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Design of Acquisition Schemes and 
Setup Geometry for Anisotropic 
X-ray Dark-Field Tomography 
(AXDT)
Y. Sharma1,2, F. Schaff1, M. Wieczorek2, F. Pfeiffer1,3,4 & T. Lasser2

Anisotropic X-ray Dark-field Tomography (AXDT) is a new imaging technique for reconstructing the 
three-dimensional scattering profile within a sample using the dark-field signal measured in an X-ray 
grating interferometry setup. As in any tomographic measurement, the acquisition geometry plays a 
key role in the accurate reconstruction of the scattering information. More- over, the anisotropic nature 
of the dark-field signal poses additional challenges for designing the acquisition protocols. In this work, 
we present an efficient approach to measure scattering orientations spread over the unit sphere and 
prove its efficacy using the knowledge from conventional tomography. In addition, we conclude (using 
analytical and experimental results) that placing the gratings such that the grating bars make an angle 
of 45 degrees with respect to the vertical direction is the optimal setup configuration for AXDT.

X-ray imaging using a grating interferometer has gained much attention in recent years1–3. By analyzing the 
interference pattern created by a phase grating at specific downstream positions, we obtain three signals namely 
attenuation, phase contrast and dark-field. While the attenuation and phase-contrast signals originate from the 
attenuation and phase shift of the incident X-ray beam caused by the sample, the dark-field signal originates from 
the small-angle scattering caused by micron and sub-micron sized structures4–8. The dark-field signal is aniso-
tropic9–11 which means that the measured signal depends on the relative orientation of the sample with respect to 
the propagation direction of X-rays and the orientation of the grating bars.

The anisotropic property of the dark-field signal can be utilized to obtain two-dimensional orientation of 
microstructures in the imaging plane by rotating the sample around the beam propagation direction in a tech-
nique known as X-ray Vector Radiography (XVR)12, 13. A single-shot variant of XVR was recently presented by 
Kagias et al.14 where a specialized grating was used to obtain the two-dimensional orientations without any sam-
ple rotation. Since XVR can only resolve orientations in a plane orthogonal to the direction of beam propagation, 
it is best suited for investigating relatively flat samples. Revol et al.15 presented a method to calculate the strength 
of scattering along certain a priori known orientations in different layers of a multi-layered composite material. 
Bayer et al.9 presented a three-dimensional extension of XVR, however, they were able to reconstruct only the 
projection of orientations onto a plane.

Malecki et al.16 presented the first fully three-dimensional directional dark-field imaging method and termed 
it “X-ray Tensor Tomography” (XTT). XTT, as the name suggests, approximates the scattering profile in every 
volume element by a symmetric rank-2 tensor. Vogel et al.17 presented several algorithmic improvements for 
the fast and efficient reconstruction of these tensors in three dimensions. The tensor approximation, however, is 
insufficient for recovering multiple scattering orientations in a single volume element which is especially relevant 
since the structures probed with this technique are typically smaller than the spatial resolution. To overcome this 
limitation, Wieczorek et al.18 presented a technique termed “Anisotropic X-ray Dark-field Tomography” (AXDT) 
which reconstructs the scattering profile as a spherical function represented using spherical harmonics. This 
method not only provides a more accurate and robust representation of the three-dimensional scattering pro-
file but also allows for the extraction of multiple scattering orientations in a single volume element. Directional 
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dark-field imaging in two and three dimensions, such as XVR or XTT, has been found useful for resolving orien-
tations in composite materials made of carbon and glass fibers as well as in biological specimens such as bones 
and teeth19–21.

In order to reconstruct the three-dimensional scattering function accurately, the recorded anisotropic scatter-
ing information must be well distributed over all possible scattering orientations ∈q 2 (we denote the border of 
the unit sphere in three dimensions as S R= ∈ =u u{ ; 1}2 3 ). Malecki et al.16 presented a first idea of such a 
scheme utilizing the three rotation axes provided by an Eulerian cradle shown in Fig. 1. Sharma et al.22 presented 
a detailed analysis of similar schemes and introduced an analytical measure known as the “Coverage Metric” 
suitable for the relative comparison of XTT/AXDT acquisition schemes. These schemes were motivated mainly 
by convenience and speed of acquisition and even though they probe many scattering orientations as shown in 
our previous work22, all of these orientations are measured insufficiently.

In this work, we present an approach to acquire three-dimensional anisotropic dark-field data such that spe-
cific orientations on the unit sphere are probed completely. However, due to the physical limitations of the setup 
discussed in the next section, most of the orientations can only be probed up to a certain extent. We analyze the 
resulting acquisition schemes for different setup configurations and show that certain grating orientations are 
advantageous compared to others for measuring the most information within the physical limitations of the 
setup. In addition, we visualize the null space23, 24 of the proposed schemes to illustrate the correlation between the 
reconstruction and acquisition methods for AXDT. Finally, we corroborate the theoretical findings with experi-
mental results for an industrially relevant fiber composite sample.

Methods
This section is divided into three sub-sections. In the first sub-section, we present our novel concept of acquisition 
schemes and explain how to obtain such schemes mathematically. In the second sub-section, we present a short 
summary of Anisotropic X-ray Dark-field Tomography. Finally, we present a method for estimating one compo-
nent of the null space of an AXDT acquisition scheme.

Design of Acquisition Schemes.  In conventional tomography, we acquire line integrals through a 
three-dimensional object onto a 2D detector and use analytic or iterative methods to reconstruct the 3D volume 
from several 2D images acquired at different poses of the sample. The pre-requisite for recovering the 3D spatial 
information from 2D projections is that the total measured signal in any projection is constant, that is, the meas-
ured quantity (such as X-ray attenuation coefficient) is invariant under rotation. This is, however, not true for the 
dark-field signal. Due to its anisotropic nature, the dark-field signal varies as the object is rotated around an axis. 
However, it is possible to define an axis of rotation such that a certain component of the scattering function (q) is 
invariant under rotation of the object around this particular axis25. We use this concept to design an acquisition 
trajectory that comprises of several poses for which a unique component of the dark-field signal remains invari-
ant, thus allowing for a full tomographic reconstruction of this particular component. In the following, we explain 
how such an acquisition trajectory can be designed for any scattering orientation ∈q 2.

We define the sensitivity vector ∈s x( ) 2 and the tomographic vector ∈t x( ) 2 for every acquisition pose 
x = (ψ, θ, φ), where the Euler angles ψ (rotation around y), θ (rotation around z′) and φ (rotation around y′) are 
shown in Fig. 1. We have:

= ⋅
= ⋅

s x R x S
t x R x T
( ) ( ) ,
( ) ( ) , (1)

where ∈ ×R x( ) 3 3 is the Euler rotation matrix for the pose x, ∈S 2 is the setup sensitivity, ∈T 2 is the direc-
tion of beam propagation ([0, 0, 1]T in the setup shown in Fig. 1) and · denotes standard matrix-vector multipli-
cation. S is the direction in which the phase shift is measured by the grating interferometer setup; it is orthogonal 
to the grating bars in the plane of the gratings ([0, 1, 0]T in the setup shown in Fig. 1). Evidently, the sensitivity 

Figure 1.  Schematic of a grating interferometer setup, as used in X-ray Tensor Tomography (XTT) and 
Anisotropic Dark-field Tomography (AXDT), showing a non-standard acquisition pose and the three axes of 
rotation. Figure by Sharma et al.22 is licensed under https://creativecommons.org/licenses/by/4.0/CC BY 4.0.
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vector denotes the scattering orientation that is probed at the acquisition pose x while the tomographic vector 
represents the direction along which the signal is integrated.

Let us define an acquisition scheme as:

ψ θ ψ θ φ φ= = ∈ … − ∈ .







A N x
N N

N( , , ): { ( , , ); {0 , 180 , , 180 180 }; } (2)

A conventional X-ray CT acquisition scheme in this notation can be expressed as A(0, 0, N). The points ±t(x) 
for x ∈ A(0, 0, 11) are shown as blue dots in Fig. 2(a). Such a circular measurement trajectory with sufficiently 
large value of N is desired for analytic reconstruction in X-ray CT. However, the sensitivity vector has no signifi-
cance in X-ray CT since the measured quantity is invariant under rotation. In the case of dark-field signal, we also 
compute ±s(x) for x ∈ A(0, 0, 11) assuming horizontally (S = [0, 1, 0]T), vertically (S = [1, 0, 0]T) and diagonally 
(S = [0.7071, −0.7071, 0]T) oriented gratings which are shown as red points in Fig. 2(a–c).

Using the concept of rotational invariance, we postulate that a scattering orientation ∈q 2 can be recovered 
for a three-dimensional volume by measuring it from N poses xi, i = 1, 2, …, N, such that s(xi) = q and the vectors 
t(xi) consist of N points equally spaced on a circular trajectory. It can be seen that this condition is satisfied for 
q = [0, 1, 0]T in Fig. 2(a). On the other hand, each of the 11 points of scheme A(0, 0, 11) measure a separate sensi-
tivity vector when gratings are placed vertically (Fig. 2(b)) or diagonally (Fig. 2(c)). However, we can obtain the 
same blue and red points as Fig. 2(a) for vertical and diagonal gratings with the schemes A(0, 90, 11) and A(0, 45, 
11), respectively. More generally, we can obtain an acquisition scheme Y(q, S, N) := {yi(q, S) := (ψ, θ, φ), i = 1, …, 
N} that fully measures the orientation q for the setup sensitivity S. In other words, s(yi(q, S)) = q for all i. To obtain 
a scheme Y(q, S, N), we transform xi  ∈ A(0, 0, N) to yi(q, S). Note from Fig. 2(a) that A(0, 0, N) = Y([0, 1, 0]T, [0, 
1, 0]T, N). The method to calculate Y(q, S, N) from A(0, 0, N) is given in Algorithm 1.

Figure 2(d) shows an orientation vector ± q in red and the vectors ± t(y) in blue for all y ∈ Y(q, [0.7071, 
−0.7071, 0]T, 10). Using the procedure described above, we can design an acquisition scheme Z(S, N) that meas-
ures L scattering orientations fully and comprises of L*N poses for the given setup sensitivity S:

= = … .Z S N Y q S N l L( , ) { ( , , ); 1, , } (3)l

Algorithm 1: Calculate Y(q, S, N) from A(0, 0, N)
For every x ∈ A(0, 0, N)

	 1.	 Calculate Euler rotation matrix R(x).
	 2.	 Calculate Rintermediate(x, q) such that Rintermediate(x, q) · [0, 1, 0]T = q:

= ⋅R x q R x M q( , ) ( ) ([0, 1, 0] , ), (4)intermediate
T

where ∈ ×M v v( , )1 2
3 3 is a matrix such that v2 = M(v1, v2) · v1 for all ∈v v,1 2

2.
	 3.	 Estimate the orientation ∈u x q S( , , ) 2 measured by the rotation matrix Rintermediate(x, q) given the setup 

sensitivity S:

= ⋅ .u x q S R x q S( , , ) ( , ) (5)intermediate

	 4.	 Rotate u(x, q, S) to q:

= ⋅ .R x q S R x q M u x q S q( , , ) ( , ) ( ( , , ), ) (6)final intermediate

	 5.	 Compute the pose y(q, S) = (ψ, θ, φ) from the matrix Rfinal(x, q, S) such that the absolute value of ψ in y(q, 
S) is minimized.

Figure 2.  Spherical representation of acquisition schemes. Please note that in all these images, the sample 
can be imagined as being stationary at the center of the sphere while the setup rotates around it. Blue points 
represent the vectors ±t(x) and red points represent ±s(x) for all x ∈ A(0, 0, 11) with (a) horizontal grating 
alignment, (b) vertical grating alignment, and (c) diagonal grating alignment. (d) The vectors ± t(y) and ± s(y) 
for all y in an exemplary acquisition scheme Y(q, [0.7071, −0.7071, 0]T, 10) obtained using the method 
explained in Algorithm 1.
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Anisotropic X-ray Dark-Field Tomography.  The goal of tomographic reconstruction of the anisotropic 
dark-field signal is to reconstruct the scattering information at each location within the measured object. In order 
to do so, we use the recently introduced AXDT method18. Here the scattering profile in each location of the object 
is modeled as a spherical function such that the process of reconstruction aims at recovering this field of spherical 
functions S R Rη × →: 2 3 . In order to model the sensitivity vector s(x) and tomographic vector t(x) for every 
pose x, a weighting function S S S R× × →h: 2 2 2  is used. Further, both the field of scattering functions as well 
as this weighting function are expressed in terms of real-valued spherical harmonics with their coefficients 
denoted as ηk

m and hk
m respectively, where k specifies the degree and m the order of the spherical harmonics. With 

this notation and a truncation degree K, the dark-field measurement at the acquisition pose x can be approxi-
mately modelled by:

∫∑ ∑π
≈
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By using one of the standard discretization methods for line integrals of p = (−ln(d(x))) over the rays T(x) 
yielding a system matrix P and by forming weighting matrices Wk

m according to h s x t x( ( ), ( ))k
m , the reconstruction 

of the spherical harmonics coefficients of the field of scattering profiles reduces to solving the following linear 
equation system:
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where we call A as the full system matrix. We solve this system using the conjugate gradient method with K = 4. 
Spherical harmonics of degree 4 are sufficient to describe the spherical function completely with the weighting 
function that is used.

Null space estimation.  One way to analyze the acquisition schemes and their effect on the reconstruction is 
to analyze the nature of the full system matrix A. An important aspect of a linear operator, such as A in the AXDT 
model described above, is the null space (or kernel) of A. It is defined as ker(A) := {v|Av = 0} and is of special 
interest as for w ∉ ker(A) and any v ∈ ker(A), the measurement does not change under addition i.e.,

= + .Aw A w v( ) (9)

The kernel provides a tool to analyze the matrix A and gives information about the uncertainty of a computed 
reconstruction. While it is well known that incomplete data leads to a larger nullspace, it is of special interest how 
elements of this space look like as they provide a relative insight of which regions are likely to be affected more/
less.

Standard methods such as singular value decomposition (SVD) are typically used for computing the null space 
of such matrices. However, these methods rely on the full representation of the matrix. It should be noted that the 
system matrix P of the standard tomographic problem is typically too large to store in the memory of currently 
available computing devices. The full system matrix A for AXDT is larger by an additional factor of 2K − 1 due to 
the weighting function. Therefore, we reconstruct one vector spanning a subspace of the nullspace of A by itera-
tively solving Av = 0 for v. Different vectors v ∈ ker(A) can be computed by starting from different initial guesses 
for v. We compute one component of the null space by starting with an initial guess of v such that:
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for all voxels. Since spherical harmonics are equivalent to a fourier series in terms of angular frequency, this initial 
guess is equivalent to starting with a uniform spherical function which is a good initial guess for clearly visualiz-
ing the effect of AXDT acquisition schemes. For computing the null space, we set the reconstruction volume size 
to 50 × 50 × 50, the detector size to 100 × 100 to limit computation times and use a parallel geometry assumption 
in order to eliminate errors at the edges due to forward and back-projection.

Results
In this section, we present an analysis of the acquisition schemes designed in the previous section with respect 
to the setup geometry and its limitations. In addition, we use null space analysis to demonstrate the correlation 
of these schemes with the AXDT reconstruction. In the end, we corroborate the results presented in this section 
with experimental observations for an industrially relevant sample consisting of micrometer sized structures.

Acquisition Schemes and Setup Geometry.  In the previous section, we presented a method to design 
an acquisition scheme Z(S, N) that fully measures several sensitivity orientations on the unit sphere. The first step 
for designing such a scheme is to choose a set of orientations that we wish to measure. In order to reconstruct the 
spherical function using AXDT, it is required to choose orientations that are uniformly distributed on the unit 
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sphere. One example of such sets of orientations are the t-designs presented by Hardin and Sloane26. We use these 
designs as they are a good choice for selecting uniformly distributed points on the sphere. However, any uniform 
distribution of points on the sphere can be used. We begin with a symmetric t-design consisting of 56 directions 
spread over the unit sphere as shown in Fig. 3(a). Since the AXDT model is symmetric around the origin, we use 
only 28 directions of this t-design spread over one half of the unit sphere.

Next, we generate an acquisition scheme:

. − . = . − . = …Z Y q i([0 7071, 0 7071, 0] , 100) { ( , [0 7071, 0 7071, 0] , 100), 1, , 28}, (11)
T

i
T

consisting of 2800 poses. The vectors ± t(x) for all x ∈ Z([0.7071, −0.7071, 0]T, 100) are shown in Fig. 3(b). This 
acquisition scheme fully measures the 56 points shown in Fig. 3(a). However, it can be seen in Fig. 1 that the 
Eulerian cradle intercepts the beam for high values of ψ, hence, the setup is limited to −40 ≤ ψ ≤ 40. Therefore, all 
of the 2800 poses for the scheme Z(S, 100) cannot be measured. Figure 3(c) shows the points of Fig. 3(b) that can 
be measured with the condition |ψ| ≤ 40°.

The ratio of the points that can be measured (Fig. 3(c)) to the total number of desired points (Fig. 3(b)) is a 
function of the maximum reachable value of ψ and the setup sensitivity. Therefore, to study this effect, we calcu-
late Z(S, N) for 91 values of S such that:

α α= ∈ …   S, [1, 0, 0] cos( ); [0 , 1 , 2 , , 90 ], (12)

where ⋅ ⋅,  denotes the inner product. Figure 4(a) shows a 2D plot of the relative fraction of measurable poses 
(out of 2800) for the acquisition scheme Z(S, 100) for different values of reachable ψ ∈ [0°, 1°, 2°, …, 90°]. A line 
of this 2D plot for the maximum reachable ψ limit of 40° is shown in Fig. 4(b) (red curve). The point of maximum 

Figure 3.  (a) A t-design with 56 uniformly distributed points. We aim to design trajectories that fully measure 
all of these scattering orientations. (b) Acquisition scheme Z([0.7071, −0.7071, 0]T, 100) with 2800 poses. 
Acquisition schemes (c) ZD(100) with 1676 poses, (d) ZH(100) with 1256 poses, (e) ZV(100) with 1284 poses, 
which measure all the points in (a) within the practical limitations of the setup with diagonally, horizontally and 
vertically aligned grating bars respectively. (f) acquisition scheme W(100).

Figure 4.  (a) 2D plot of the fraction of poses that can be measured with different grating arrangements and 
different ψ angle limitation. (b) Fraction of poses that can be measured with maximum reachable ψ = 40° for 
acquisition schemes Z(S, N). Red curve corresponds to the black line marked in (a). We study three points on 
these curves corresponding to vertical, diagonal and horizontal grating alignment denoted by ZV(N), ZD(N) and 
ZH(N) respectively.
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of this line plot corresponds to Z([0.7071, −0.7071, 0]T, 100), that is, when the grating bars are placed diagonally. 
In addition, similar line plots for acquisition schemes Z(S, N), N = 60, 20 are shown. We observe that the line plots 
for lower values of N have step-like artifacts arising from round-off errors which can be circumvented by using 
large number of sampling orientations. As it is difficult to actually align gratings at precise angles in most of the 
currently available setups, we only study the three extreme points marked in Fig. 4(b). We define the notation 
ZD(N), ZH(N) and ZV(N) to denote acquisition schemes with diagonal, horizontal and vertical arrangement of 
grating bars respectively. Figure 3(c–e) shows the vectors ± t(x) for the measurable poses of acquisition schemes 
ZD(100), ZH(100), and ZV(100), respectively, assuming that poses with |ψ| > 40° cannot be measured. It is evident 
from these results that the maximum amount of poses can be probed by placing the gratings such that the grating 
lines are aligned diagonally. From now on, we will assume that all acquisition schemes Z(S, N) are truncated at 
|ψ| = 40°, since this is the practical limit of our setup.

Correlation of the Design of Acquisition Schemes with AXDT Reconstruction.  We presented a 
method to design acquisition schemes by extending the concept of circular acquisition trajectories normally 
used in conventional CT to the special case of XTT/AXDT. In this section, we visualize the null space of the new 
schemes to demonstrate the correlation between the acquisition schemes and the AXDT reconstruction.

It was outlined above that the acquisition trajectories are truncated due to the physical limitations of the setup. 
This means that we cannot measure the full tomographic trajectory Y(qi, S, N) for all the orientations qi, i = 1, 
…, 28. The missing angles lead to circular trajectories with missing wedges similar to the ones in limited angle 
tomography. In standard tomography, the null space is easily understood in terms of the Fourier Slice theorem. 
However, the Fourier Slice theorem does not carry over to our system due to its sensitivity specificity. Hence, it is 
not possible to assume that similar limited angle artifacts can also be seen for the case of AXDT. Moreover, all of 
the poses for Z(S, N) are used for the reconstruction of the spherical harmonic coefficients in AXDT reconstruc-
tion, and there is no direct reconstruction of individual components corresponding to each of the truncated tra-
jectory. However, we postulate that our acquisition schemes correlate well to the reconstruction process of AXDT 
and, hence, some effect of the limited angle trajectories should be visible in the corresponding spherical function.

To check this hypothesis, we estimate the null space for the proposed schemes as explained previously. Next, 
we probe the reconstructed null space (in terms of spherical coefficients) at the specific points qi, i = 1, …, 28, 
in order to evaluate the effect of the missing wedges for these individual scattering orientations. Figure 5 shows 
the null space components for the scheme ZD(100) (similar figures for ZV(100) and ZH(100) are provided in the 
Supplementary Material). The magenta points show the tomographic trajectory for all components qi as pro-
jected onto the x − z plane. Analogously, the images show the null space averaged over all x − z planes for the 
corresponding component after the first iteration. The null space artifacts caused by the ψ truncation can be seen 
explicitly in the individual components reconstructed with AXDT.

Comparison to Schemes Presented by Malecki et al.  In this section, we compare the schemes in 
Fig. 3(c–e) to the ones previously used by our group16–18, 21. Such a scheme can be written as:

Figure 5.  Null space components for each of the 28 points in Fig. 3(a) calculated using the acquisition scheme 
ZD(100) (Fig. 3(c)). The magenta points show the trajectories for each component truncated for maximum 
reachable |ψ| = 40° and the correponding images show the null space averaged over all x − z planes.
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The trajectory ± t(w) for all w ∈ W(100) is shown in Fig. 3(f). Here we assume vertical grating alignment 
which is the most commonly used configuration.

In order to compare the proposed schemes for different grating orientations and W(N), we use the Coverage 
Metric (CM) proposed in our previous work22. This is a metric which determines the degree up to which an 
acquisition scheme measures all orientations on the unit sphere or, in other words, CM(X) provides a measure 
of the efficiency of any acquisition scheme X. The usability of CM as a valid metric for XTT acquisition schemes 
was established in ref. 22. It can be directly applied to AXDT as well, since the two methods only differ in the 
reconstruction method and the acquisition protocol is identical. Figure 6(a) shows the coverage metric for ZD(N), 
ZH(N), ZV(N), and W(N) for different values of N.

Experimental Results
In this section, we present experimental results to support the observations made in the previous sections. We 
measured a circular thermoplastic short fibre moulding part, composed of fibres that are 7 μm thick and 200 μm 
long, at a resolution of approximately 80 μm. We employed 7 phase steps with 1 sec. exposure per step using a 
setup7 comprising of an X-ray WorX micro-focus X-ray tube (operated at voltage 60 kVp and power 25 W) and a 
Varian PaxScan 2520DX detector (pixel size 127 μm). The three gratings with periods of 10 μm, 5 μm and 10 μm, 
respectively, were arranged in the first fractional Talbot configuration at a design energy of 45 keV. Since we 
obtain both the dark-field and attenuation signal in a grating interferometer, we can also reconstruct the atten-
uation volume. One slice of the attenuation data is shown in Fig. 7(a). Obviously, the imaging resolution is not 

Figure 6.  (a) Coverage Metric (CM) and (b) Experimental Metric (EM) as a function of N for four different 
acquisition schemes.

Figure 7.  A slice of (a) the conventional CT volume, (b) the isotropic scattering component, and (c) the 3D 
vectors reconstructed using AXDT for a thermoplastic short fibre moulding sample measured at a spatial 
resolution of approximately 80 μm. The red box marks a feature that cannot be seen in either of (a) or (b).
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sufficient to resolve the fibres with a diameter of 7 μm. However, we can resolve the porosity as seen in the bottom 
of Fig. 7(a).

Next, we perform AXDT reconstruction. A slice of η0
0, which is the isotropic component of the dark-field 

signal, is shown Fig. 7(b). Figure 7(c) shows the main orientation in every third voxel as extracted from the spher-
ical function. The vectors have been masked with the attenuation signal to avoid the undesired effect of 
edge-scattering at the pores27, 28. The red box in Fig. 7(c) shows a feature in this sample which cannot be seen in 
either of 7(a) or 7(b). This is a weld-line and is only revealed by extracting the orientations of the fibres in the 
region using AXDT. Very high resolution micro CT may be required to directly resolve this structure but then a 
sample of this dimension (28 × 23 × 21 mm3) cannot be measured at once and one would have to resort to multi-
ple tomographies or even to destroying the sample.

In order to evaluate the effect of the grating orientation on the reconstruction result, we show the region 
marked in Fig. 7(c) for different acquisition schemes in Fig. 8. The columns in Fig. 8 correspond to three different 
values of N = {100, 20, 10} for a specific scheme, while the rows show four different schemes for the same value of 
N. Next, we define an Experimental Metric, EM(X), for an acquisition schemes X as:

∑=
=

EM X
I

U X U Z( ) 1 ( ), ( (100))
(14)i

I

i i D
1

where ⋅ ⋅,  is the standard scalar product, Ui(ZD(100)) and Ui(X) denote the structure orientation for the voxel 
index i = 1, …, I in the region-of-interest (red rectangle in Fig. 8) calculated using the acquisition scheme ZD(100) 
and an arbitrary scheme X, respectively. The value of the Experimental Metric for different schemes is shown in 
Fig. 6(b).

Discussion
We present a new technique to design acquisition schemes for directional dark-field tomographic imaging. We 
use the concept of rotational invariance to design tomographic trajectories that fully measure a unique compo-
nent of the three dimensional scattering function. However, we show that all of the desired poses cannot be meas-
ured in a regular setup. In fact, this is a problem for most of the setup configurations, since it is always difficult 
to measure along the axis of the sample mount with X-rays. Therefore, we show the fraction of poses that can be 
measured for different setup configurations in Fig. 4(a,b). We observe that while it is possible to measure all the 
information with any grating orientation in an ideal setup, the grating orientation starts to play a major role when 
the setup limitation, that is the availability of the angle ψ only up to a certain value, is enforced. It can be seen that 
we can optimize the amount of measurable poses by placing the gratings diagonally.

Next, we study the effect of the aforementioned setup limitation by visualizing the null space of the AXDT 
operator. It can be seen in Fig. 5 that the ψ limitation leads to missing wedges (magenta points) in the tomographic 

Figure 8.  Structure orientations calculated using AXDT in the region-of-interest (indicated by the red box 
in Fig. 7(c)) for different acquisition schemes. Each column corresponds to acquisition schemes and every 
row shows the four schemes with the same value of N. The red box indicates the region-of-interest used for 
calculating the Experimental Metric.
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trajectories for most of the orientations. We note that the effect of these missing wedges can be directly seen in the 
null space of the corresponding component. This is an interesting finding because of the fact that even though the 
AXDT operator uses all of the poses at the same time to reconstruct the spherical function, we are still able to see 
the effect of the limited angle trajectories at the corresponding sensitivity points on the reconstructed field. More 
importantly, the null space visualization is proof that the initial concept of calculating tomographic trajectories 
which provide invariant dark-field signal for certain pre-defined orientation vectors works exactly as we expect 
it to. Please note that the fact that we only get one component of ker(A) is not a limitation for our work since we 
compute this component in the exact same way for all the orientations.

We use the Coverage Metric (CM)22 to compare the new schemes ZD(N), ZH(N), ZV(N) among themselves 
and to the schemes that have been used by our group in previous works W(N). It can be seen in Fig. 6(a) that the 
value of CM decreases with the value of N for all four schemes and that the new schemes outperform the previ-
ously used scheme W(N). Moreover, ZD(N) has the highest value of CM amongst the new schemes. This implies 
that diagonal grating alignment is the most efficient of the proposed schemes (as also seen in Fig. 4), followed by 
horizontal alignment, and vertical grating alignment is the least favorable.

Finally, we show an example of the application of AXDT to an industrially relevant composite material. We 
show in Fig. 7(c) that AXDT is able to resolve orientations of fibres with sizes that are much below the resolu-
tion of the imaging system. Moreover, the fibre orientations calculated using AXDT reveal a particular feature 
(weld-line) in the sample which cannot be seen in conventional attenuation or even the isotropic component of 
the dark-field signal. We compare, qualitatively in Fig. 8 and quantitatively in Fig. 6(b), the new schemes Z(S, N) 
for three different grating orientations and the old schemes W(N). We can see in Fig. 8 that although the weld-line 
is clearly visible in all the schemes with N = 100 (first row), the scheme ZD(100) provides the most comprehensi-
ble distinction of the weld-line. More importantly, the quality of this result is maintained for ZD(20) and ZH(20), 
while significant deterioration can be seen for ZV(20) and W(20). The vectors reconstructed with the schemes 
W(N) (last column in Fig. 8) seem to be oriented in certain preferred directions and the variations are lost. This is 
due to the fact that the schemes W(N) provide an uneven sampling of the unit sphere22 and the reconstruction is 
biased towards a partial reconstruction of the most commonly sampled scattering orientations.

In Fig. 6(b), we compare the performance of the schemes with respect to the scheme ZD(100), which is 
assumed as the reference dataset. Here, we can see that the vectors in the region-of-interest deviate most from the 
reference for the schemes W(N). Also, we observe that the trend of the graph for the four schemes matches the 
corresponding trend observed in Fig. 6(a). This observation supports our claim that the new type of acquisition 
schemes provide better results than the old ones. Moreover, we can also conclude that diagonal grating orienta-
tion is the most favorable followed by horizontal and vertical alignment of gratings for the new schemes. It should 
also be noted that ZD(20) corresponds to a measurement time of only ~2 hours and is still of comparable quality 
to ZD(100) which requires ~10 hours of measurement. This reduction in acquisition time is a substantial improve-
ment compared to the long measuring times of ~10 hours required for the schemes used previously16, 17, 22.

Conclusion
In this work, we present a more efficient method to design acquisition schemes for tomographic imaging of the 
directional dark-field signal and present results of diagonal grating orientation being the most optimal setup con-
figuration for these schemes. Finally, we also show that the new schemes with diagonal grating alignment allow us 
to obtain good image quality with only ~2 hours of measurement time instead of the ~10 hours of measurements 
that was used previously.
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