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Abstract: Multistable switches are ubiquitous building blocks in both systems and synthetic biology.
Given their central role, it is thus imperative to understand how their fundamental properties depend
not only on the tunable biophysical properties of the switches themselves, but also on their genetic
context. To this end, we reveal in this article how these factors shape the essential characteristics
of toggle switches implemented using leaky promoters such as their stability and robustness to
noise, both at single-cell and population levels. In particular, our results expose the roles that
competition for scarce transcriptional and translational resources, promoter leakiness, and cell-to-cell
heterogeneity collectively play. For instance, the interplay between protein expression from leaky
promoters and the associated cost of relying on shared cellular resources can give rise to tristable
dynamics even in the absence of positive feedback. Similarly, we demonstrate that while promoter
leakiness always acts against multistability, resource competition can be leveraged to counteract this
undesirable phenomenon. Underpinned by a mechanistic model, our results thus enable the context-
aware rational design of multistable genetic switches that are directly translatable to experimental
considerations, and can be further leveraged during the synthesis of large-scale genetic systems using
computer-aided biodesign automation platforms.

Keywords: genetic switch; leaky promoter; multistability; robustness; context-dependence; scarce
resources

1. Introduction

Living cells function as microscopic factories, converting energy and building blocks
into a large array of products [1]. The vision of synthetic biology is to reliably control these
processes by bringing together tools from multiple fields, ranging from biotechnology and
genetic engineering to control/systems engineering and machine learning [2–4]. Recent
breakthroughs highlight that this approach holds the promise of revolutionizing multiple
sectors, with examples ranging from biocomputing [5] through biotherapeutics [6] to
biofuel production [7].

While modifying the genetic blueprint of living organisms is now routine practice via
genome editing, designing systems of even modest complexity still requires numerous
iterative cycles and vast libraries [8,9] due to context-dependence [10,11], often leading
to perplexing behavior [12,13]. For instance, as a result of metabolic burden, synthesiz-
ing heterologous proteins can lead to growth rate reduction and the expression of two
unrelated proteins becoming coupled [14–22]. Moreover, due to host-circuit interaction,
bistability [23] or even oscillations [24] may unexpectedly emerge. Tackling the issue
of modularity thus requires system-level approaches [25] that combine a diverse set of
quantitative tools [26–36].

Considering the central role that multistable switches play in both natural and syn-
thetic gene systems [37–39], it is especially troubling that their behavior displays particu-
larly strong dependence on their context [40,41]. While some variants fail to function as a
memory module upon changes to their genetic context as a result of competition for shared
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resources (Figure 1A), others preserve this critical functionality (Figure 1B), although their
robustness to noise decreases (Figure 1C). Therefore, core properties of the toggle switch are
not only context-dependent but seemingly identical realizations can react fundamentally
differently to burden-related perturbations (Figure 1).
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Figure 1. Stability and robustness of genetic switches depend on their context [40,41]. (A) In the
absence of loading from its context, trajectories of toggle switch #1 converge to one of two metastable
states (red and green). Once loading from the context is present, realized via the addition of the
repressilator [42], the two distinct subpopulations coalesce (purple). (B) Although toggle switch
#2 behaves identically to toggle switch #1 in the absence of the context (red and green), the same
perturbation only causes a slight shift of the two subpopulations towards each other (purple).
(C) Toggle switch #2 displays dramatically reduced robustness to noise due to its context. For more
details on the stochastic simulations [43–45], see Section S1 and Section S6 in the SI.

Motivated by this, our objective here is two-fold: we seek to (i) characterize how
tunable biophysical parameters of the toggle switch shape its stability and robustness
properties, and to (ii) quantify how burden from the genetic context influences these fun-
damental characteristics. Significantly extending our prior results [46,47] by accounting
for the general case of leaky promoters, the combined analytical/numerical approach
presented here not only reveals surprising and previously unknown behaviors, but it
also provides us with explicit design guidelines that promote modularity and increased
robustness to noise. To illustrate the former, we uncover that while both promoter leakiness
and resource sequestration separately act against bistability, their combined effect can
surprisingly give rise to tristable dynamics even without positive feedback [48]. Regarding
the latter, we demonstrate that while high resource sequestration inside the toggle switch
pushes it towards monostability and diminished robustness to noise [46,47], it also de-
creases the burden-related effects of the context on the stability and robustness properties
of the switch. Finally, as our results account for cell-to-cell variability ubiquitous to living
systems [49], we reveal, for instance, that the correlation between protein expression and
resource sequestration increases population-level uniformity.

To ensure predictable system-level behavior, the effects of context-dependence must
be explicitly accounted for at the part level. To ensure that the stability and robustness of ge-
netic toggle switches can be rationally adjusted by leveraging the explicit design guidelines
we uncover, our approach relies on a mechanistic model [46,47] that accurately captures
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the limited availability of shared transcriptional and translational resources [16,50]. As a
result, we can systematically engineer the performance of genetic switches by combining
a wide variety of experimental tools such as RBS and promoter engineering [51,52], the
introduction of decoy sites [53], and the expression of heterologous proteins [15,16].

This paper is organized as follows. After presenting the mathematical model and
the technical tools underpinning our analysis, we reveal the role that promoter leakiness,
scarcity of shared transcriptional and translational resources, and cell-to-cell heterogeneity
collectively play to establish the fundamental stability and robustness properties of genetic
switches. Following this, we illustrate how these results can be further generalized to
account for loading from the genetic context of the switch.

2. Materials and Methods
2.1. Mathematical Model to Account for the Scarcity of Resources

The toggle switch represents one of the first rationally engineered genetic devices [54],
comprising two proteins (y and z) repressing each other’s expression. Assuming that
the repressors bind as dimers [32,38,55,56] and considering leaky promoters [52], the
de-dimensionalized dynamics of the toggle switch are given by the following equations:

ẏ = α

(
ν +

1
1 + z2

)
− y, ż = α

(
ν +

1
1 + y2

)
− z,

where α and ν denote expression rate and promoter leakiness [57], respectively.
Although cellular resources (e.g., RNA polymerase and ribosomes) are shared among

processes responsible for the production of y and z, the widely adopted model of the
toggle switch above [54,57,58] fails to capture this major source of context-dependence [10].
Consequently, it is unable to explain the phenomena in Figure 1. To address this issue and
capture the scarcity of shared resources [15–17,50], the dynamics of the toggle switch can
be extended (SI Section S1) as follows:

ẏ =
α
(

ν + 1
1+z2

)
1 + β

(
2ν + 1

1+y2 +
1

1+z2

)
+ βc

− y = fy(y, z),

ż =
α
(

ν + 1
1+y2

)
1 + β

(
2ν + 1

1+y2 +
1

1+z2

)
+ βc

− z = fz(y, z),

(1)

where β characterizes resource usage required for the production of y and z; similarly,
βc accounts for the burden originating from the context of the toggle switch, decreasing
the effective production rate [13,16,50]. Therefore, the above model captures protein
production, promoter leakiness, and resource competition both inside and outside the
toggle switch via the lumped parameters α, ν, β, and βc, respectively, motivated by in vivo
and in vitro experimental data [13,15–17,50]. Importantly, these parameters can be easily
tuned experimentally: e.g., α via RBS engineering [51], β via decoy sites [59], ν via promoter
engineering [52], and βc via the expression of heterologous proteins [15,16]. While we
consider a symmetric realization in this article (i.e., α, β, and ν are identical for y and z),
this assumption can be relaxed to study the effects of parameter asymmetry [47,60].

Regarding the typical range of α, parameters of a single-copy toggle switch were
tuned to ensure bistability in [52], which only happens when α > 2 (SI Section S2.1).
Since α is proportional to the plasmid copy number (SI Section S1), considering high
copy number plasmids instead of the chromosomally integrated variant in [52], α can
be increased substantially. Therefore, in this paper, we consider 0 ≤ α ≤ 300, which
spans the typical range of plasmid copy number per cell [61]. As β decreases the effective
production rate according to (1), based on experimental data presented in [15,16], we
estimate that it typically lies within the range of 0 ≤ β ≤ 10 when expressing one or
two genes. Importantly, β can be further increased by the addition of tandem and fused
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proteins [57] or decoy sites [59] by modifying the physical layout [12] or by activating a
pathway downstream of the toggle switch comprising multiple genes, thus significantly
reducing the effective production rate, an effect that is likely further amplified when relying
on orthogonal resources available only in modest quantities [62]. To account for both simple
and more complex circuits, we consider 0 ≤ β ≤ 40 in this paper, such that 0 ≤ β ≤ 10
corresponds to the former, whereas 10 < β ≤ 40 agrees with the latter.

Finally, it is important to note that promoter leakiness can be taken into account by
considering a different formulation [63], which leads to the following changes in (1):

α

(
ν +

1
1 + v2

)
→ α′

(
ν′ +

1− ν′

1 + v2

)
, β

(
ν +

1
1 + v2

)
→ β′

(
ν′ +

1− ν′

1 + v2

)
.

Crucially, these two approaches lead to identical results considering α = α′(1− ν′),
β = β′(1− ν′), and ν = ν′/(1− ν′). For more details on the chemical reactions and the
model order reduction, see Section S1 in the SI.

2.2. Stability Analysis

Stability analysis of (1) when ν = 0 has already been carried out [46,54]. The main
technical steps underpinning the analysis are summarized in SI Sections S2.1 and S2.2. For
instance, when ν = β = 0, the corresponding dynamics in (1) have a single equilibrium
when α < 2, and three otherwise [54]. Moreover, in the case of the former, we conclude
the following:

∂ fy(y, z)
∂y

< 0,
∂ fy(y, z)

∂z
< 0,

∂ fz(y, z)
∂y

< 0,
∂ fz(y, z)

∂z
< 0,

together with
dz
dy

∣∣∣∣
fy(y,z)=0

<
dz
dy

∣∣∣∣
fz(y,z)=0

< 0

at the unique equilibrium, so that invoking the implicit function theorem yields

0 >
∂ fy(y, z)

∂y
+

∂ fz(y, z)
∂z

,

0 <
∂ fy(y, z)

∂y
∂ fz(y, z)

∂z
−

∂ fy(y, z)
∂z

∂ fz(y, z)
∂y

,

thus, the trace and determinant of the Jacobian of (1) are negative and positive, respectively,
certifying the stability of the unique fixed point [64]. Stability and instability in the latter
case (α > 2) can be concluded similarly (SI Section S2.1). Including the effects of competition
for shared resources (β > 0) modifies the above result via the following parameter:

q =
2(1 + β)

α
. (2)

In particular, the dynamics become bistable when q < 1, and remains monostable
otherwise [46] (SI Section S2.2).

To study the effects of promoter leakiness in Section S2.3 of the SI, we first consider
β = 0 and show analytically that the (α, ν) plane is partitioned into monostable and
bistable regions using nullcline analysis, following the strategy presented above. Finally,
in Section S2.4 of the SI we reveal that for ν > 0.125 the dynamics become monostable,
independent of the value of α and β, whereas for ν ∈ (0, 0.125) numerical analysis reveals
that the monostable, bistable, and tristable regions are separated by linear constraints of
the form αai(ν)− β + bi(ν) = 0, which can be written as qi(ν) = 1 with

qi(ν) =
β− bi(ν)

αai(ν)
, i = 1, 2, 3, (3)
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where ai(ν) and bi(ν) are ν-dependent parameters. For more details on the technical steps
underpinning stability analysis, see Section S2 in the SI.

2.3. Robustness Analysis

If the system in (1) satisfied the constraint

∂ fy(y, z)
∂z

=
∂ fz(y, z)

∂y
, (4)

then we could define a potential V(y, z) such that

∂V(y, z)
∂y

= − fy(y, z),
∂V(y, z)

∂z
= − fz(y, z).

Therefore, considering a sufficiently small time step ∆t, the changes in y and z would
approximately be ∆y ≈ ẏ∆t and ∆z ≈ ż∆t, yielding the following equation:

∆V(y, z) =
∂V
∂y

∆y +
∂V
∂z

∆z = −dy
dt

∆y− dz
dt

∆z = −
[

f 2
y (y, z) + f 2

z (y, z)
]
∆t, (5)

so that the potential surface V(y, z) could be computed along the trajectories of (1).
Unfortunately, the condition (4) does not hold true for the dynamics in (1). Nonethe-
less, it was demonstrated in [65] that computing the quasi potential V(y, z) according
to (5) still defines an epigenetic landscape on which trajectories flow “downhill” as
∆V(y, z) ≤ 0 towards “valleys”, which corresponds to metastable fixed points where
∆V(y, z) = f (y, z) = f (z, y) = 0. Therefore, the potential surface behaves similarly to a
Lyapunov function [65,66].

With this, we can thus calculate the potential barriers separating metastable fixed
points [47,67]. To this end, introduce x = (y, z) and let xi denote the metastable fixed
points of (1) with the region of convergence Ωi ∈ R2 (i.e., x(t)→ xi if x(0) ∈ Ωi as t→ ∞).
Then, the height of the potential barrier that trajectories need to overcome when crossing
from xi to xj is hi = infγ supx∗∈γ V(x∗)−V(xi), where γ denotes continuous paths leading
from xi to Ωj. As the elevation on the potential landscape correlates with the likelihood of
observing a given state, hi is inversely proportional to the mean transition time needed to
cross from xi to xj [65]. Therefore, the frequency of transitions between metastable states
can be characterized by approximating the underlying dynamics with a Markov jump
process [68].

Stochastic simulations were performed by considering the overdamped Langevin dy-
namics widely used in biomolecular simulations [44,45], together with the Euler–Maruyama
scheme [43]. For further details on the numerical algorithm used to compute the potential
barriers and its dependence on model parameters, see Section S3 in the SI.

2.4. Population-Level Analysis

To model cellular heterogeneity, assume that (α, β) ∼ N (µ, Σ) with

µ =

(
µα

µβ

)
, Σ =

[
σ2

α ρσασβ

ρσασβ σ2
β

]
,

where µα, µβ, σα, σβ are the mean and standard deviation of α and β, respectively, and ρ
is the correlation between them. Stability and robustness results from earlier still apply
considering the following random variables:

Q =
2(1 + β)

α
, Qi(ν) =

β− bi(ν)

αai(ν)
, i = 1, 2, 3, (6)

so that their particular realizations are given by q and qi(ν) from (2) and (3).
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With this, and relying on [69–73] in Sections S4.1 and S4.2 of the SI, we thus obtain
that the cumulative distribution function of Q and Qi can be approximated as follows:

F(q) = P(Q < q) ≈ Φ
(

q− µQ

σQ(q)

)
, Fi(qi) = P(Qi < qi) ≈ Φ

(
qi − µi
σi(qi)

)
,

where

µQ =
2(1 + µβ)

µα
, σQ(q) =

√
q2σ2

α + 4σ2
β − 4qρσασβ

µα
,

µi =
µβ − bi(ν)

µαai(ν)
, σi(qi) =

√
q2[ai(ν)σα]

2 − 2ρqi[ai(ν)σα]σβ + σ2
β

ai(ν)µα
,

(7)

and ai(ν) and bi(ν) are computed in Section S2.4 of the SI. With this, in Section S4.3 of the
SI, we provide the analytic expressions of the probability of having monostable, bistable,
and tristable dynamics: for instance, the probability of bistable dynamics is given by the
following formula:

pbi = Φ
(

1− µ1

σ1(1)

)
−Φ

(
1− µ2

σ2(1)

)
. (8)

2.5. Context Effects

First, note that the rescalings α ← α/(1 + βc) and β ← β/(1 + βc) transform the
dynamics in (1) as if the switch was isolated (i.e., as if βc was zero). In the absence of pro-
moter leakiness (ν = 0), the above rescalings increase the value of q = 2(1 + β)/α from (2);
thus, the critical threshold of βc pushing the dynamics from bistability to monostability
(q = 1) also increases with β as β′c = (1 + β)(q−1 − 1). Therefore, greater values of β
protect against unwanted effects of loading from the context [47]. Similar results can also be
obtained in the case of leaky promoters (ν > 0) by considering the values of qi(ν) from (3)
to study how the stability and robustness properties of (1) change, and the results can be
further extended to account for non-uniformity in βc by considering the case when α, β,
and βc are drawn from a normal distribution, i.e., (α, β, βc) ∼ N (µ̃, Σ̃). For more details,
see Section S5 in the SI.

3. Results

In this section, we first reveal the role that each parameter plays in determining the
stability properties of the toggle switch. Following this, we establish how biophysical
parameters affect the robustness of metastable fixed points to noise, subsequently gener-
alizing these results to account for parameter variations to study population-level effects.
Finally, we uncover how additional burden from the genetic context of the toggle switch
shapes the above relationships, explaining the phenomenon observed in Figure 1.

3.1. Stability Analysis

At its core, the toggle switch serves as a memory unit, provided that the underlying
dynamics are multistable [54,74]. When competition for shared resources and leakiness
are both neglected (β = ν = 0), the toggle switch is bistable if α > 2 [54] (SI Section S2.1),
that is, sufficiently strong protein expression guarantees multistability. In what follows,
we reveal how competition for shared resources and promoter leakiness shape this result
(Section 2.2 in Materials and Methods).

In the absence of leakiness (ν = 0), the stability profile of (1) is determined by q from (2):
the dynamics are bistable if q < 1, and monostable if otherwise [46] (SI Section S2.2). That
is, resource competition acts against bistability by increasing the value of q (Figure 2A). As
illustrated in Figure 2B, leakiness plays a similar role when competition for shared resources
is neglected (β = 0) by promoting the emergence of monostability (SI Section S2.3).



Life 2021, 11, 1150 7 of 16

0 50 100 150
0

20

40

60A

0 50 100 150
0.00

0.05

0.10

0.15B
mono

bi

mono

bi

q=1

production rate

re
so

ur
ce

 u
sa

ge
 

pr
om

ot
er

 le
ak

in
es

s

production rate

Figure 2. Resource competition and promoter leakiness both act against bistability. (A) In the
absence of promoter leakiness, the toggle switch is bistable if q = 2(1 + β)/α < 1, and monostable
if otherwise (SI Section S2.2). (B) In the absence of competition for shared cellular resources, the
dynamics are bistable if (α, ν) lies below the curve (αw(w), νw(w)), where αw(w) = (1 + w2)2/(2w)

and νw(w) = (w2 − 1)/(1 + w2)2, parameterized by w ≥ 1 (SI Section S2.3).

Since resource competition and promoter leakiness both push the toggle switch to-
wards monostability (Figure 2), it would be reasonable to expect that their synergistic
effect simply results in a stronger thrust in the same direction. Surprisingly, this is not
always true (SI Section S2.4): not only can these two factors counteract each other, but
their compound effect can give rise to tristable dynamics, even in the absence of positive
feedback [48]. While overwhelming leakiness (ν ≥ 0.125) inevitably yields monostability,
moderate levels (0 < ν < 0.125) can give rise to monostability, bistability, and even trista-
bility. The corresponding regions in the (α, β) plane (Figure 3) are separated by the linear
constraints qi(ν) = 1, where qi(ν) is defined in (3).
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Figure 3. In the presence of promoter leakiness and resource competition, the constraints qi(ν) = 1
from (3) partition the parameter space into monostable, bistable, and tristable regions (red, green,
and purple, respectively). See SI Section S6 for simulation parameters.

These results aid the rational design of multistable toggle switches by providing
explicit guidelines to eliminate unwanted behaviors. For instance, decreasing promoter
leakiness ν widens the green region in Figure 3 (SI Figure S4), thus facilitating the emer-
gence of bistable dynamics, an effect already confirmed experimentally [52]. Similarly,
while in the lower right monostable region in Figure 3, α and β must be decreased and
increased, respectively (dashed arrows), in the top left monostable region in Figure 3,
the parameters need to be tuned in the exact opposite direction to stimulate the emer-
gence of bistability (solid arrows). Thus, our results reveal that understanding the source
of unwanted monostability is of critical importance for the rational tuning of part-level
biophysical parameters to ensure bistability.
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3.2. Robustness Analysis

We next reveal how protein production rate α, promoter leakiness ν, and β measuring
resource sequestration together affect the potential barriers (Figure 4A) separating the
metastable fixed points of (1) defined in Section 2.3 of Materials and Methods. As a result,
we uncover how these factors influence the frequency of unwanted transitions (Figure 1C),
and thus the reliability of the toggle switch in the presence of perturbations [65,66]. While in
this study we focus on how noise causes trajectories to leave the metastable fixed points, it
is important to note that noise can also trigger the onset of synchronization, for instance, by
stabilizing a network of bistable systems to a common unstable equilibrium point [75,76].

We first focus on the role that α and β play, neglecting promoter leakiness (ν = 0).
Stochastic numerical simulations reveal that q from (2) not only determines the stability
properties of the toggle switch (Figure 2A), but also its robustness to noise. In particular,
the potential barrier separating the two metastable fixed points is well-approximated as
h ≈ ψ1(q−1 − 1)ψ2 with (ψ1, ψ2) = (0.545, 2.039), as illustrated in Figure 4B. Therefore, as
q decreases with α and increases with β, while greater production rate α yields reduced
robustness to noise, increasing resource sequestration β has the opposite effect (Figure 4C).
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Figure 4. Robustness to noise is characterized using a potential landscape-based approach. (A) Tra-
jectories flow downhill along the potential surface (grey) towards one of the metastable fixed points
(red and green) depending on the initial conditions. (B) The potential barrier in the bistable case can
be approximated by h ≈ ψ1(q−1 − 1)ψ2 with (ψ1, ψ2) = (0.545, 2.039), and 95% confidence intervals
(0.544, 0.547) and (2.035, 2.042), respectively [67]. (C) This approximation (solid line) is well aligned
with the data obtained from the numerical calculations of the potential barrier (circles). (D) The
height of the potential barrier separating the two metastable fixed points in case of bistable dynamics
for different values of α (normalized to the maximal value, represented as 100%), together with
the mean transition time between these metastable fixed points (normalized to the maximal value,
represented as 100%) in case of different noise power. See SI Section S6 for the simulation parameters.
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To reveal the role of promoter leakiness, we first consider bistable dynamics (green
in Figure 3A): as increasing ν acts against bistability (SI Figure S4), it is not surprising
that it also yields decreased robustness to noise (SI Figure S5). Numerical analysis reveals
(Figure S6 in the SI) that the optimal value of β maximizing robustness is a linear function
of α, rotating counter-clockwise with ν. Thus, while β and ν both push the dynamics
toward monostability (Figure 2), reduced robustness due to greater promoter leakiness can
often be compensated by increasing β, as illustrated in the left panel of Figure 4D (Figure S7
in the SI), for instance, via the addition of decoy sites [53].

So far, we have focused on the potential barriers separating metastable fixed points
relying on the quasi potential landscape calculated according to (5), as the height of these
barriers determine their robustness to noise [65,66]. This is confirmed in the right panel of
Figure 4D, depicting the average time that trajectories spend near a stable fixed point before
transitioning to another due to noise (mean transition time). This result highlights the
importance of studying not just the stability but also the robustness properties of genetic
switches in order to avoid implementations with limited practical use due to frequent
transitions between metastable fixed points.

3.3. Population-Level Analysis

As cellular heterogeneity is ubiquitous in living organisms [49], we next extend our
results regarding the stability and robustness properties of (1) to account for cell-to-cell
variability [73].

In the absence of promoter leakiness (ν = 0), fundamental stability and the robustness
properties of (1) are governed by q from (2), as illustrated in Figures 2A and 4B. Accordingly,
we study the distribution of Q as defined in (6), when the lumped parameters α and β
are random variables to account for cell-to-cell variability (Section 2.4 in Materials and
Methods). With this, the probability of bistability, or alternatively, the bistable fraction of the
population is given by pbi = P(Q < 1), revealing the role of tunable biophysical properties
via (7) and (8). For instance, increasing the expected value µβ of β pushes the distribution
of Q to the right; thus, the population towards unimodality (Figure 5A), as expected from
Figure 2A. What does not follow from previous results, as revealed by our analysis via (7)
in Section 2.4 of Materials and Methods, is that the correlation ρ between α and β increases
population-level uniformity, which is confirmed and illustrated in Figure 5B.
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Figure 5. Population-level properties of the toggle switch are governed by the distribution of the
random variable Q from (6) in the absence of promoter leakiness. (A) The distribution of Q shifts right
as µβ increases, pushing the population towards unimodality [73]. (B) Greater correlation ρ between
α and β yields increased population-level uniformity. See SI Section S6 for the simulation parameters.

Just as population-level characteristics follow from single-cell properties via Q when
ν = 0, a similar connection is established via the random variables Qi defined in (6) when
relying on leaky promoters. In particular, the distribution of Qi can be approximated analyt-
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ically (Section 2.4 in Materials and Methods) to reveal, for instance, that the bistable fraction
pbi of the population decreases with promoter leakiness, as highlighted in Figure 6A.
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Figure 6. In the presence of promoter leakiness, population-level properties depend on the random
variables Qi from (6). (A) Increasing leakiness decreases the bistable fraction of the population.
(B) Unwanted trimodality can be eliminated, for instance, by increasing resource usage of the toggle
switch for green/purple, and by decreasing it for red (Figure S9 in the SI). (C) Increasing the expected
value µβ of β first increases both the bistable fraction of the population (displayed in percentages)
and the robustness of the metastable states to noise (measured via the potential barrier separating
them), then this effect reverses as further increasing µβ pushes the population away from the optimal
region. See SI Section S6 for the simulation parameters.

Additionally, to illustrate how our results provide guidelines for eliminating un-
wanted behaviors, consider the population-level steady-state distributions of y − z in
Figure 6B. Although those displayed in light colors all possess three peaks, the origin
of this trimodality is not identical: while in the red/green cases it stems from mixing
monostable and bistable subpopulations, in the purple case it is due to the underlying
dominant tristable dynamics. Eliminating the unwanted middle peak (y ≈ z) thus requires
different strategies. For instance, increasing the expected value µβ of β (e.g., via decoy
sites [53]) is the right choice in two cases (dark green and dark purple in Figure 6B), it is
precisely the opposite of what is required in the third case, as this strategy yields an even
more dominant middle peak (dark red in Figure 6B) instead of eliminating it, which can
be achieved by decreasing µβ (grey in Figure 6B). Robustness properties can be analyzed
similarly, as illustrated in Figure 6C: for instance, while increasing µβ first yields more
pronounced bimodality and increased robustness to noise as we cross over the boundary
q2(ν) = 1 separating monostable and bistable dynamics, this trend quickly reverses when
approaching the opposite transition (captured by q1(ν) = 1).
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3.4. Context Effects

As the behavior of genetic switches displays strong dependence on their
context [23,40,41], here we explore how loading from the context affects their stability
and robustness properties. Since the rescalings α← α/(1 + βc) and β← β/(1 + βc) trans-
form the dynamics in (1) as if the switch was isolated (i.e., as if βc was zero), revealing the
effects of the context is straightforward, using results presented in earlier sections. For
instance, in the absence of leakiness (ν = 0), the value of q from (2) increases with βc; hence,
loading from the context pushes the dynamics towards monostability (Figure S9A in the SI).
In the case of leaky promoters (ν > 0), transitions between stability profiles happen when
qi(ν) = 1 is reached and crossed (Figure 7A). Thus, while bistability may be preserved in
the presence of the context (shift from light to dark green in Figure 7A), additional loading
could also trigger the loss of bistability (shift from light to dark red in Figure 7A).
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Figure 7. Loading from the context affects the stability and robustness properties of genetic
switches. (A) Increasing βc causes a shift in the (α, β) plane towards the origin according to
α ← α/(1 + βc) and β ← β/(1 + βc). Distributions show y − z in the steady state (for more
details, see Figures S10 and S11 in the SI). (B) Higher β protects against loss of robustness to noise
due to loading from the context (the parameters are chosen so that q is the same in all cases when
βc = 0, yielding identical potential barriers). Solid lines correspond to predictions considering the
approximation h ≈ ψ1(q−1 − 1)ψ2 of the potential barrier with (ψ1, ψ2) = (0.545, 2.039), whereas
circles represent simulation data using the potential landscape directly. See SI Section S6 for the
simulation parameters.

Crucially, our results also expose that mitigating the unwanted effects of the con-
text can be achieved by increasing β; for instance, increasing the critical threshold of βc
(SI Section S5) that causes bistable toggle switches to behave as if they were monostable
(at the expense of lowering robustness to noise if α is not increased simultaneously, see
Figure 4). Similarly, high values of β lead to a smaller decrease in the potential barrier
separating the metastable fixed points due to additional burden, and thus to a diminished
increase of sensitivity to noise (Figure 7B). Naturally, these results directly inform us about
the population-level behavior as well: bimodal populations can become unimodal when µβ

is low (red in Figure 7A), while those with high µβ may remain bimodal when faced with
an identical burden from their context (green in Figure 7A). More importantly, this phe-
nomenon can also be leveraged, for instance, to render unwanted unimodal populations
bimodal (purple in Figure 7A).

4. Discussion

Bioenergetic cost associated with the existence and expression of a gene is not a novel
concept [77]. Recent advances in experimental techniques enable not only the precise
characterization and subdivision of this burden [61,78,79], but also its accurate and multi-
level control [80]. Complementing these high-throughput technologies, computational
tools and quantitative models enable the design of complex biosystems [3,4,30,81].
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To promote modularity and predictable system-level performance, sources of context-
dependence need to be incorporated into the design of genetic modules [10]. Considering
the prominent and versatile role that multistable genetic switches play in systems and
synthetic biology [74], it is crucial to characterize how tunable biophysical parameters affect
their stability and robustness properties, especially since they display particularly strong
dependence on their context [23,40,41]. To address this issue, in this paper we considered a
reduced order mechanistic model describing the dynamics of genetic switches, explicitly
accounting for the limited availability of shared transcriptional/translational resources and
yielding accurate predictions both in vivo [16] and in vitro [50], in addition to explaining
counter-intuitive experimental phenomena [13].

Leveraging this, we not only revealed how tunable macroscopic parameters affect
whether the toggle switch displays monostability, bistability, or tristability, but also how
they shape the robustness of the metastable states to noise using a potential landscape-
based approach [65]. In addition to confirming earlier experimental observations (e.g.,
minimizing promoter leakiness is crucial for bistability [52]), among the key findings of this
paper are: (i) tristability can emerge as a result of the interplay between promoter leakiness
and resource competition, even in the absence of positive feedback; (ii) while promoter
leakiness always acts against bistability, resource sequestration could be leveraged to
facilitate its emergence; and (iii) high internal resource sequestration can protect against
burden arising from the genetic context.

In this paper, we thus derived explicit guidelines that aid the design of multistable
genetic switches. Crucially, these results are directly translatable to experimental consider-
ations due to the mechanistic model underpinning our results: e.g., α can be tuned via RBS
engineering [51], β via the introduction of decoy sites [59], ν via promoter engineering [52],
and βc via the expression of heterologous proteins [15,16]. Our findings complement recent
efforts by mitigating the adverse effects of competition for shared cellular resources, for
instance, by employing orthogonal resource pools [62,82,83], by relying on control theo-
retic strategies [84–86], and by splitting up multi-component genetic systems into smaller
subcomponents distributed among multiple collaborative cell strains [87].

While competition for shared transcriptional/translational resources represents a
major source of context-dependence [15,16], it is only one of many such sources. For
instance, the limited availability of degradation machinery [88–91] and the spatial arrange-
ment and orientation of compositional context [12] can result in crosstalk among other-
wise unrelated genes. Similarly, metabolic burden can negatively impact cellular growth
rate [15,18,84,92,93], although its extent depends on experimental conditions [94–96] and
may only be transient as it often disappears after several generations of exponential
growth [16,97]. Together with these phenomena and leveraging integrative circuit–host
models [92,98,99], we expect our results to inform the rational design of individual switches
relying on carefully characterized parts [63], as well as to be incorporated into the computer-
aided fabrication of large-scale synthetic circuits [74,100].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/life11111150/s1, Text S1: Supporting Information detailing the underlying model, analysis,
and simulation details.
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