of DspA/E was the accumulation of several metabolites
associated with cell death and defense. For example, pipecolate, a catabolite of lysine, that
can induce resistance to P. syringae pv. maculicola [44], accumulated strongly in response to
DspA/E expression. Stigmasterol, known to reduce membrane fluidity and permeability
also accumulated strongly in response to DspA/E expression [45]; DspA/E expression
triggers strong electrolyte leakage and it is possible that stigmasterol accumulation is a
means for the plant to control this leakage. All of these metabolites accumulated less in
the two suppressor mutants, indicating that these metabolites could play a key role in the
signaling of DspA/E-triggered defense and/or in the coping with damage to the plant cells
associated with DspA/E expression.

Whole genome sequencing of the two suppressor mutants allowed us to determine
that they each carried different missense mutations in the A. thaliana GOX2 gene, which
encodes a glycolate oxidase involved in photorespiration [28]. GOX2 belongs to a family
of five genes: GOX1, GOX2, GOX3, HAOX1 and HAOX2 [30]. Previous analysis of single
knock-out lines for GOX1 and GOX2 and an artificial microRNAi line targeting both genes
in Arabidopsis showed that these two genes were the major photorespiratory genes in
leaves [28]. Conversely, other works showed that GOX3 encoded for a lactate oxidase
involved in roots metabolism during hypoxia [46], while HAOX1 and HAOX2 encoded
for long-chain 2-hydroxy acid oxidases mainly expressed in seeds [47]. Nevertheless, all
GOX genes seem to play a role in the non-host resistance against P. syringae pv. tabaci in
Arabidopsis leaves, since GOX3, HAOX1 and HAOX2 were significantly induced after 24 h
of infection with this pathogen [27]. Here, we showed that, following E. amylovora infection,
overall leaf GOX activity can be significantly induced in a DspA/E-dependent manner in
Col-0 plants while it was not the case in the gox2-2 mutant (Figure 5b). Interestingly, the
two suppressor lines harboring different mutations in the coding region of GOX2 genes
had also a lower overall leaf GOX activity (Figure 5c).

GOX2 has been identified in the proteome of peroxisomes [34,35], and here confocal
microscopy using a peroxisomal RFP marker and a GOX2::GFP construct allowed us to
confirm that GOX2 is indeed a peroxisomal protein. Both suppressor mutations modified
a different conserved amino acid of the GOX2 protein. Interestingly, GOX has already
been shown to be involved in non-host resistance against P. syringae pv. tabaci [27]. In this
study, ROS accumulation in the leaf blade in response to a non-adapted pathogen was
lower in knock-out gox mutants. GOX2 is part of a five member gene family comprising
GOX1, GOX2, GOX3, HAOX1, and HAOX2 and perhaps surprisingly all GOX family knock-
out mutants exhibited a reduction in ROS accumulation in response to the non-adapted
pathogen P. syringae pv. tabaci [27]. We found no major difference in macroscopic accu-
mulation of ROS in the gox2-2 background using the non-adapted pathogen E. amylovora,
suggesting that in this case, there were GOX2-independent sources of ROS. Indeed, we
showed previously that ROS production in response to E. amylovora in A. thaliana is strongly
dependent on the RBOHD NADPH oxidase [48]. The KO gox2-2 mutant showed a higher
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susceptibility to E. amylovora, showing the involvement of this enzyme in type II non-host
resistance against a necrotrophic pathogen. Interestingly, we found normal expression
of the SA-dependent PR1 gene in the gox2 mutant background but low expression of the
JA-signaling marker gene CHI-B. Since JA biosynthesis is in part localized in the peroxi-
some [49], it could be speculated that perturbation of peroxisomal functions in the gox2
mutant alters the capacity of the plant to synthesize JA and/or compromises JA signaling
upon pathogen attack. Therefore, we show that in addition to being involved in non-host
resistance against hemi-biotrophic pathogens, GOX2 is also involved in type II non-host
resistance against necrotrophic pathogens.

In this study, we show that A. thaliana gox2-2 mutants are resistant to the toxicity of
DspA/E and more susceptible to E. amylovora. This suggests that, in the non-host context,
DspA/E toxicity is correlated with defense activation. This is interesting as the role of
the toxicity of DspA/E in plant cells during the infection process is still unclear to date.
However, the precise role of GOX2 in both the toxicity of DspA/E and the susceptibility to
E. amylovora remains to be determined. The gox2-2 mutant showed reduced expression of
CHI-B, a JA-signaling marker gene, indicating reduced defense activation in this genetic
background, which could explain the increased susceptibility to E. amylovora. We also
observed that in response that in response to E. amylovora infection there is an increase in
total GOX activity, which was strongly reduced in the gox2-2 mutant. This result suggests
that the peroxisome could be targeted during the infection process.

Finally, GOX2 is an enzyme involved in photorespiration, an energy-costly process,
which can limit crop yield, especially under low CO2 conditions that can be produced by
biotic-stress related stomatal closure. It is well known that there is a trade-off between
growth and defense in plants [50]. In the presence of DspA/E and in response to E.
amylovora infection, the growth-defense equilibrium could be altered. One explanation
for the suppression of DspA/E toxicity by the mutation of the GOX2 enzyme could be an
alteration of growth-defense equilibrium. In this scenario, loss of GOX2 and associated
defense reactions could re-equilibrate the defense/growth balance in favor of growth.
Forward genetics is a powerful strategy to uncover unexpected links between different
cellular processes. Central metabolic functions and specialized metabolites are increasingly
shown to play a crucial role in plant-pathogen interactions. Further studies will be necessary
to uncover the precise links between these processes.

4. Materials and Methods
4.1. Plant Material and Growth Conditions

In vitro growth was performed on 1×Murashige and Skoog (MS) medium supple-
mented with 1% sucrose in growth chambers under a long day light regime (16 h light/8 h
dark) at 25 ◦C (day) and 20 ◦C (night).

The 13-1-2 A. thaliana transgenic line, described previously, bears the dspA/E gene
under the control of an estradiol-inducible promoter [25]. The gox2-2 mutant bears a T-DNA
insertion in the 5′UTR region of the AT3G14415 gene and has been shown to be a knock-out
mutant [27]. All the plant material used in this study is in the Col-0 accession.

4.2. Bacterial Strains and Pathogen Infection

The bacterial strains used in this study are the wild-type CFBP1430 strain of Erwinia
amylovora and the M81 mutant defective for DspA/E [25].

For pathogen infections, rosette leaves of 5-week-old plants were infiltrated with
E. amylovora CFBP1430 or the M81 dspA/E- mutant using a needleless syringe. Bacterial
suspensions were prepared in sterile water (107 CFU/mL; OD600 = 0.1). Twenty-four hours
post infection (hpi), we performed bacterial counting by grinding infected leaves using
glass beads in a TissueLyser (Qiagen/Retsch, Hilden, Germany). The bacterial suspensions
were used to prepare serial dilutions, which were plated on an LB medium, and after 1 or
2 days the colonies formed were counted to evaluate the initial number of bacteria.
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4.3. EMS Mutagenesis and Screening

EMS mutagenesis of the 13-1-2 line was performed as described previously [51,52].
Briefly, approximately 125,000 seeds (2.5 g) were treated with 0.2 or 0.4% EMS overnight,
rinsed in water, sterilized and grown in vitro for two weeks. Viable seedlings were trans-
ferred to soil in growth chambers (16 h light/8 h dark) at 25 ◦C (day) and 20 ◦C (night)
and the M1 progeny was recovered in 150 bulks of approximately 10 plants each. The
screening was performed by sowing on MS supplemented with 1% sucrose and 10 nM
estradiol. Seedlings able to germinate in these conditions were transferred to fresh MS
without estradiol for a few days and then transferred to soil to collect their progeny.

4.4. Genome Sequencing of Suppressor Mutants and Analysis

The selected suppressor mutants were backcrossed with the parental 13-1-2 line and the
F2 progeny was analyzed. For each suppressor mutant, 100 F2 individuals able to germinate
on 10 nM estradiol were sampled and pooled. For each pool, DNA was extracted and whole
genome Illumina® sequencing at a 40× depth was performed. The sequences were mapped
to the A. thaliana Col-0 reference genome using the CLC genomics workbench software. In
parallel, the parental line 13-1-2 was sequenced to identify the SNPs it carried, these SNPs
were then eliminated from our analysis of the genomes of the suppressor mutants.

4.5. Recombinant GOX2 Production and Site-Directed Mutagenesis of AtGOX2

To produce recombinant GOX2 proteins, the previously described pET28a-AtGOX2
expression plasmid [53] was used as a template to introduce the desired point mutations by
PCR using specific primer pairs (Table S1) and the QuikChange® II XL site-directed muta-
genesis kit (Agilent®, Les Ulis, France), according to the manufacturer’s instructions. This
strategy generated AtGOX2-S27F and AtGOX-A96V mutated proteins. All constructions
were subsequently verified by DNA sequencing using T7 and T7-term primers (Table S1).

The N-terminal His-tagged GOX2 proteins were purified by affinity chromatography
as previously described [28]. The purity of each recombinant GOX2 protein was checked
by SDS-PAGE (10% acrylamide) stained with Coomassie Brilliant Blue [54].

Recombinant GOX2 activities were measured using 5 µg of purified recombinant
GOX2 in 50 mM Tris-HCl, 0.1 mM FMN, pH 8.0 and increasing glycolate (0.05 to 10 mM)
concentrations by an enzyme-coupled reaction at 30◦C. H2O2 produced by GOX activity
was quantified in the presence of 0.4 mM O-dianisidine and 2 U horseradish peroxidase by
measuring the ∆A440 nm with a Varian Cary 50 spectrophotometer. KM and activity values
were calculated using SigmaPlot 13.0 software based on the curve fitting Michaelis–Menten
equation: v0 = Vmax[S]/(KM + [S]).

4.6. Glycolate Oxidase Activity In Vitro Assay

Glycolate oxidase activity was measured in vitro on protein extracts as described
previously [28,53]. Briefly, leaf samples were ground in liquid nitrogen using a TissueL-
yserII (Qiagen®, Retsch, Hilden, Germany) and resuspended in Tris-HCl (50 mM, pH 8).
Protein extracts were purified using a NAP-5 Sephadex G-25 DNA grade column (GE
Healthcare®, Uppsala, Sweden). Enzyme activity was measured in Tris-HCl (50 mM, pH 8)
with glycolate (10 mM) and 300 µg of purified total protein by an enzyme-coupled reaction
at 30 ◦C. Glycolate-dependent H2O2 production was quantified in the presence of 0.4 mM
o-dianisidine and 2 units of horseradish peroxidase by measuring the ∆A440 nm using a
Varian Cary 50 spectrophotometer.

4.7. 35S-Labelled Methionine Incorporation

Seedlings treated with dimethylsulphoxide (DMSO) or 5 µM estradiol for 3 h and
transferred to 1 mL of liquid MS supplemented with 1% sucrose containing 50 mCi of
35S-labelled methionine (Perkin-Elmer, Waltham, MA, USA), and incubated for 30 min.
Seedlings were rinsed twice for 5 min in MS. Total proteins were extracted in 1 mM
sodium ethylenediaminetetraacetate (Na-EDTA), 1 mM MgCl2, 25 mM Tris-HCl (pH 7.6),
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13.3 mM β-mercaptoethanol and 1 mg/mL antiprotease cocktail (Roche, Meylan, France),
subjected to sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE) and
the methionine incorporation rate was revealed by autoradiography.

4.8. RNA Isolation and qRT-PCR

Total RNA was extracted from 100 mg of frozen ground leaves or seedlings using
Trizol® reagent (Invitrogen Life Technologies, Saint-Aubin, France). The RNA quality was
evaluated by electrophoretic run on 1% agarose gel. First-strand cDNA was synthesized
using Superscript reverse transcriptase SSII (Invitrogen, Saint-Aubin, France) from 1 µg
of DNase-treated (Invitrogen, Saint-Aubin, France) total RNA in a 20 µL reaction volume.
qPCR reactions were performed using SYBR® Selected MasterMix 2x (Applied Biosystem,
Villebon Sur Yvette, France), following the manufacturer’s protocol. The cycling conditions
consisted of an initial 5 min at 95 C, followed by 40 three-step cycles at 94 ◦C for 15 s, 60 ◦C
for 30 s, and 72 ◦C for 30 s. Melting curve analysis was performed after cycle completion
to validate amplicon identity. Relative expression levels were calculated following the
standard curve-based method [37]. Expression of the Adenosine Phosphoribosyl Trans-
ferase 1 (APT1; AT1G27450) reference gene was used for normalization [55]. For each
treatment, three biological replicates, corresponding to a pool of 4 leaves from a single
plant or to 20 seedlings, were analyzed and each qRT-PCR reaction was carried out in dupli-
cate; the complete experiment was conducted twice independently, and one representative
experiment is presented. The gene-specific primers used in this analysis are described
in [56].

4.9. Detection of ROS

Diaminobenzidine (DAB) staining was used to detect intra-and extracellular hydrogen
peroxide (H2O2). Five-week-old leaves were collected 2 h after inoculation and vacuum-
infiltrated with DAB (Sigma Aldrich, Saint Louis, MI, USA) (1 mg/mL, pH 3.7). Leaves
were then placed in a wet Petri dish overnight and the staining was stopped at 16 hpi
using ethanol to discolor them. 2′,7′-Dichlorofluorescein diacetate (DCFH-DA) staining
was used to detect intracellular hydrogen peroxide. A 30 mM DCFH- DA (Sigma Aldrich,
Saint Louis, MI, USA) solution was prepared in DMSO and diluted 100 times in deionized
water. Inoculated or mock-treated leaves were collected 16 h post-inoculation (hpi) and
vacuum-infiltrated with DCFH-DA. Leaves were immediately put on a microscope slide
and fluorescence emission was observed under a binocular magnifier with a GFP filter
(510 nm).

4.10. GOX2::GFP Construct

Plasmid pda09796 containing the GOX2 gene sequence was obtained from the RIKEN
institute. The GFP coding sequence was cloned in 3′ of the GOX2 coding sequence using the
gateway cloning system. The primers used to perform the cloning are detailed in Table S1
(start gox2-2-F; stop gox2-2-R; end gox2-2-R).

4.11. Protoplast Production and Transfection

Protoplasts were prepared from 14-day-old A. thaliana seedlings stably transformed
with a peroxisomal marker [36] as previously described [57]. A. thaliana mesophyll pro-
toplasts were transfected with 2.5 µg of the GOX2::GFP construct. The protoplasts were
imaged by confocal laser scanning microscopy after 24 h of incubation in the dark at room
temperature.

4.12. Confocal Laser Scanning Microscopy

Images of fluorescent protoplasts were obtained with a Leica TCS-SP2-AOBS spectral
confocal laser scanning microscope equipped with a Leica HC PL APO lbd.BL 20.0x 0.70
water immersion objective. GFP and chloroplasts were excited with the 488 nm line of
an argon laser (laser power 40%) while the RFP was excited with the 543 nm line (laser
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power 30–40%). Fluorescence emission was detected over the range 495 to 540 nm for
the GFP construct, 590 to 640 nm for the RFP construct and 670 to 730 nm for chloroplast
autofluorescence. Images were recorded and processed using LCS software version 2.5
(Leica Microsystems). Images were cropped using Adobe Photoshop CS2 and assembled
using Adobe Illustrator CS2 software (Abode, http://www.abode.com accessed on 1
February 2022).

4.13. Metabolite Analysis

Metabolome analysis was performed as previously described [58]. Four pools of
20 seedlings per condition were used for metabolome analysis. Approximately 30 mg of
the ground frozen seedling samples was analyzed by an Agilent 7890A gas chromatograph
(GC) coupled to an Agilent 5975C mass spectrometer (MS). Standards were injected at the
beginning and end of the analysis. Data were analyzed with AMDIS (http://chemdata.
nist.gov/mass-spc/amdis/ accessed on 5 December 2013) and QuanLynx software (Waters
Corp., Milford, MA, USA).

4.14. Structural Model of AtGOX2

The structural model presented in Figure 4b is based on the 3D-structure of S. oleracea
GOX (PDB 1AL7) [59].
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