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Abstract

Although over 60 single nucleotide polymorphisms (SNPs) have been identified by meta-analysis of genome-wide
association studies for type-2 diabetes (T2D) among individuals of European descent, much of the genetic variation remains
unexplained. There are likely many more SNPs that contribute to variation in T2D risk, some of which may lie in the regions
surrounding established SNPs - a phenomenon often referred to as allelic heterogeneity. Here, we use the summary
statistics from the DIAGRAM consortium meta-analysis of T2D genome-wide association studies along with linkage
disequilibrium patterns inferred from a large reference sample to identify novel SNPs associated with T2D surrounding each
of the previously established risk loci. We then examine the extent to which the use of these additional SNPs improves
prediction of T2D risk in an independent validation dataset. Our results suggest that multiple SNPs at each of 3 loci
contribute to T2D susceptibility (TCF7L2, CDKN2A/B, and KCNQT; p<<5x10~%). Using a less stringent threshold (p<<5x10"*),
we identify 34 additional loci with multiple associated SNPs. The addition of these SNPs slightly improves T2D prediction
compared to the use of only the respective lead SNPs, when assessed using an independent validation cohort. Our findings
suggest that some currently established T2D risk loci likely harbor multiple polymorphisms which contribute independently
and collectively to T2D risk. This opens a promising avenue for improving prediction of T2D, and for a better understanding
of the genetic architecture of T2D.
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Introduction summary statistics and linkage disequilibrium (LD) information
from a reference sample [7]. They applied their method to only a

Appro.ximately 65 loci have been shown. to be as.so?iated Wi.th single established T2D locus (CDKN2A/B), and identified two
type-2 diabetes (12D) t.hr.ough gerlome—\V}de association studies novel SNPs at that locus that were significantly associated with
(G\NAS.)' However, variation at .theéff loci accounts for a small T2D when fitted jointly. Finally, on a smaller scale (1,924 cases
proportion of the expected heritability of T2D [1,2]. Among and 5,380 controls), Ke [8] identified multiple associated loci at

several potential strategies for identifying additional contributing the CDKN2A/B and TSPANS loci. Although higher power is
genetic variation, one approach is to determine whether there are

additional genetic markers near established loci that act indepen-
dently or jointly with the reported marker (lead SNP).

Allelic heterogeneity is a feature of the genetic architecture of
many traits, including common traits and diseases such as height,
BMI, and 12D [3-6]. In the context of T2D genetics, both Morris
et al. [2] and Yang et al. [7] have suggested that additional SNPs
in established loci are associated with T2D risk. However, Morris
et al. only considered SNPs in weak linkage disequilibrium
(r2<0.05) with the lead SNP, and that were not in the same
recombination interval. Hence, without formal conditional anal-
ysis, they identified two loci as having multiple associations at
genome-wide significance (KCNQI and CDKN2A/B), and two
more at suggestive levels (DGKB and MC4R). Yang et al. have
recently developed a method for identifying additional associated
SNPs based on conditional/joint (C/J) analysis using GWAS

afforded with the GWAS meta-analysis approach to identify
associations with single SNPs, it does not allow for direct C/J
analysis since the actual genotype data is not available. The
advantage of the method developed by Yang et al. is that it takes
advantage of the greater power of GWAS meta-analyses, while
also testing for C/J associations, which would otherwise be
impossible without individual level data.

Here, we comprehensively examine allelic heterogeneity based
on the method developed by Yang et al. at 65 T2D loci discovered
by the DIAGRAM consortium, using the summary statistics from
their recent meta-analysis of T2D GWAS. We then examine the
extent to which these newly identified SNPs increase the accuracy
of T2D risk prediction in an independent validation dataset.
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Methods

Datasets

We wused 6,054 nominally unrelated European-American
subjects (genomic relationship coefficient <0.025, based on
approximately 2.5 million SNPs) from the Atherosclerosis Risk
in Communities (ARIC) study [9] to obtain linkage disequilibrium
(LD) estimates. According to Yang et al. [7], this sample size is
sufficient for LD estimation with minimal error. In order to
maximize the overlap of SNPs between the meta-analysis
summary statistics (see below) and the ARIC study, we used
IMPUTEZ software [10] along with 1000 Genomes reference data
to impute millions of additional SNPs. Prior to imputation, we
excluded individuals with a high genotype missing rate (>10%).
SNPs were excluded based on extreme minor allele frequency
(<0.5%), a high missing rate (>10%), or failed Hardy-Weinberg
equilibrium (p<<0.005). After imputation, we excluded SNPs with
‘info’ <0.6 (measure of imputation quality), and SNPs with
genotype dosage between 0.33 and 0.66, or between 1.33 and
1.66. Intermediate dosages outside of these specified ranges were
rounded to the nearest integer. We did not use intermediate
genotype dosages since this was not an option with the GCTA
software, described below.

The validation dataset consisted of European-American subjects
from the Multi-Ethnic Study of Atherosclerosis (MESA) [11],
which included 225 T2D cases and 1,985 controls. T2D cases
were defined as having a fasting glucose level =126 mg/dL, a self-
report of taking diabetes medication, or a physician diagnosis of
T2D. This dataset can be considered an independent validation
dataset since it was not part of the DIAGRAM meta-analysis,
whereas ARIC was a part of this meta-analysis, thus precluding it
from any validation assessment. We implemented genotype QC
and imputation as detailed above. However, we did not round or
remove Intermediate genotype dosages. The MESA and ARIC
dataset were obtained from dbGaP (database of Genotypes and
Phenotypes). IRB approval was obtained from the University of

Arizona.

Conditional/Joint Analysis

Using the summary statistics from the discovery phase of the
latest version (v3) of the DIAbetes Genetics Replication And Meta-
analysis (DIAGRAM) consortium, available to the public through
an online source [12] and LD estimates from the ARIC dataset as
described above, we used GCTA software [13] to perform
stepwise model selection. Briefly, SNPs were selected into the
model based on p-values in the meta-analysis. An iterative scheme
was adopted in which C/J analyses were alternatively performed
with the stepwise selection procedure. SNPs with a re-estimated (1.
e. through C/] estimation as opposed to marginal estimation) p-
value under a certain threshold were selected. For a full
description of the method, see Yang et al. [7]. We restricted our
analysis to only the genomic regions within 1 Mb of the top SNP
at the 65 established T2D loci as reported in Morris et al [2]. This
filtering along with the QC filtering described above resulted in
112,329 SNPs being used in this analysis. For each SNP, we
recorded the following information as input for the C/] analysis:
effect allele, effect size (log of odds ratio), corresponding standard
error, p-value, allele frequency of the effect allele (based on ARIC
sample described above, as this was not available in the
DIAGRAM summary statistic file), and sample size (sum of cases
and controls). We used PolyPhen-2 [14] to determine whether any
of the newly identified SNPs had any predicted functional effect,
and RegulomeDB [15] to determine whether these SNPs may lie
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in regulatory regions (e.g. transcription factor binding sites) or are
associated with specific DNA features (e.g. DNAse sensitivity).

Validation/Prediction

We compared several prediction models. First we constructed a
baseline model which only considered demographic information
(sex and age). Then we added a weighted genetic risk score [16]
based on only the set of lead SNPs with weights corresponding to
the log odds ratios according to the DIAGRAM meta-analysis
summary statistics. Lead SNPs were defined as those that had the
lowest p-value in the respective 2 Mb region according to the
DIAGRAM Stage 1 meta-analysis summary statistics. We then
considered a weighted genetic risk score based on all SNPs
identified by the C/J analysis with weights corresponding to the
coeflicients estimated from the C/] analysis. We conducted the
above analyses at the following p-value thresholds based on the C/
J results: 5x107%, 5x1077, 5x107° 5x107°, and 5x10~*. We
examined the proportion of variance explained by these additional
SNPs by calculating the variance explained on the liability scale,
estimated through the odds ratios and allele frequencies of the
SNPs, and assuming a disease prevalence of 10%, using the
Mangrove package [17] in R [18]. We also calculated Nagelk-
erke’s R? [19] of the models which include age and sex and each of
the GRS, using the fmsb package [20] in R, and report the Akaike
information criterion (AIC) [21] for each of these models.
Prediction accuracy was estimated using the area under the
receiver operating characteristic curve (AUC) as implemented in
the pROC package [22] in R. Differences in AUC among models
were compared by examining the change in AUC (AAUC) and
assessed using the DeLong test [23] to determine statistical
significance.

Results

Conditional/Joint analysis

We identified novel genome-wide significant (p<<5x10~") SNPs
in the C./J analysis at the three following loci: TCF7L2, CDKN2A/
B, and KCNQI (sce Table 1). In the TCF7L2 region, we
identified three SNPs (rs7917983, rs17747324, rs12266632) within
a 32 kb region. The lead SNP (rs4506565) was not selected in this
model, but is positioned in this region and is in moderate LD with
cach of the novel findings (r* between 0.18 and 0.70). For cach of
these novel findings, the marginal effect sizes and p-values in the
meta-analysis are similar to those estimated in the C/J analysis. By
relaxing the p-value threshold to p<5x10~* we discovered an
additional SNP in this region (rs10128255). In the CDKN2A/B
region, the lead SNP (rs2383208) was not selected in the C/J
analysis. Instead, two SNPs (rs10757282 and rs10811661)
approximately 1.9 kb downstream of the lead SNP were
discovered. These SNPs are only 110 bases apart. rs10757282 is
in relatively low LD with the lead SNP (r*=0.29). However,
rs10811661 is in high LD with the lead SNP (r?=0.94). It should
be noted that the correlation between the respective risk alleles is
negative (r= —0.54), suggesting that estimates obtained through
the single marker association were underestimated for both SNPs,
as evidenced by the larger effect sizes and lower p-values estimated
in the C/] analysis compared to the meta-analysis marginal
association results (see Table 1). In the KCNQI region, we
identified two SNPs in the C/J analysis (p<<5x10~%. One SNP
(rs462402) is in moderate LD with the lead SNP, rs231362
(r?=0.45). The other SNP (rs163177) is approximately 121 kb
upstream and is not in LD with the lead SNP (r?<0.01). By
relaxing the p-value threshold to p<5x10~° we identified
additional novel discoveries in the DGKB and TP53INP1I genes.
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° E~ ;: Continuing to relax this threshold, we identify 17 (p<<5x10") (sce
§ gg Table 1) and 34 (p<5x10~* regions with multiple associated
o 2 % SNPs. According to PolyPhen, none of the SNPs identified
a ra through C/] analysis had any predicted functional effect.
E K] % According to our query in RegulomeDB, rs387769 near HNIF4A
= E% shows evidence of being linked to expression of a gene target,
E|wln = n| & .§ . affecting binding of a transcription factor, and shows evidence of a
g "g é_ DNase footprint. SNP rs7176681 near ZFANDG also displays
=3 ‘g ; y evidence of being a transcription factor binding site, and evidence
a3 888|5¢ g of a DNase footprint. SNP 1517168486 in DGKB shows evidence
= c e c ERS of transcription factor binding and a DNase peak. Several other
g g 2 SNPs show evidence of transcription factor binding or a DNase
g 8 & 38 @ "5 e peak (see Table 1).
2|3 B38| % 2
o A IR Validation/Prediction
@ 58 The AUC of the baseline prediction model which included only
2 E E 5 E = § :J'; sex and age was 0.5702. For each of the three loci with additional
M M g 9‘ 2 SNPs that were significant at the p<<5x10~? threshold (TCF7L2,
>3 ..9: CDKNZ2A/B, and KCNQ]), the inclusion of the SNPs identified by
2o =B £4,38 the C/J analysis resulted in a higher AUC than a model including
3/3ss s ??E E only the lead SNP (although not statistically significant) in all
g ; é % regions except for KCNQI (see Figure 1).
<M - B £ % ;m‘j ._g Considf:ging all three lqci with additional SNPs at the
5 5 3 X g'é f £ p<56x10 t.hresbold collectively, we fou.nd that thf.t use o.f the
e R = X = “‘&_' SoE seven SNPs identified by the C/J analysis resulted in a slightly
25Z 8 higher AUC (0.5979) than when using only the three lead SNPs
58 5 3 % £ ?E (0.5803). This represents a doubling i'n AAUC over.the aget sex
€8¢ e g % z, o mogie% (lslee 'Figfl'lre 2),(p altg%l;%? this Cfpﬁ”erencl(‘e1 11@) EOt quite
& |- m < | Z2£L3 statistically significant (p =0.055), according to the DeLong test.
gg 2 % The inclusion of all SNPs (lead and from C/] analysis) results in a
I B ook statistically significant (p = 0.049), yet small, increase in AUC (see
2122 2 2 f}. § § %‘ Figure 2). At the p<5><107() threshold, the use of 11 SNPs at 5
2 % E’ﬁ lqc1 (TCF7L2, CDK.NZ.A/B, KCNQ], DGKB ar}d.TP531NP]),
g8 mg|Bcs s slightly, b_ut not significantly, 11.1crc.ascd prediction accuracy
2l 8 35 S E:, -% §_ _QU (AUC = 0.5885) over a model considering only the corrcspondlng
259 5 lead SNPs (AUC=0.5779; p=0.126). At the p<5x10~~
<+ _R ;§§ E threshold, we observe a small increase in prediction accuracy
§18 283 8| 5a5é when using the 39 SNPs identified by the C/J analysis instead of
Flee e el gg: 8 the corresponding 17 lead SNPs (AUC =0.5892 vs. 0.5724;
;(_% 'u‘é e p=0.079). Finally, at the p<5><1074 threshold, the use of 120
% g g 23 SNPs identified by the C/] analysis and the lead SNPs results in a
SRV Sl 8ESS slightly higher and nearly statistically significant increase in AUC
E “i % % over that of a model which includes only the 34 lead SNPs at the
= - E 2 corresponding loci (AUC =0.5965 vs. 0.5858; p=0.067).
N 3 5 %E’-E’% Table 2 shows the proportion of variance explained by the
A= g g z%E w additional SNPs identified by the C/] analysis. For each of the
2% 8 E o T oL 3 three loci, the SNPs identified by the C/] analysis explained
SEQ g slightly more of the variance in T2D risk than the lead SNP.
5548 Similarly, for the collection of SNPs identified by the C/J analysis
2 g & at various p-value thresholds, we observe an increase in the
mow R ;5;. é g 5 proportion of TQD_Varlance explained by the SNPs and the GRSs,
R & A § %%’ along with decreasing AIC values.
2|7 %% 8| 52858
o g Ezeg Discussion
- c o
=N . I - B 2 3‘;’ 8 8 = Our analyses confirm previous findings regarding the allelic
Y o E £ E & E heterogeneity present at the CDKN2A/B, KCNQI, DGKB, and
. S % T -§ 3 MCH4R loci. We provide novel evidence of allelic heterogeneity at
§ S ,—3 £ ‘§ § genome-wide significance at the TCF7L2 locus. We support our
v § g 5% § % finding in TCF 7L2 by sh9w1ng thz.lt the use of th.c three 1dlcn.t1ﬁcd
- o 2 CEER SNPs results in a small increase in AUC (albeit not statistically
% E § 855 ';:7 S significant) compared to qsing the lead TCF7L2 SNP (rs4506565)
= z 2 § g ,—3 £5 alone. We observe similar but much weaker trends at the

CDKNZ2A/B and KCNQI loci.
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0.64

0.62

AUC

p<5x10-8 p<5x10-6

p<5x10-5

M sex + age

W sex + age + lead SNPs
m sex + age + C/J SNPs
W sex + age + lead SNPs + C/J SNPs

p<5x10-4

Figure 1. Prediction accuracy in MESA at 3 loci with additional detected SNPs at the 5x10 2 threshold.

doi:10.1371/journal.pone.0113072.g001

At less stringent p-value thresholds, we observe additional
putatively associated SNPs at up to 34 loci. Considering the
collective set of loci in which additional associated SNPs were
identified through C/J analysis, prediction accuracy appears to
slightly improve with the addition of these additional SNPs in our
validation dataset. At all p-value thresholds, the AAUC over the

sex + age model is at least two-fold greater when using the C/J
identified SNPs compared to using the lead SNPs alone.

The strength of the method developed by Yang et al. is well
exemplified by the multiple associated SNPs identified at the
TCF7L2 locus, since the use of the three SNPs (which do not
include the lead SNP) appears to be more informative than only
using the lead SNP, rs4506565. Another example of the strength

0.64

0.62

0.6

M sex +age

0.58

AUC

0.56 -

0.54 +

Q52 -

TCF7L2

CDKN2A/B

M sex + age + lead SNP

m sex + age + C/J SNPs UW
msex +age + C/JSNPs W
M sex + age + lead SNP + C/J SNPs

KCNQ1

Figure 2. Prediction accuracy in MESA using lead SNPs vs. SNPs identified in C/J analysis at different p-value thresholds.

doi:10.1371/journal.pone.0113072.g002
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Table 2. Variance explained at various p-value thresholds in the MESA validation dataset by the collection of individual SNPs on
the liability scale, variance explained by, and model fit of, the weighted GRS, using Nagelkerke’s R?, and AIC, respectively.
Liability-scale variance Nagelkerke R? AIC
age+sex 0.0115 1448.1
TCF7L2 1 Lead SNP 0.0097 0.0178 14433
3 C/J SNPs 0.0189 0.0212 1439.7
4 Lead+C/J SNPs 0.0282 0.0198 14411
CDKN2A/B 1 Lead SNP 0.0004 0.0118 1449.7
2 C/J SNPs 0.0025 0.0127 1448.8
2 Lead+C/J SNPs 0.0029 0.0117 1449.8
KCNQT 1 Lead SNP 3.00E-5 0.0115 1450
2 C/J SNPs 0.0029 0.0122 14493
3 Lead+C/J SNPs 0.0014 0.0118 1449.8
<5.00E-08 3 Lead SNPs 0.0101 0.0153 1446
7 GCTA SNPs 0.0225 0.0230 1437.8
10 Lead+C/J SNPs 0.0322 0.0197 14412
<5.00E-06 5 Lead SNPs 0.0130 0.0134 1448.1
11 GCTA SNPs 0.0258 0.0190 14421
16 Lead+C/J SNPs 0.0381 0.0164 1444.8
<5.00E-05 17 Lead SNPs 0.0277 0.0134 1448
39 GCTA SNPs 0.0648 0.0209 1440
55 Lead+C/J SNPs 0.0865 0.0171 1444.1
<5.00E-04 34 Lead SNPs 0.0613 0.0158 14455
91 GCTA SNPs 0.1443 0.0259 1434.6
119 Lead+C/J SNPs 0.1801 0.0197 14412
doi:10.1371/journal.pone.0113072.t002
of this method is the case in which two risk alleles are in negative Acknowledgments

LD. Without the C/] analysis, the additional SNPs in the
CDKN2A/B region would not be identified when analyzed on
their own.

The main limitation of this method is that associations are not
tested directly, but rather through knowledge of marginal
associations, and LD patterns in a different dataset (of the same
ancestral background). A major limitation of the validation stage of
our study is the relatively small sample size which limits the
statistical power to detect differences in prediction accuracy
between different GRSs. From this perspective, it will be
important to continue validating these findings in larger datasets,
and to combine actual genotype data across multiple datasets
instead of using summary statistics. Furthermore, it will be
important to dissect the allelic heterogeneity on a locus-by-locus
basis to closely examine the patterns/existence of dependencies
and additive or interactive effects. Finally, it will be important to
functionally characterize these as well as all GWAS findings to
more firmly establish causality and better understand molecular
mechanisms leading to T2D.

Nevertheless, this approach is clearly promising for a greater
understanding of the molecular basis of type-2 diabetes, and
potentially for use in risk prediction scores. As additional loci are
identified through GWAS, it will be important to systematically
identify instances of allelic heterogeneity and to examine the
extent to which additional SNPs can help to shed light on the
functional basis of genetic variation.
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