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The placenta is a temporary but pivotal organ for human pregnancy. It consists of
multiple specialized trophoblast cell types originating from the trophectoderm of the
blastocyst stage of the embryo. While impaired trophoblast differentiation results in
pregnancy disorders affecting both mother and fetus, the molecular mechanisms
underlying early human placenta development have been poorly understood, partially
due to the limited access to developing human placentas and the lack of suitable
human in vitro trophoblast models. Recent success in establishing human trophoblast
stem cells and other human in vitro trophoblast models with their differentiation
protocols into more specialized cell types, such as syncytiotrophoblast and extravillous
trophoblast, has provided a tremendous opportunity to understand early human
placenta development. Unfortunately, while high-throughput research methods and
omics tools have addressed numerous molecular-level questions in various research
fields, these tools have not been widely applied to the above-mentioned human
trophoblast models. This review aims to provide an overview of various omics
approaches that can be utilized in the study of human in vitro placenta models
by exemplifying some important lessons obtained from omics studies of mouse
model systems and introducing recently available human in vitro trophoblast model
systems. We also highlight some key unknown questions that might be addressed
by such techniques. Integrating high-throughput omics approaches and human
in vitro model systems will facilitate our understanding of molecular-level regulatory
mechanisms underlying early human placenta development as well as placenta-
associated complications.

Keywords: placenta, trophoblast, trophoblast stem cells, human placenta models, transcriptomes, epigenomes,
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INTRODUCTION

As a transient but multifunctional organ essential for the proper
development of the fetus in placental mammals, the placenta
plays a central role in multiple processes during pregnancy,
such as gas and nutrient exchange, hormone production, and
immunological protection (Rossant and Cross, 2001). Despite
these important roles, the placenta has not received sufficient
attention, remaining one of the least studied organs in the
body (Cao and Fleming, 2016). It is noteworthy that a recent
large-scale mouse knockout (KO) study has revealed that
68% of lethal mouse lines show morphological abnormality
of the placenta (Perez-Garcia et al., 2018). The prevalence of
placental deformities in KO of embryonic lethal genes emphasizes
the significance of the placenta for the proper development
of embryos, although this has not yet been systematically
confirmed in humans.

The placenta originates from the trophectoderm (TE) of the
blastocyst stage of the developing embryo, and it consists of
multiple trophoblast cell types, including cytotrophoblasts (CT)
and more specialized syncytiotrophoblasts (ST) and extravillous
trophoblasts (EVT) in humans (Perez-Garcia et al., 2018).
Abnormal trophoblast lineage development results in placental
dysfunctions, which can cause morbidity and mortality in both
mother and fetus. Defective placentas not only contribute to
maternal insulin resistance, preeclampsia (PE), and gestational
hypertension, but also result in premature growth of the fetus.
These adverse effects often persist long after birth and predispose
offspring to various chronic adult disorders, such as diabetes
and cardiovascular and mental diseases (Hales and Barker, 2001;
Barker and Thornburg, 2013; Courtney et al., 2018). Although
the etiologies of pregnancy disorders are often multifactorial,
prior research has suggested a direct link between the defect in
trophoblast differentiation and pregnancy-related complications,
such as PE and intrauterine growth restriction (IUGR) (Chen
et al., 2002; Ergaz et al., 2005; Uzan et al., 2011).

Although the placenta is essential, limited access to the
human placenta, particularly during the early stages of
pregnancy, has hindered the molecular-level understanding
of both normal and abnormal placenta development. For many
years, trophoblast carcinoma cells, primary CT, and mouse or
rat trophoblast stem cells (TSCs) have been used as in vitro
models for trophoblast differentiation despite some drawbacks

Abbreviations: ATAC-seq, transposase-accessible chromatin followed by
sequencing; BAP, BMP4, A83-01, and PD173074; BMP4, bone morphogenic
protein 4; ChIP-seq, chromatin immunoprecipitation coupled with high-
throughput sequencing; CT, cytotrophoblasts; EGF, epidermal growth factor;
EMT, epithelial to mesenchymal transition; ESCs, embryonic stem cells; EVT,
extravillous trophoblasts; HDAC, histone deacetylase; hEPSCs, human expanded
potential stem cells; Hi-C, A method to study the three-dimensional architecture
of genomes; IUGR, intrauterine growth restriction; iPSCs, induced pluripotent
stem cells; iTSCs, induced trophoblast stem cells; KO, knockout; 5mC, DNA
methylation at cytosine residues; 6mA, DNA methylation at adenine residues;
NGS, next-generation sequencing; PE, preeclampsia; PSCs, pluripotent stem
cells; ROCK, rho-associated protein kinase; RPL, recurrent pregnancy loss; RRBS,
reduced representation bisulfite sequencing; S1P, phospholipid sphingosine
1-phosphate; ST, syncytiotrophoblasts; TE, trophectoderm; TFs, transcription
factors; TGC, trophoblast giant cells; TGFB, transforming growth factor beta;
TSCs, trophoblast stem cells; TSLCs, trophoblast stem (TS)-like cells.

(Nagamatsu et al., 2004; Bilban et al., 2010; Latos and Hemberger,
2016; Dietrich et al., 2020), Mouse TSCs (mTSCs) have been
extensively studied in combination with various research tools,
including high-throughput approaches, revealing numerous
key regulators, including transcription factors (TFs) and their
regulatory mechanisms, and enhancing our understanding of
general trophoblast development (Prudhomme and Morey,
2016; Lee et al., 2019; Ullah et al., 2020). Nevertheless, as human
and mouse pregnancy do not share all physiological features,
and recently established human TSCs (hTSCs) do not robustly
express several previously known mTSC-specific key regulators
such as Cdx2, Eomes, Esrrb, and Sox2 (Okae et al., 2018), there
is a pressing need to utilize human model systems to better
understand human-specific trophoblast lineage differentiation
and placentation.

Only recently, bona fide hTSCs, TS-like cells (TSLCs) that
can mimic hTSCs in some aspects, and induced TSCs (iTSCs)
have been established from various sources of human cells and
started to gain attention for their utility (Figure 1). Some of
these cells self-renew and retain a capacity to differentiate into
multiple specialized cell types, such as ST and EVT (Okae et al.,
2018; Castel et al., 2020; Dong et al., 2020; Liu et al., 2020).
However, these in vitro human trophoblast model systems are
relatively new and therefore have not been extensively studied
yet. As various high-throughput omics approaches in the field
of pluripotent stem cells (PSCs) have aided in understanding
early embryo development by identifying critical cis- and trans-
regulatory factors and their regulatory mechanisms (Loh et al.,
2011), such omics approaches in combination with in vitro
human placenta models will provide us with clues for the
understanding of human placentation. In this review, we first
provide a broad overview of multiple omics approaches used
in the studies of mTSCs or other fields and key outcomes,
and briefly describe differences between human and mouse
placentation. Since most studies have been performed in mTSCs,
the vast majority of data we reviewed here are from mouse
studies, with occasional studies from human trophoblast and the
placenta. Then, we introduce recently reported in vitro human
trophoblast model systems and their applications, collectively
emphasizing the pressing needs of similar omics approaches to
be applied to human in vitro models to enable identification
of previously unknown human trophoblast-specific key factors
and their regulatory mechanisms underlying both normal and
abnormal human placenta development.

VARIOUS OMICS STUDIES ON
PLACENTA/TROPHOBLAST-SPECIFIC
MODULATORS AND THEIR
REGULATORY MECHANISMS

Transcriptional and epigenetic regulations govern global gene
expression programs, thereby modulating cellular functions and
identity via the interactions between cis-regulatory elements,
such as promoters, enhancers, and insulators, and numerous
trans-acting factors, including cell-type-specific TFs and
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FIGURE 1 | Derivation of human in vitro placenta models. (A) Human trophoblast stem cells (hTSCs) derived from the trophectoderm (TE) of the blastocysts and
first-trimester placenta (Okae et al., 2018). (B) Trophoblast stem-like cells (TSLCs) derived from various defined media (Xu et al., 2002; Amita et al., 2013; Li et al.,
2013, 2019; Horii et al., 2016; Mischler et al., 2021). (C) Induced trophoblast stem cells (iTSCs) reprogrammed from somatic cells using ectopic expression of
OCT4, SOX2, KLF4, and MYC (OSKM) followed by culture in hTSC media (Castel et al., 2020; Liu et al., 2020). (D) 3D organoids established from hTSCs and
cytotrophoblast (CT) (Haider et al., 2018; Turco et al., 2018; Saha et al., 2020).

cofactors. Recent next-generation sequencing (NGS)-based
genomics studies enable us to exhaustively determine cell-type-
specific TFs, enhancer-TF interactions, and TF-TF interactions
responsible for precise cellular functions in various contexts.
Additionally, genome-wide profiling of histone modifications,
DNA methylation landscapes, chromatin accessibility, and
three-dimensional architectures has advanced our understanding
of the mechanisms underlying cellular identity and animal
development. In the field of trophoblast biology, due to the
late establishment of human in vitro models, most omics
studies have been performed in mTSCs in addition to in vivo
functional studies in mouse KO models. In this section, we
review some important omics approaches, such as chromatin
immunoprecipitation coupled with high-throughput sequencing
(ChIP-seq), transposase-accessible chromatin followed by
sequencing (ATAC-seq), high-throughputpromotercapture
(Hi-C), and other approaches mainly taken in mTSCs or other
contexts. Integrative studies with in vitro human trophoblast
models and various omics approaches will facilitate our
understanding of the mechanisms underlying early human
placenta development.

Mapping Cis-Regulatory Elements in
mTSCs and Mouse Placenta
As ChIP-seq allows for the identification of pivotal cis-regulatory
elements controlling tissue-specific gene expression, multiple
ChIP-seq studies of an enhancer-binding protein (p300) or
enhancer-associated histone marks (H3K27ac and H3K4me1)
have identified comprehensive sets of enhancers in mTSCs
and mouse placentas (Shen et al., 2012; Chuong et al., 2013;
Tuteja et al., 2016; Lee et al., 2019). Integrative analyses

of p300, H3K4me1, and H3K27ac ChIP-seq data sets have
identified approximately 70K putative enhancers in mouse
placenta, of which 4,431 enhancers were placenta-specific
among 19 tissues tested (Shen et al., 2012). Placenta-specific
enhancers often have stage-specific roles during placentation
and may be implicated in certain placenta complications.
For example, profiling of global enhancers and transcriptomes
at the pinnacle and shortly after the trophoblast invasion
revealed that many active enhancers contain three enriched
motifs of trophoblast-specific TFs (AP1, ETS2, and TFAP2C),
suggesting that these enhancer-TF networks may play essential
roles in controlling the depth of trophoblast invasion during
placenta development (Tuteja et al., 2016). Therefore, mapping
enhancer-TFs networks will facilitate understanding of proper
trophoblast invasion, which is essential for advancing treatments
for pregnancy complications caused by aberrant trophoblast
invasion, including placenta accreta (due to too much invasion)
and PE as well as IUGR (due to too shallow or incomplete
invasion) (Caniggia et al., 2000; Tantbirojn et al., 2008;
Barrientos et al., 2017).

Interestingly, global mapping and comparison of enhancers
between mouse and rat TSCs unveiled that endogenous
retroviruses (ERVs) are strongly enriched within the species-
specific enhancers among transposable elements. In particular,
the ERV known as RLTR13D5 contributes to the mouse-
specific enhancer landscape, suggesting differential insertions
of transposable elements within the genome of various species
may lead to placental diversity by altering the binding sites of
TSC-specific TFs, such as ELF5, TFAP2C, and TEAD4 (Chuong
et al., 2013). However, much remains unknown concerning
the contribution of transposable element-associated enhancers
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to placenta diversity. For example, it is not known whether
ablation or mutation of ERVs is sufficient to cause substantial
alteration in TF binding patterns during placentation. As noted
above, due to the recent derivation of hTSCs and other human
in vitro models, research on cis-regulatory elements in human
trophoblast models is still rudimentary, awaiting intensive studies
to unravel the core cis-regulatory elements required for human
placenta development. Successful mapping of global hTSC-
specific enhancers, as well as dynamic changes in enhancer
usage during differentiation of hTSC toward ST and EVT,
will help to explain the significant roles of enhancers in the
maintenance and differentiation of hTSCs, and to identify TFs
associated with the defined enhancers in hTSC and during
ST or EVT differentiation via motif search, illuminating the
mechanisms by which transcriptional regulatory landscape leads
to trophoblast differentiation.

Trans-Acting Factors Implicated in
mTSCs and Placenta Development
In addition to cis-regulatory elements, identifying
trophoblast/placenta-specific TFs and their global target genes
is crucial to understanding how they form regulatory networks
to modulate placenta-specific gene expression programs and to
further elucidate the etiology of placenta malfunction-related
complications. Conventional loss-of-function studies in mouse
models identified a handful of key TFs in trophoblast lineages,
including Cdx2 (Strumpf et al., 2005), Tead4 (Yagi et al., 2007),
Gata3 (Ralston et al., 2010), Elf5 (Donnison et al., 2005), Tfap2c
(Auman et al., 2002), Eomes (Russ et al., 2000), Esrrb (Luo et al.,
1997), Ets2 (Yamamoto et al., 1998), Ascl2 (Guillemot et al., 1994),
Gcm1 (Anson-Cartwright et al., 2000), and Hand1(Riley et al.,
1998). Notably, the vast majority of these genes are embryonic
lethal upon their deletion, and phenotypes typically include
severe defects in placenta development. While some TFs (Elf5,
Esrrb, and Tfap2c) are known to be essential for the maintenance
of mTSCs and during mouse placenta development, others
(such as Hand1 for trophoblast giant cells (TGC) and Ascl2 for
spongiotrophoblast) (Guillemot et al., 1994; Riley et al., 1998) are
known to play central roles in mTSC differentiation toward more
specialized trophoblast cell types, suggesting that different classes
of TFs may play unique roles during trophoblast specification.
Aligning with this, a recent mTSC-specific super-enhancer
mapping approach has identified numerous novel TSC-specific
TF candidates and classified them into four groups based on
their expression patterns during mTSC differentiation, revealing
that different classes of TSC-specific TFs play distinct roles in the
maintenance or differentiation of mTSCs (Lee et al., 2019).

A recent forward genetic screen identified Zfp281 as a
mTSC-specific regulator, and an integrative analysis of global
ZFP281 targets with global histone modifications disclosed that
ZFP281 interacts with MLL or COMPASS complex mediating
H3K4me3, suggesting that ZFP281 recruits the complex onto the
mTSC-specific targets (Ishiuchi et al., 2019). Notably, ZFP281
is also a member of the mouse embryonic stem cell (ESC)
core pluripotency network (Wang et al., 2006). As multiple
mTSC-specific TFs, such as ESRRB, SOX2, and TFAP2C, are

also members of the pluripotency network, it is reasonable to
speculate that these TFs may have context-specific functions
by forming distinct regulatory networks in mTSCs or mouse
ESCs (mESCs) with context-specific interacting partner proteins,
controlling different downstream target genes. In agreement
with their roles in mTSCs, numerous studies reported that
overexpression of TSC-specific TFs, such as Arid3a (Rhee
et al., 2014), Cdx2 (Niwa et al., 2005), Gata3 (Ralston et al.,
2010), Tead4 (Nishioka et al., 2009), Zfp281 (Ishiuchi et al.,
2019), and Fosl1 (Lee et al., 2018), could induce trophoblast-
specific gene expression programs in mESCs. Mapping of
the global binding sites of CDX2, ARID3A, and GATA3 in
concert with RNA-seq and ATAC-seq during cell fate conversion
revealed that these TFs initially repress ESC-specific genes and
subsequently activate TSC-specific genes (Rhee et al., 2017).
Similarly, global mapping of TFAP2A, TFAP2C, GATA2, and
GATA3 combined with transcriptome analysis upon cell fate
conversion of human ESCs (hESCs) to hTSLCs elucidated the
binding landscape of these TFs during fate conversion. Among
the TFs, GATA3 preferentially co-occupies its targets with other
TFs and promotes the activation of placental genes, suggesting
that GATA3 is a pivotal factor, and GATA2/3 and TFAP2A/C
networks modulate early specification of trophoblast progenitors
(Krendl et al., 2017). These observations ironically suggest that
ESCs can also serve as a useful tool to study trophoblast
development in various ways. Unfortunately, while the roles of
more than hundreds of TFs have been elucidated in the field
of mouse and human ESCs (and PSCs), only a few TFs have
been functionally characterized in human trophoblast lineage
specifications (Lee et al., 2007; Soncin et al., 2018; Saha et al.,
2020). For a better understanding of early human trophoblast
lineage differentiation, identification and validation of master
TFs will be the first essential step. Furthermore, studies on
how these key TFs collaboratively control the self-renewal of
hTSCs, modulate differentiation toward ST or EVT, interact with
their chromosomal target genes, and form regulatory networks
with other interacting partner proteins will be tremendously
important for deeper mechanistic understating of both normal
placentation and diseased placenta.

Epigenetic Regulations in mTSCs and
Placenta
Histone Modifications
In addition to the enhancer-associated histone modifications
(H3K27ac and H3K4me1) described above, genome-wide studies
of active (H3K4me3 and H3K9ac) and repressive (H3K27me3
and H3K9me3) histone modifications suggested that epigenetic
regulations also play important roles in development and early
embryogenesis (Fogarty et al., 2015; Dahl et al., 2016; Liu et al.,
2016; Xia et al., 2019). H3K4me3 is a well-known histone
mark, generally observed at active promoters. H3K4 demethylase,
KDM5B, is responsible for erasing these marks and plays a crucial
role in mTSC differentiation toward specialized cell types by
resetting the H3K4 methylation landscape at the promoters of
mTSC self-renewal-related genes (Xu and Kidder, 2018). Bivalent
domains that harbor both H3K4me3 and H3K27me3 marks are
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enriched near the promoters of inactive developmental genes
in ESCs, and these marks allow for rapid activation of such
genes upon developmental cues (Bernstein et al., 2006; Mikkelsen
et al., 2007). Interestingly, it is still controversial whether TSCs
harbor bivalent modifications, as one study reported that mTSCs
have rare H3K27me3 domains (Rugg-Gunn et al., 2010), while
another study showed 5,172 bivalent genes in mTSCs (Liu et al.,
2016). Surprisingly, H3K27me3 and H3K4me2 ChIP followed
by quantitative PCR in mTSCs revealed that bivalent marks are
observed in the developmental genes (Atoh1, Sox1, Hoxa7, Gata4,
and Sox7) that are not expressed in placenta development, while
placenta-specific genes, such as Cdx2, Pax3, and Hand1, were
only marked by H3K4me2. It has not been reported in hTSCs
whether ST- or EVT-specific genes have bivalent domains and
subsequently lose their bivalent signature upon differentiation,
as well as how histone writers and erasers are regulated during
ST or EVT differentiation. Studies on the dynamics of bivalent
domains in the maintenance of hTSCs and their differentiation
to ST or EVT in conjunction with global gene expression profiles
will answer this question, and such approaches will further reveal
how and to what extent the bivalent loci regulate genes required
for trophoblast lineage commitment.

DNA Methylation
In general, DNA methylation at cytosine residues (5mC)
plays crucial roles in cell-type-specific gene expression and
silences transposons and other repetitive sequences on the
genome (Li and Zhang, 2014). The genome of the trophoblast
lineage is globally hypomethylated relative to that of somatic
cells. In human CT, DNMT1, which is responsible for
the maintenance of 5mC, is downregulated by promoter
methylation, while upregulated DNMT3L plays important roles
in placenta development by facilitating the activation of de
novo methyltransferase DNMT3A and DNMT3B (Suetake
et al., 2004; Arima et al., 2006; Novakovic et al., 2010).
Abnormal DNA methylation during placenta development
is known to be associated with pregnancy-related diseases
(Koukoura et al., 2012), and methylation is also a pivotal
regulatory mechanism underlying the mono-allelic expression
of imprinting genes. DNMT3L is required for establishing
maternal gene imprinting (Hata et al., 2002). Imprinted genes
play essential roles in feto-placental development by affecting
placental growth, morphology, and nutrient uptake capacity,
as reviewed in-depth of imprinting mechanisms in murine
placenta (Hanna, 2020). One fundamental question regarding the
roles of DNA methylation is how DNA methylation contributes
to trophoblast lineage commitment. Global methylation was
investigated in human trophoblasts, including side-population
trophoblast (trophoblast stem cell population), CT (intermediate
progenitors), and EVT from the first trimester of the human
placenta using reduced representation bisulfite sequencing
(RRBS) (Gamage et al., 2018). Comparison of methylomes
and transcriptomes revealed 41 hypomethylated genes are
upregulated in EVT compared to CT and implicated in
epithelial to mesenchymal transition (EMT) and metastatic
cancer pathways. The results suggest that these 41 genes are
responsible for the acquisition of an invasive phenotype of EVT,

which is consistent with the fact that villous CT differentiates into
invasive EVT through the EMT process observed in numerous
invasive cancers (DaSilva-Arnold et al., 2015), further implying
shared mechanisms underlying heightened invasive capabilities
between trophoblasts and cancer cells. Therefore, it will be of
great interest to investigate how dynamic alterations of global
methylomes drive trophoblast lineage commitment. In vitro
human trophoblast models including hTSCs would be an ideal
system to capture the dynamics of global methylomes during
hTSC differentiation to ST or EVT.

In addition to 5mC, 5hmC regulated by the 10–11
translocation factor, TET1, is essential for maintaining the self-
renewing status of mTSCs (Chrysanthou et al., 2018). Therefore,
testing the roles of TET1 in hTSC or their differentiation
might be interesting. An integrative analysis of DNA 5mC,
5hmC, transcriptomes, and TET1 occupancy in mTSCs and
differentiated mTSCs revealed that the ratio of 5hmC–5mC
correlates with their target gene activity. Interestingly, most
TET1 sites demarcate potential trophoblast enhancers while
overlapping with active histone marks and TFAP2C binding
sites (Senner et al., 2020). Multiple genome-wide methylation
studies have been performed in human diseased placentas
from patients experiencing recurrent pregnancy loss (RPL),
identifying numerous differentially methylated regions (DMRs)
associated with dysregulated genes (Du et al., 2020). Therefore,
DNA methylation may contribute significantly to placenta
pathology. The differences in methylation between male and
female origin placentas have also been linked with susceptibility
to pregnancy complications (Gong et al., 2018). Recently,
DNA N6-methyladenine (6mA) modification was also reported
in mammals (Xiao et al., 2018) and it was shown that 6mA
contributes to epigenetic regulation by antagonizing the
function of SATB1 during mTSC differentiation (Li et al.,
2020). Conversely, recent comprehensive bioinformatics
analyses of published data suggested that 6mA may not exist
in mammals and this prior observation was due to false
detection of 6mA (Douvlataniotis et al., 2020); therefore,
more careful investigation is needed for the validation of 6mA
contribution to mTSC differentiation and human trophoblast
differentiation in the future.

Chromatin Landscape in mTSCs and
Placenta
The ATAC-seq approach in mTSCs has identified 57,019
accessible chromatin regions (Nelson et al., 2017). Moreover,
a subsequent comparison of mTSC-specific open loci with
those in different stages of the developing embryo revealed
that approximately 20% of mTSC-specific open loci are also
accessible in the 8-cell stage embryo and enriched with placenta-
related genes, suggesting that a significant portion of putative
mTSC enhancers is already open in the 8-cell stage during
embryogenesis (Nelson et al., 2017). Dynamic changes in
chromatin landscape were observed upon mTSC differentiation;
upon differentiation, chromatin accessibility drastically
increased at the genes associated with trophoblast lineage
specification, although surprisingly, chromatin accessibility was
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not significantly changed for downregulated genes, suggesting the
importance of chromatin openness changes for gene activation
but not gene repression. Instead, the downregulated genes lost
the occupancy of ESRRB, a TF for mTSC self-renewal, indicating
that changes in chromatin accessibility are necessary but not
sufficient for trophoblast gene regulation during differentiation
(Nelson et al., 2017).

Recently, ATAC-seq for hTSCs derived from naïve hESCs has
identified 12,132 open chromatin regions (Dong et al., 2020).
A comparison of differentially accessible regions (DARs) between
hTSCs and naïve hESCs revealed that the vast majority of DARs
in hTSCs are located in loci that are distal from promoters,
suggesting that long-range interactions between promoters and
distal regulatory regions may be involved in transforming naïve
hPSCs into hTSCs. However, comprehensive investigation of
such long-range interactions has not yet been performed in
hTSCs. Additionally, chromatin accessibility of EVT and ST
has not been compared with that of hTSCs, and it remains
unknown to what extent changes in accessibility facilitate
cell fate specification in trophoblast lineages. Investigation of
chromatin openness during differentiation of in vitro human
trophoblast models will advance our understanding of how
chromatin accessibility is altered in a different cellular context
and contribute to the conversion of cellular identity during
human trophoblast differentiation.

In addition to chromatin accessibility, chromatin architecture
emerges as one of the key gene regulatory mechanisms to
orchestrate spatiotemporal gene expression. Key cell-type-
specific TFs are regulated by long-range looping between the
promoter and enhancers. For instance, TEAD4 is robustly
expressed in mTSCs (Nishioka et al., 2008, 2009). Circular
chromosome conformation capture coupled with high-
throughput sequencing (4C-seq) unveiled 64 putative long-range
Tead4 promoter interactomes in mTSCs. Comparison with
enhancer histone signatures and open chromatin status revealed
that five enhancer loci interact with the promoter of Tead4
and significantly increase the activity of Tead4 promoter
in mTSCs, indicating that TSC-specific Tead4 expression is
regulated by inter-chromosomal promoter-enhancer interactions
(Tomikawa et al., 2020). Of note, Hi-C in both mESCs and
mTSCs revealed that enhancer-promoter interactions change
dynamically between cell types and that the key mTSC-specific
TFs tend to have promoter-enhancer interactions, particularly
Tet1-regulated enhancers in mTSCs. These TFs are expressed
relatively higher in mTSCs than in mESCs when they do
not have promoter-enhancer interactions in mESCs, while
mTSC-specific TFs that are suppressed in mESCs exhibit
interactions between promoters marked with H3K27me3 in
mESCs (Schoenfelder et al., 2018). Recent integrative analysis
of H3K27me3 ChIP-seq with Hi-C and chromatin interaction
analysis by paired-end sequencing (ChIA-PET) data discovered
that long non-coding RNAs (lncRNAs), Airn and Kcnq1ot1,
induce the spread of megabase-sized H3K27me3 domains in
mTSCs by recruiting Polycomb repressive complex (PRC) to
CpG islands (CGIs) in a lncRNA-dependent manner. This
spreading of H3K27me3 is also reliant on the preexisting
chromatin structure, abundance, and stability of Airn (Schertzer

et al., 2019). Since these chromatin interaction studies in mTSCs
revealed the dynamics and significance of chromatin structure in
determining cell-type specificity, similar research using multiple
human trophoblast models under the conditions of self-renewing
and ST or EVT differentiation will also help to define how and
to what extent chromatin architecture contributes to human
placenta development.

The Differences Between Human and
Mouse Placenta Development
Mouse and human placentas have many commonalities, as
both of them are discoid and hemochorial placentas, and they
also have many functionally conserved genes. However, there
are also many apparent differences between them, such as
size, shape, cellular organization, gestational length, and overall
structure (Rossant, 2015; Schmidt et al., 2015). Accordingly,
mouse placenta models do not always perfectly mimic human
pregnancy disorders such as PE (Bodnar et al., 2005; Aubuchon
et al., 2011). It is often difficult to extrapolate findings from
studies on rodent placentation. A growing body of evidence
indicates that human placenta development differs from that
of mouse spatiotemporally. For example, human blastocysts
show OCT4 expression restricted to the inner cell mass (ICM)
about 2 days later than the mouse. While mouse blastocysts
show mutually exclusive expression patterns between Oct4
(in the ICM) and Cdx2 (in the TE), CDX2 in the human
blastocyst is initially co-expressed with OCT4, the latter of
which is not confined to the ICM until just before implantation
(Niakan and Eggan, 2013). Core TE-specific TFs (Id2, Elf5,
and Eomes) are exclusively expressed in mouse trophoblast
lineages, whereas human orthologs are not present in human
TE (Blakeley et al., 2015), but ELF5 expression is observed
in the trophoblast subpopulations of early implanted embryos
(Hemberger et al., 2010; Soncin et al., 2018). In particular,
genome-wide transcriptome comparison between human and
mouse placentas not only unveiled that the itinerary of mouse
placental development is parallel to only the first half of gestation
in the human placenta, but also revealed significant differences in
transcriptomes and identified VGLL1 as a human-specific marker
for CT (Soncin et al., 2018).

Furthermore, immunohistochemistry in human placental
tissues showed that a short isoform of TP63 is specific to the
human rather than the mouse placenta. TP63 is mainly expressed
in primary CT, and its expression level decreases when the cells
undergo differentiation into either ST or EVT (Lee et al., 2007).
Despite considerable differences between human and mouse
placentation, only a few human placenta-specific TFs and cis-
regulatory elements have been identified, and little is known
about their mechanisms in regulating human trophoblast fate. It
is still ambiguous to what extent key TFs share common targets
and play conserved roles between humans and mice. Considering
the differences between mouse and human placenta (Soncin et al.,
2015), it is essential to identify human-specific cis-regulatory
elements and TFs. All the above evidence highlights the necessity
of the use of in vitro human placenta models. The multiple omics
approaches in human in vitro trophoblast modes will reveal
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human-specific regulatory elements and factors as well as distinct
epigenetic regulations that can then later be validated for possible
roles in human placenta development or pathology.

IN VITRO MODELS OF HUMAN
PLACENTA DEVELOPMENT

Although rodent models, especially mouse in vivo and in vitro
model systems, have been widely used in the field, animal
model systems do not completely mimic the human placenta
in various ways, as described above. Before establishing bona
fide hTSCs, choriocarcinoma, immortalized cells, and primary
CT in the placenta were used as in vitro models of human
placenta development (Nagamatsu et al., 2004; Bilban et al., 2010;
Dietrich et al., 2020). However, there were multiple drawbacks.
Carcinoma cells do not completely recapitulate the multipotent
human trophoblast, and they show an abnormal gene expression
profile. Conversely, although multipotent, access to primary CT
is limited, and they do not proliferate in vitro (Kliman et al.,
1986; Soares et al., 2018). Due to these issues, more recent
efforts have been made to establish human trophoblast models
from human PSCs [hESCs or human induced pluripotent stem
cells (hiPSCs)]. Since then, rapid advances in the field have
established multiple human in vitro placenta models from various
sources and using different protocols (Figure 1). In this section,
we discuss recently available in vitro model systems of early
human placenta development and also describe their applications
and limitations.

BMP4-Induced hTSLCs
Since it has been reported that bone morphogenetic protein 4
(BMP4) can initiate differentiation of hESCs toward trophoblast
lineages (Xu et al., 2002), multiple groups have attempted to
convert hESCs to hTSLCs by treating them with BMP4 alone
or in conjunction with small molecules, such as BAP (BMP4,
A83-01, and PD173074) (Amita et al., 2013; Li et al., 2013; Horii
et al., 2016). BMP4 treatment in the absence of FGF2 induces
morphological changes of hESCs to epithelial cells that express
KRT7 within 48 h (Amita et al., 2013). These cells robustly
expressed trophoblast-specific markers, including HLA-G and
secreted placenta hormones, such as chorionic gonadotropin,
progesterone, and placental lactogen. Another study showed
that CDX2+/TP63+CT-like cells, which have the potential to
differentiate into ST- and EVT-like cells (bipotency), can be
derived from hPSCs by the treatment of BMP4-containing
defined media, based on the marker gene expression, hormone
secretion, and invasion capacity (Horii et al., 2016). Although
the exact mechanistic roles of BMP4 in the transformation of
hPSCs to hTSLCs have not been well characterized, depletion
of TP63 impaired the conversion of hPSCs to functional
trophoblasts (Li et al., 2013), implying that BMP4 functions
through TP63. These studies suggest that BMP4 may initiate
the activation of trophoblast-specific gene expression in hPSCs
that are known to harbor relatively loose chromatin structures
(Melcer and Meshorer, 2010; Amita et al., 2013). Notably, BMP4-
induced hTSLCs cannot proliferate for a prolonged time, and

they ultimately differentiate into multiple uncharacterized cell
populations, suggesting BMP4 treatment alone is not sufficient
to convert hPSCs to self-renewing hTSCs with canonical
bipotency. Nevertheless, these BMP4-induced hTSLCs have
multiple advantages over other models. Since hiPSCs can be used
as starting cells in addition to preexisting hESCs, generation of
patient-specific hTSLCs is feasible by sequential establishment of
hiPSCs from patients’ somatic cells followed by conversion of
the hiPSCs to hTSLCs. In turn, the approaches using trisomy
21 hPSCs and PE-derived hiPSCs successfully model trophoblast
differentiation defects (Horii et al., 2016, 2021). Since many
hiPSC lines have been established or can be established from
human patients with various symptoms, similar approaches can
be employed to understand previously unknown links between
human diseases and the events during early placentation.

Bona Fide hTSCs
In 2018, Okae et al. established multiple self-renewing hTSCs
lines harboring bipotency from the first-trimester placenta as
well as human blastocysts (Okae et al., 2018). This long-
standing goal of the field was achieved by the manipulation
of multiple signaling pathways (activation of the epidermal
growth factor (EGF) and Wnt signaling pathways, along with
inhibition of the transforming growth factor beta (TGFB)
pathway) combined with HDAC inhibitors and Rho-associated
protein kinase (ROCK) inhibitor treatment. Although hTSCs
present an excellent in vitro placenta model system and reliable
protocols to differentiate them into ST and EVT are available,
access to blastocysts or primary CT from the first-trimester
placenta is still limited due to ethical issues. Interestingly,
multiple research groups have recently reported the successful
conversion of naïve hPSCs to hTSLCs (Cinkornpumin et al.,
2020; Dong et al., 2020) using the defined culture condition
used for the derivation of bona fide hTSCs (Okae et al., 2018).
Notably, BMP4 treatment on naïve PSCs leads to adverse
effects, such as promoting cell death, implying that naïve hPSCs
must exit the naïve state to the primed state to efficiently
respond to BMP4 for the conversion from hESCs to hTSLCs.
Conversely, cultivating naïve hPSCs on Collagen IV in hTSC
media allowed for the establishment of hTSLCs, whereas primed
hPSCs cannot be transformed toward hTSLCs under the same
conditions (Dong et al., 2020). Comparable to genuine hTSCs,
naïve hPSC-derived hTSLCs can be maintained for over 20
passages without losing their bipotency, and they show overall
gene expression signatures similar to hTSCs as well. Another
group also reported that human expanded potential stem cells
(hEPSCs) can be converted into hTSLCs under the bona fide
hTSC culture condition (Gao et al., 2019). The hTSLCs derived
from hEPSCs also showed bipotency; however, they did not show
intact self-renewal capacity.

In contrast to the previous failures to generate self-renewing
hTSLCs from primed hPSCs using BMP4 (Amita et al., 2013;
Li et al., 2013; Horii et al., 2016), two independent groups
have demonstrated the successful conversion of primed hESCs
to hTSLCs. One group showed that the culture of hiPSCs on
a nickel micromesh with triangular shapes results in cystic
cells having characteristics of hTSCs in the absence of BMP4
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(Li et al., 2019). These cells proliferated for over 205 days and
showed bipotency, suggesting that it may be feasible to convert
primed hPSCs to hTSLCs without BMP4. More recently, another
study showed that the culture of hESCs in chemically defined
media containing BMP4, SB43154, and S1P (the phospholipid
sphingosine 1-phosphate) could convert primed hPSCs to two
distinct subpopulations of hTSLCs (CDX2+ and CDX2- hTSLCs)
(Mischler et al., 2021). Although additional functional validations
are required to understand the true nature of all these hTSLCs,
the results at least showed that different culture conditions can be
used to transform naïve or primed hPSCs to hTSLCs, suggesting
that there may be multiple molecular paths for the conversion of
hPSCs toward hTSLCs.

iTSCs, TF-Mediated Conversion Models
In addition to the establishment of hTSLCs by applying defined
culture conditions, recent studies showed that reprogramming
of human somatic cells to human iTSCs by ectopic expression
of TFs is feasible (Castel et al., 2020; Liu et al., 2020).
Notably, unlike mouse iTSCs derived from the overexpression
of multiple trophoblast-specific TFs (EOMES, GATA3, TFAP2C,
and MYC or ETS2) in mouse fibroblasts (Benchetrit et al.,
2015; Kubaczka et al., 2015), human iTSCs were established
by reprogramming somatic cells with the induction of OCT4,
SOX2, KLF4, and MYC (original TFs used to generate iPSCs;
Takahashi and Yamanaka, 2006; Takahashi et al., 2007; Park
et al., 2008) coupled with hTSC culture conditions. In this
approach, expansion of the cells obtained from the intermediate
stage of reprogramming in hTSC media was sufficient to
reprogram somatic cells toward human iTSCs with the full
differentiation potential of early trophoblasts without ectopic
expression of trophoblast-specific TFs. This surprising result
suggests that at least a small portion of cells during the
intermediate stage of reprogramming harbor active trophoblast-
specific gene expression programs, and the hTSC culture
condition may stabilize hTSC-specific gene expression programs
by repressing upregulation of other lineage-specific genes. It
would be interesting to investigate the mechanisms underlying
this observation and whether mouse iTSCs can be derived with
the same procedure through which human iTSCs were derived
from somatic cells.

3D Culture Models
Cells cultured on 2-dimensional (2D) surfaces do not always
accurately recapitulate authentic tissue environments where
cells are spatially surrounded by other cells in 3-dimensions
(3D). Therefore, it is of great interest to study 3D-cultured
cells that behave more closely to in vivo tissue (Simian and
Bissell, 2017). Recently, multiple independent groups established
placenta organoid models. One group generated trophoblast
organoids via 3D culture of first-trimester villous CT (Haider
et al., 2018). These trophoblast organoids showed globally
similar gene expression profiles to the primary CT. Under
self-renewing conditions, the organoids are composed of CT
(outside) and ST (inside) that are spontaneously differentiated
from CT, whereas CT can further differentiate into HLA-
G + EVT at the outer CT layers upon withdrawal of Wnt

stimulators. Another group also established genetically stable
trophoblast organoids that can differentiate into both ST and
EVT from EPCAM + proliferative trophoblasts (Turco et al.,
2018). These organoids form villous-like structures where
the basement membrane is located outside the organoids,
whereas syncytial masses reside in the central cavity. These
organoids can secrete placenta-specific hormones, growth
factors, and glycoprotein, and can further differentiate
into EVT. These trophoblast organoids are potentially
useful models for studying critical elements required for
placenta morphogenesis, feto-maternal communication, and
transmission of pathogens. Most recently, hTSC-derived
trophoblast organoids were also reported (Saha et al., 2020).
Like CT-derived organoids, hTSC organoids had villous-
like structures. Interestingly, depletion of TEAD4 in hTSCs
prevented organoid formation. Accordingly, hTSCs derived
from RPL placentas showing a reduced level of TEAD4
failed to efficiently form trophoblast organoids, suggesting a
significant role of TEAD4 in human placenta development
and RPL placentas.

CONCLUSION AND PERSPECTIVES

Recent genome-wide identification of cis-regulatory elements
and trans-acting factors in mTSCs and placenta models
revealed multiple essential factors and their action mechanisms
underlying mTSC maintenance and trophoblast lineage
specification. Also, in combination with conventional genetics
approaches, global inspections of histone signatures, DNA
methylation, chromatin openness, and 3D architecture in mTSC
models unveiled that placenta development is orchestrated
by multiple genetic and epigenetic modulators whose
defects might be associated with pregnancy complications.
Although both mouse in vivo and in vitro models have
advanced our understanding of the mechanisms underlying
placenta development, fundamental discrepancies between
human and mouse placentas have been a major issue.
Recent success in establishing multiple human in vitro
placenta models, such as hTSCs, hTSLCs, iTSCs, and
3D trophoblast organoids, may fill the gap of knowledge
by providing tremendous opportunities to study human
trophoblast and placenta-specific gene regulation. In addition,
they will serve as useful in vitro models for both normal
and abnormal human placentation, especially in the early
stages of development.

Despite recent advances in developing research and diagnostic
tools, the placenta remains one of the least understood organs
in the human body. Since multiple human in vitro model-based
approaches have recently become available, numerous questions
can be addressed: What factors or regulators are responsible for
the specification of various cell types in the human placenta?
How do they form regulatory networks modulating human
trophoblast cell-type-specific gene expression programs? How do
the malfunctions of the key regulators trigger placenta-associated
complications? How do trophoblasts collaborate with maternal
immune cells for a successful pregnancy without immunological
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aggression? Is it possible to successfully derive multiple functional
cell types from hTSCs, hTSLCs, iTSCs, or 3D organoid models?
Recently developed multiple omics approaches with human
in vitro placenta models, possibly from both normal and diseased
placentas, will provide us with a more holistic view of genetic and
epigenetic regulatory mechanisms in placentation and etiologies
of placenta-associated pregnancy complications.
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