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There is an age-old question in all branches of network analysis. What makes an actor in a network important, courted, or sought?
Both Crossley and Bonacich contend that rather than its intrinsic wealth or value, an actor’s status lies in the structures of its
interactions with other actors. Since pairwise relation data in a network can be stored in a two-dimensional array or matrix,
graph theory and linear algebra lend themselves as great tools to gauge the centrality (interpreted as importance, power, or
popularity, depending on the purpose of the network) of each actor. We express known and new centralities in terms of only
two matrices associated with the network. We show that derivations of these expressions can be handled exclusively through the
main eigenvectors (not orthogonal to the all-one vector) associated with the adjacency matrix. We also propose a centrality vector
(SWIPD) which is a linear combination of the square, walk, power, and degree centrality vectors with weightings of the various
centralities depending on the purpose of the network. By comparing actors’ scores for various weightings, a clear understanding of
which actors are most central is obtained. Moreover, for threshold networks, the (SWIPD) measure turns out to be independent of
the weightings.

1. Introduction

An actor is represented by a vertex 𝑖 in a relational network.
Following the terminology used in social analysis, the power
and importance of a specific actor (ego) does not result
from its inherent properties but rather from its position
with respect to others (alter) in the network. The extent
of its influence depends on the links to first neighbours
and the neighbours of these neighbours. What is relevant
is the importance of the actors in the subnetwork focused
around ego, mostly that including all actors to whom ego
has a connection up to a prescribed path length, and all the
connections among all of these actors.

To rank actors according to their importance, one can
gauge the amount of their influence in the whole network.
There are various types of centralities of an actor 𝑖 in a
relational network. A centrality measure is meant to give the
relative importance of 𝑖 in the network. It is usually taken to
be intuitively a measure of the access of 𝑖 to sources and the
power 𝑖 can wield to disseminate ideas and create awareness.
Wewill also quantify a new aspect of power depending on the
extent alter is constrained to depend on ego for the purpose of

their membership in the network. For any specified centrality
measure, the vector with the 𝑖th entry equal to the centrality
of the vertex 𝑖 is said to be the centrality vector of the network.

A network is represented by a graph (𝐺,V,E) with
a set V of vertices often labelled 1, 2, . . . , 𝑛 and an edge-
set E of pairs of distinct vertices describing an adjacency
relation. Network systems are modelled as graphs whose
vertices represent the dynamical units or actors and whose
links stand for the interactions (collaborations and business
links for instance) among them. Powerful graph theoretical
techniques can then be applied to yield results that give
meaningful information about a network.

The degree 𝜌
𝑖
of a vertex 𝑖 is the number of edges incident

to 𝑖. A vertex of degree one is termed an end-vertex. In a
𝜌-regular graph, 𝜌

𝑖
has the same value 𝜌 for each vertex 𝑖.

A walk of length 𝑘 starting from a vertex 𝑖 is an alternating
sequence of (not necessarily distinct) vertices and edges
V
1
, 𝑒
1
, V
2
, 𝑒
2
, . . . , 𝑒

𝑘
, V
𝑘+1

where V
1
= 𝑖 and an edge 𝑒

ℓ
has V
ℓ

and V
ℓ+1

as end vertices. A clique is a subset of the vertices that
induces a complete subgraph. An independent set is a subset
of the vertices that induces an empty subgraph (with no
edges). The path 𝑃

𝑛
of length 𝑛 − 1 is an alternating sequence
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V
1
, 𝑒
1
, V
2
, 𝑒
2
, V
3
, . . . , V

𝑛
of distinct vertices V

1
, V
2
, . . . , V

𝑛
and

distinct edges 𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛−1
so that 𝑒

𝑖
is an edge connecting

V
𝑖
to V
𝑖+1

. The distance between two vertices V
𝑖
and V
𝑗
is the

number of edges in the shortest path joining V
𝑖
to V
𝑗
. The

maximum of the distances between all the vertex pairs in𝐺 is
called the diameter of 𝐺.

The cycle 𝐶
𝑛
is a connected graph on 𝑛 vertices each with

degree two. The complete graph 𝐾
𝑛
has 𝑛 vertices and there

is an edge between every pair of vertices. It follows that the
vertices of a complete graph forma clique. In a bipartite graph,
the vertex set is partitioned into independent setsV

1
andV

2
.

The purpose of a network determines which centrality
measures aremeaningful. Information networks aim to reach
as many actors as possible, in contrast with epidemiology
networks whose objective is to contain the spread of a virus.
In exchange networks, bargaining power is the goal and ego’s
power is alter’s dependence. To strike a balance among the
intended behaviour and the latent forces emanating from the
network structure, we consider various centrality measures,
namely,

(i) the degree centrality,
(ii) the square centrality,
(iii) the eigenvector centrality,
(iv) the walk probability vector,
(v) the walk centrality,
(vi) the irregular scaled-walk centrality,
(vii) the power centrality.

Measures (i) and (iii) are standard centralities, whereas the
rest are inspired by behavioural network expectations. The
local statistics of a vertex are captured, for instance, by its
degree or by the entry, corresponding to a particular vertex,
of a specific eigenvector for some matrix encoding the graph
adjacencies. We propose another general-purpose centrality
termed SWIPD which is a linear combination of the square,
walk, power, and degree centrality vectors where weightings
can be varied depending on the overarching aim of the
network.

We use A(𝐺) (or just A when the context is clear) to
denote the 0-1-adjacency matrix of a graph𝐺, where the entry
𝑎
𝑖𝑘
of the symmetricmatrixA is 1 if {𝑖, 𝑘} ∈ E and 0 otherwise.

We note that the graph 𝐺 is determined, up to isomorphism,
by A. For a real symmetric matrix M, the real number 𝜆 is
an eigenvalue of a matrix M if there exists a nonzero vector
x (termed a 𝜆-eigenvector) satisfying Mx = 𝜆x. The 𝜆-
𝑒𝑖𝑔𝑒𝑛𝑠𝑝𝑎𝑐𝑒 is the subspace containing all the 𝜆-eigenvectors.
The nullity of M is the multiplicity of the eigenvalue zero of
M. It can also be seen as the deficiency in the rank ofM.

The vector j ∈ R𝑛 with each entry equal to one indicates
that all vertices have identical weights. The eigenvalues of the
adjacency matrix of a graph 𝐺 having some eigenvector not
orthogonal to j are said to be the main eigenvalues of 𝐺. A
regular graph 𝐺 has j as an eigenvector and therefore it has
only one main eigenvalue, namely, the maximum eigenvalue.
The vector j is used as an initial vertex status in a bias-free
network.

By the Perron-Frobenius theorem on nonnegative matri-
ces, the adjacency matrix A of a connected network has an
eigenvector each of whose entries is positive.This eigenvector
is referred to as the Perron vector and is associated with the
maximum eigenvalue ofA (or of 𝐺). Note that the maximum
eigenvalue 𝜆max of A is not exceeded by the absolute value of
any other eigenvalue and is always a main eigenvalue.

The degree diagonal matrixD has 𝜌
𝑖
as the diagonal entry

at position 𝑖 for 1 ≤ 𝑖 ≤ 𝑛 and zero in all off-diagonal
positions. A very useful representation of a graph 𝐺 is the
Laplacian matrix (Lap) defined as D − A. For a connected
network, the Laplacian𝐿𝑎𝑝 has a simple eigenvalue zero, with
an associated eigenvector equal to j.

An attractive feature in themathematical treatment of the
formulae for the centralities derived here is that

(i) the main eigenvalues suffice in all the derivations and
proofs;

(ii) each centrality measure is expressed in terms of the
matrices D and A only, which renders the computa-
tions tractable.

The rest of the paper will be organised as follows. In Section 2,
we review the established degree and eigenvector centralities
of a network 𝐺 and refine them by expressing them in terms
of invariant vectors associated with A. We also introduce the
square centrality that focuses on the subnetwork of actors that
are at a distance at most two from 𝑒𝑔𝑜. Networks oftenmodel
the spread of fluids, the diffusion of information, or virus
propagation. Diffusion is governed by a differential equation
that can be expressed in terms of the Laplacian. In algorithms
that determine network kinetics, the Laplacian is a recurring
theme. We show, in Section 3, how the Laplacian features in
the diffusion of information, which is found to rank vertices
as the degree centrality does. We then propose, in Section 4,
thewalk centrality vector, based on themain eigenspaces and,
later, the power centrality that reduces the contribution to ego
by the well connected first neighbours.

A split graph is a graph in which the vertex set can be
partitioned into a clique and an independent set. A connected
threshold graph 𝐶(𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑟
) is a split graph in which the

independent subset (if not empty) is partitioned into one or
more parts 𝐴

𝑟−1
, 𝐴
𝑟−3
, . . . , 𝐴

𝑡
and the clique is partitioned

into one or more parts 𝐴
𝑟
, 𝐴
𝑟−2
, . . . , 𝐴

𝑠
where 𝑡 = 1 and

𝑠 = 2 if 𝑟 is even, whereas 𝑡 = 2 and 𝑠 = 1 if 𝑟 is
odd, as shown in Figure 1. Note that |𝐴

𝑖
| = 𝑎

𝑖
≥ 1 and,

for a unique representation 𝐶(𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑟
), the size |𝐴

1
| =

𝑎
1
≥ 2. Each vertex of a particular independent subset 𝐴

𝑖

has the same neighbourhood 𝐴
𝑖+1
∪ 𝐴
𝑖+3
∪ ⋅ ⋅ ⋅ ∪ 𝐴

𝑟
. The 𝑟

distinct vertex degrees are 𝜌
1
, 𝜌
2
, . . . , 𝜌

𝑟
. Moreover the closed

neighbourhood of a vertex contains the neighbourhood
of any vertex of lower degree, which is the reason why
threshold graphs are also referred to as nested split graphs.
The interactions within many real world networks approach
those of threshold graphs [1, 2]. In the sequel, wewill point out
instances when threshold graphs show limiting behaviour for
the centralitymeasures we consider. In Section 5, we establish
that, for threshold graphs, even the expected discriminating
centralities such as the eigenvector and the power centrality
coincide with the degree centrality.
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Figure 1: The threshold graphs 𝐶(𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑟
), |𝐴
𝑖
| = 𝑎
𝑖
, 𝑎
𝑖
≥ 2, for 𝑟 even and 𝑟 odd, respectively.

In Section 4.2 we discuss the graph parameter (SWIPD)
that combines the centralities that tend to provide unique
information on a network. Only for irregular nonbipartite
graphs does the SWIPD centrality give a meaningful ranking
of the vertices.

2. Local Centralities

The most central vertices in a network are expected to head
the list in a valid ranking of the vertices. At a first level of
ego’s exposure, one may look at the immediate neighbours,
captured by the degree centrality measure. The status of
these first neighbours is also thought to be of significance
to ego’s ranking as they may bring their influence to bear
on the rest of the network according to ego’s needs. We
therefore consider three aspects of the influence of vertices
at a distance up to two from ego. Firstly, the number of the
immediate neighbours in the degree centrality, secondly the
total number of first and second neighbours of ego will be
considered in the square centrality, and thirdly the ripple
effect of the first neighbours’ own centrality covered by the
eigenvector centrality.

2.1. Degree and Square Centrality Measures. An accepted
premise, in propagation networks, is that the popularity of
an actor increases with the number of links to others in the
network.The degree centrality of a vertex 𝑖 is its degree 𝜌

𝑖
, that

is, the total number of its immediate neighbours.The vector d
with entry 𝑖 equal to the degree centrality of 𝑖 is said to be the
degree centrality vector of the network. Recall that the vector
j = (1, 1, . . . , 1)𝑡 gives equal importance to all the vertices.

Proposition 1. Let 𝐺 be a network with adjacency matrix A.
The degree centrality vector is Aj.

Proof. Let 𝜌
𝑖
be the degree of vertex 𝑖. Then Aj =

(𝜌1, 𝜌2, . . . , 𝜌𝑛)
𝑡
= d, as required.

The degree centrality is a main contributor to vertex
centrality. In Section 3 we will see that there are other
centrality measures which are also proportional toAj, for any
graph. One of them, in particular, ranks vertices according
to the likelihood that a random walk ends at a particular
vertex.

The degree sequence is only the first level of under-
standing of ego’s status. The next step is to consider implicit
interactions of alter with ego. One may ask whether the
number of actors at distance two or more have a significant
effect on ego. The rationale for this approach is that the
formation of new links in a network, where dissemination
of information is a priority, tends to be influenced by the
choices of the first neighbours. We expect links with “friends
of friends” to be more likely. The sum of the first and second
neighbours from each vertex is given by the vector A2j.

Large distances between two actors in a network do not
necessarily exclude mutual influence. Exposure to informa-
tion received by different actors even if not directly from
ego may have a significant impact on them. The same goes
for “similar” information sent by different actors at various
distances from ego and received by ego through interaction,
which often leads to progressing stages of empathy, a sense
of familiarity with the information and acceptance, possibly
leading to a proper understanding of (or yearning for) it.
Seen in another light, consensus for the acceptance of a new
product bymany actors in a network is necessarily reached by
means of such interactions. The centrality measures we will
now study take into consideration distance of alter from ego
throughout the network.
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2.2. Eigenvector Centrality. We now look at the second aspect
of the influence of neighbours, that is, the ripple effect of
first neighbours’ own centrality on ego’s ranking. Effective
measures aimed at increasing ego’s status are important in
marketing. Wasserman and Faust [3] discuss what they call
prestige measures of centrality, that is, measures in which the
centralities (statuses) of positions are recursively related to
the centralities of the positions to which they are connected.
Instead of just looking at the vertex degree of a specific actor
𝑒𝑔𝑜 and of its immediate neighbours as an indication of ego’s
importance in a network, the influence of its neighbours is
also considered. The interpretation is that having a neigh-
bour who has power over others adds to ego’s importance.
Moreover, links are often made with actors recommended
by a neighbour. A measure C

𝑖
of centrality based on the

centralities of neighbours is achieved by assigning a weight
to each vertex 𝑖 equal to its interim centrality in an iteration
converging to C

𝑖
. Whereas degree centrality gives every

contact the same weight, the eigenvector centrality weights
link with others according to their centralities, thus taking
into account the entire pattern in the network. Since repeated
application of the adjacency matrix A on a vector increases
the value exponentially when the maximum eigenvalue 𝜆max
ofA exceeds 1, control is achieved by scalingA to (1/𝜆max)A.

Definition 2. Let y
𝑟
= (1/𝜆max)Ay𝑟−1, 𝑦0 = j, and let

lim
𝑟→∞

y
𝑟
= y. Then the eigenvector centrality ŷ is the unit

vector along y.

Starting with the vector j ensures a bias-free process. The
eigenvalues of a diagonalizable matrix A whose eigenvectors
span j are said to bemain. IfA is real and symmetric and has 𝑠
distinct eigenvalues 𝜇

1
, 𝜇
2
, . . . , 𝜇

𝑠
, then diagonalization leads

to the spectral decomposition A = 𝜇
1
P
1
+ 𝜇
2
P
2
+ ⋅ ⋅ ⋅ + 𝜇

𝑠
P
𝑠
,

where P
𝑖
is the projection onto the eigenspace of 𝜇

𝑖
, for 1 ≤

𝑖 ≤ 𝑠.

Lemma 3 (see [4]). If P
1
,P
2
, . . . ,P

𝑠
are the projections onto

the A-eigenspaces of the 𝑠 distinct eigenvalues 𝜇
1
, 𝜇
2
, . . . , 𝜇

𝑠
,

respectively, of A, then ∑𝑠
𝑖=1

P
𝑖
is the identity operator I.

Let 𝜇
1
, 𝜇
2
, . . . , 𝜇

𝑝
be the main eigenvalues of 𝐺, written

in monotonic decreasing order, where 1 ≤ 𝑝 ≤ 𝑠. From
Lemma 3 and the definition of main eigenvalues, we can
write j = ∑𝑝

𝑖=1
P
𝑖
j. Thus j can be expressed as the sum of 𝑝

orthonormal eigenvectors {P
1
j,P
2
j, . . . ,P

𝑝
j} of 𝐺 associated

with the main eigenvalues 𝜇
1
, 𝜇
2
, . . . , 𝜇

𝑝
, respectively.

Lemma 4. If z(1), z(2), . . . , z(𝑝) are the unit vectors along
P
1
j,P
2
j, . . . ,P

𝑝
j, respectively, then j = ∑𝑝

𝑖=1
𝛽
𝑖
z(𝑖) where 𝛽

𝑖
=

‖P
𝑖
j‖ ̸= 0 for each 𝑖, 1 ≤ 𝑖 ≤ 𝑝.

The unique vectors z(1), z(2), . . . , z(𝑝) of Lemma 4 are
referred to as themain eigenvectors of 𝐺 [5, 6].

Lemma 5 (see [7]). Let 𝐺 be a graph with 𝑝main eigenvalues
𝜇
1
, 𝜇
2
, . . . , 𝜇

𝑝
.The total number𝑁

𝑘
of walks of length 𝑘 is given

by𝑁
𝑘
= ∑
𝑝

𝑖=1
𝑐


𝑖
𝜇
𝑘

𝑖
, where for 1 ≤ 𝑖 ≤ 𝑝, the scalars 𝑐

𝑖
= ‖P
𝑖
j‖2

are independent of 𝑘.

The iteration defining the eigenvector centrality in Defi-
nition 2 is known as the power method. It converges provided
the network 𝐺 is not bipartite (that is provided 𝐺 has an odd
cycle) (see [8], e.g.). We give a proof using only the main
eigenvalues.

Theorem 6. For a nonbipartite graph, the eigenvector central-
ity ŷ is the unit Perron vector of A.

Proof. Consider the iteration y
𝑟
= (1/𝜆max)Ay𝑟−1 where y0 =

j. From Lemma 4, j = 𝛽
1
z(1) + 𝛽

2
z(2) + ⋅ ⋅ ⋅ + 𝛽

𝑝
z(𝑝) where

z(1), z(2), . . . , z(𝑝) are orthonormal eigenvectors belonging to
the main eigenvalues 𝜇

1
, 𝜇
2
, . . . , 𝜇

𝑝
. For a nonbipartite con-

nected graph, 𝜇
1
is the maximum eigenvalue 𝜆max of A and

is larger than the absolute value of all the other eigenvalues.
From the eigenvector equations Az(𝑖) = 𝜆

𝑖
z(𝑖) and y

𝑟
=

(1/(𝜆max)
𝑟
)A𝑟y
0
, we obtain y

𝑟
= ∑
𝑝

𝑖=1
𝛽
𝑖
(𝜇
𝑖
/𝜆max)

𝑟z
𝑖
. As 𝑟 →

∞, (𝜇
𝑖
/𝜆max)

𝑟
→ 0 for 𝜇

𝑖
< 𝜆max and y

𝑟
tends to a limit

proportional to the Perron vector z(1).

We note that for bipartite graphs, however, the minimum
eigenvalue 𝜆

𝑛
ofA is −𝜆max and if it happens to be main, then

the iteration oscillates as 𝑟 → ∞.
For many graphs, the eigenvector centrality captures

properties of second neighbours and gives a vertex ranking
often different from the degree centrality ranking [9]. This is
not the case for threshold graphs.

Proposition 7 (see [10]). For threshold graphs, the ranking of
vertices according to the eigenvector centrality is equal to that
according to the degree centrality.

3. The Discrete Laplacian and Walks

Understanding the specific details of interactions with ego
is an essential part of figuring out the factors that may
increase ego’s status. When direct methods prove difficult, a
complementary approach is provided by discovering network
substructures and invariants that also play a key role.

A graph invariant that goes beyond the immediate neigh-
bourhood of ego is distance between ego and a vertex in
alter.The investigation of randommovement along a network
often involves the Laplacian matrix. In the physical theory of
diffusion, the Laplacian arises naturally in the mathematical
analysis leading to the equilibrium state.

3.1. Propagation. Diffusion can be seen as the randommotion
of fluid particles from regions of higher concentration to
regions of lower concentration. The same terminology is
borrowed for the spread of a commodity 𝜒 such as informa-
tion or disease. The rate of diffusion 𝑑𝜒

𝑖
/𝑑𝑡 from a vertex 𝑖

in a network depends on the difference in the amounts of
commodity between 𝑖 and its neighbours. Thus 𝑑𝜒

𝑖
/𝑑𝑡 =

𝜅∑
𝑗
𝑎
𝑖𝑗
(𝜒
𝑗
− 𝜒
𝑖
), for a diffusion constant 𝜅.

Definition 8. If the amount of diffusing commodity at a
vertex 𝑖 in a network is 𝜒

𝑖
, then the column vector X =

(𝜒
1
, 𝜒
2
, . . . , 𝜒

𝑛
)
𝑡 is said to be the diffusion vector.
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We give a proof of the following well known result that
links the Laplacian with the discrete Laplacian.

Proposition 9. The differential equation regulating diffusion
in a network is 𝑑X/𝑑𝑡 = −𝜅Lap X.

Proof. Let 𝛿
𝑖𝑗
be the Kronecker delta which is equal to one if

𝑖 = 𝑗 and zero otherwise. Since 𝑑𝜒
𝑖
/𝑑𝑡 = 𝜅∑

𝑗
𝑎
𝑖𝑗
(𝜒
𝑗
− 𝜒
𝑖
) =

𝜅(∑
𝑗
(𝑎
𝑖𝑗
𝜒
𝑗
) − 𝜒
𝑖
𝜌
𝑖
) = 𝜅∑

𝑗
(𝑎
𝑖𝑗
− 𝛿
𝑖𝑗
𝜌
𝑗
)𝜒
𝑗
, then

𝑑X
𝑑𝑡
= 𝜅 (A −D)X = −𝜅Lap X. (1)

The well known diffusion equation is 𝑑X/𝑑𝑡 = 𝜅∇
2X

where∇2 is the Laplacian operator. For this reason, thematrix
Lap = D − A is referred to as the discrete Laplacian of the
graph. The solution of (1) is obtained by expressing X as a
linear combination of the 𝑛 orthonormal eigenvectors {k

𝑖
}

corresponding to the eigenvalues of the real and symmetric
LaplacianD−A. ThusX(𝑡) = ∑𝑛

𝑖=1
𝛼
𝑖
(𝑡)k
𝑖
. Substituting in (1),

(𝑑/𝑑𝑡)∑
𝑛

𝑖=1
𝛼
𝑖
(𝑡)k
𝑖
= −𝜅∑

𝑛

𝑖=1
𝛼
𝑖
(𝑡)Lap k

𝑖
= −𝜅∑

𝑛

𝑖=1
𝛼
𝑖
(𝑡)𝜇
𝑖
k
𝑖
.

Solving (𝑑/𝑑𝑡)𝛼
𝑖
(𝑡) = −𝜅𝛼

𝑖
(𝑡)𝜇
𝑖
gives the exponential decay

𝛼
𝑖
(𝑡) = 𝛼

𝑖
(0)𝑒
−𝜅𝜇𝑖𝑡 for initial commodity amounts {𝛼

𝑖
(0)}.

3.2. The Walk Probability Vector. In a random walk, or
Markov chain, along the edges of a connected graph 𝐺 with
adjacency matrix A = (𝑎

𝑖𝑘
), starting from a particular vertex,

the probability𝑝
𝑖
(𝜃) that awalker is at vertex 𝑖, after traversing

𝜃 edges (or at time 𝜃), the sum over all the neighbours of 𝑖
of 𝑝
𝑗
(𝜃 − 1)𝑝(𝑖

𝜃
| 𝑗
𝜃−1
) where 𝑝(𝑖

𝜃
| 𝑗
𝜃−1
) is the probability

that the walker moves along edge {𝑗, 𝑖}, given that it is at 𝑗
after time 𝜃 − 1. The unbiased probability 𝑝(𝑖

𝜃
| 𝑗
𝜃−1
) is

1/𝜌
𝑗
. The adjacency matrix entries are used to select only the

neighbours 𝑗 of 𝑖. Therefore

𝑝
𝑖 (𝜃) = ∑

𝑘

𝑎
𝑖𝑘

1

𝜌
𝑘

𝑝
𝑘 (𝜃 − 1) , (2)

which can be expressed in terms of the Laplacian, as will be
shown in Corollary 12.

Definition 10. The column vector p(𝜃) = (𝑝
1
(𝜃), 𝑝
2
(𝜃), . . . ,

𝑝
𝑛
(𝜃))
⊤ is said to be thewalk probability vector at time 𝜃. In the

limit, as 𝜃 → ∞, the iteration converges andp(𝜃) approaches
the walk probability vector p.

The diagonal matrix with 1/𝜌
𝑖
as the diagonal entry at

position 𝑖 is D−1. The entries of the 𝑘th column of AD−1 are
obtained by dividing the entries of the 𝑘th column of A by
𝜌
𝑘
. Expression (2) can be simplified immediately as in the

following result.

Lemma 11. (i)The walk probability vector p(𝜃) = AD−1p(𝜃 −
1).

(ii) In the limit, as 𝜃 → ∞, p(𝜃) → p and p = AD−1p.

The following results follow immediately.

Corollary 12. Consider the following:
(i) (I − AD−1)p = 0;
(ii) (I − AD−1) = Lap D−1.

Let d be the vector with the vertex degree 𝜌
𝑖
as the entry

at position 𝑖. We observe that

(i) in a directed graph, the matrix used in the iteration
y = A(D)−1y + 𝛽j is that for PageRank where D
is obtained from D modified by replacing each zero
entries on its diagonal by one, so that it is invertible;

(ii) from Corollary 12, D−1p is in the nullspace of the
Laplacian Lap andD−1d = j;

(iii) D−1Aj = j and the matrix D−1A is referred to as the
transition matrix for a random walk [11];

(iv) the Perron vector of AD−1 is d for the maximum
eigenvalue of A, which is 1.

Theorem 13. The walk probability vector p, for a connected
network with𝑚 edges, is (1/2𝑚)Aj.

Proof. Since (I − AD−1) = Lap D−1, from Corollary 12(i),
LapD−1p = 0. For a connected network, the Laplacian is
singular of nullity one, with the eigenvector j generating the
zero-eigenspace. Hence D−1p is a multiple of j. Thus p =

𝛼Dj = 𝛼Aj for 𝛼 ∈ R. If p = (𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑛
)
⊤, since D is

the diagonal matrix with 𝜌
𝑖
as the diagonal entry at position 𝑖

and ∑𝑛
𝑖=1
𝑝
𝑖
= 1, then 𝛼j⊤Aj = 1. Therefore 𝛼 = 1/2𝑚.

Theorem 13 gives a surprising result. It asserts that
the walk probability vector that is designed to take into
account the limiting behaviour of even the remote actors into
consideration gives the same ranking of the vertices as the
degree centrality.

4. Walk and Power Centralities

Although local properties are mostly influenced by immedi-
ate neighbourhoods, the relative importance of all actors in a
network that can affect egomust be considered.The questions
we wish to answer are as follows.

(i) What is the extent of influence on 𝑒𝑔𝑜 of remote
actors?

(ii) Which centrality measures ensure that the impact on
𝑒𝑔𝑜’s centrality, of the actors at a large distance from
𝑒𝑔𝑜, is not ignored?

To answer these questions, we discuss a centrality that
includes all actors in a network, based on the number of
walks. However, the more remote actors are made to exert
less influence on ego in this measure by applying a geometric
progression scaling factor (see Definition 14).

4.1. Walk Centrality. In marketing, it is a common belief
that a certain threshold density of exposure to a message is
required to achieve effective communication. The larger the
number of walks of various lengths 𝑟 from a vertex 𝑖 is, the
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more the possibilities 𝑖 has to be influenced by actors that can
reach it by traversing 𝑟 edges (possibly repeated).

The 𝑖th entries of the vectors, j,Aj,A2j, . . ., give the
number of walks of length 0, 1, 2, . . ., respectively, starting at
vertex 𝑖. For an attenuation or damping factor 𝛼 < 1, consider
y = j+𝛼Aj+𝛼2A2j+⋅ ⋅ ⋅ , where the number of walks of length 𝑟
are scaled down by 𝛼𝑟. Similar measures have been proposed
in [12, 13] by Bonacich and Katz, respectively.

Definition 14. Let 𝜆max be the maximum eigenvalue of the
adjacency matrix A of a graph 𝐺. For 𝛼 < 1/𝜆max, the unit
vector along y = j + 𝛼Aj + 𝛼2A2j + ⋅ ⋅ ⋅ + 𝛼𝑟A𝑟j + ⋅ ⋅ ⋅ is said to
be the walk centrality vector.

Lemma 15. If 𝛼 < 1/𝜆max, then (I − 𝛼A) is invertible.

Proof. Consider the determinant 𝛿 of the 𝑛 × 𝑛 matrix
(I − 𝛼A). We can write 𝛿 as 𝛼𝑛 det((𝛼)−1I − A). By Perron-
Frobenius theorem for a nonnegative matrix A, the absolute
value of each eigenvalue of A does not exceed the maximum
eigenvalue 𝜆max of A. The characteristic polynomial det(𝜆I −
A) is of degree 𝑛 and is positive for 𝜆 > 𝜆max. Thus for
(𝛼)
−1
> 𝜆max, 𝛿 > 0 and therefore (I − 𝛼A) is invertible.

The walk centrality vector is defined for all 𝛼 except
at the eigenvalues of A−1. The operator (I − 𝛼A)−1 is
referred to as the resolvent, usually used in the study of
the spectrum of operators on Hilbert spaces and applied to
solve the inhomogeneous Fredholm integral equations via the
Liouville-Neumann series. We now present new formulae for
the walk centrality by considering only the main eigenvalues
and eigenvectors of the adjacency matrix.

Theorem 16. Let 𝜆max be the maximum eigenvalue of the 𝑛 ×
𝑛 adjacency matrix A with corresponding Perron vector z(1).
Then the walk centrality vector is the unit vector along y = (I−
𝛼A)−1j which is

j
√𝑛

𝑖𝑓 𝛼 → 0;

z(1) 𝑖𝑓 𝛼 →
1

𝜆max
.

(3)

Proof. Let 𝜇
1
(=𝜆max), 𝜇2, . . . , 𝜇𝑝 be the main eigenvalues of

𝐺 with corresponding eigenvectors z(1), z(2), . . . , z(𝑛) as in
Lemma 4. Then,

(I − 𝛼A)−1j

=

∞

∑

𝑘=0

𝛼
𝑘A𝑘j =

∞

∑

𝑘=0

𝛼
𝑘A𝑘
𝑝

∑

𝑖=1

𝛽
𝑖
z(i)

=

∞

∑

𝑘=0

𝛼
𝑘

𝑝

∑

𝑖=1

𝛽
𝑖
𝜇
𝑖

𝑘z(i)

=

∞

∑

𝑘=0

𝛼
𝑘
(𝛽
1
𝜇
1

𝑘z(1) + 𝛽
2
𝜇
2

𝑘z(2) + ⋅ ⋅ ⋅ + 𝛽
𝑝
𝜇
𝑝

𝑘z(𝑝)) .

(4)

Since 𝛼 < 1/𝜆max, for 1 ≤ 𝑖 ≤ 𝑝, ∑∞
𝑘=0
𝛼
𝑘
𝜇
𝑖

𝑘 converges
absolutely.

It follows that

(I − 𝛼A)−1j

= 𝛽
1

∞

∑

𝑘=0

(𝛼𝜇
1
)
𝑘z(1) + 𝛽

2

∞

∑

𝑘=0

(𝛼𝜇
2
)
𝑘z(2) + ⋅ ⋅ ⋅

+ 𝛽
𝑝

∞

∑

𝑘=0

(𝛼𝜇
𝑝
)
𝑘

z(𝑝)

=
𝛽
1
z(1)

(1 − 𝛼𝜇
1
)
+

𝛽
2
z(2)

(1 − 𝛼𝜇
2
)
+ ⋅ ⋅ ⋅ +

𝛽
𝑝
z(𝑝)

(1 − 𝜇
𝑝
𝛼)

=
1

(1 − 𝛼𝜇
1
)

× (𝛽
1
z(1) +

(1 − 𝛼𝜇
1
)

(1 − 𝛼𝜇
2
)
𝛽
2
z(2)+⋅ ⋅ ⋅+

(1 − 𝛼𝜇
1
)

(1 − 𝛼𝜇
𝑝
)

𝛽
𝑝
z(𝑝)) .

(5)

As 𝛼 → 0, (I − 𝛼A)−1j → j. Since lim
𝛼𝜇1→1

((1 − 𝛼𝜇
1
)/(1 −

𝛼𝜇
𝑖
)) = 0 for 2 ≤ 𝑖 ≤ 𝑝, then

lim
𝛼𝜇1→1

(1 − 𝛼𝜇
1
) (I − 𝛼A)−1j = 𝛽1z

(1)
∝ z(1). (6)

For any damping factor 𝛼, the main eigenvalues and
eigenvectors of a graph suffice to determine the walk central-
ity vector.

Theorem 17. The walk centrality vector of a graph is given by
the unit vector along

y =
𝑝

∑

𝑖=1

z(𝑖)

1 − 𝛼𝜇
𝑖

. (7)

Proof. Spectral decomposition for a matrix A with 𝑠 distinct
eigenvalues gives A = 𝜇

1
P
1
+ 𝜇
2
P
2
+ ⋅ ⋅ ⋅ + 𝜇

𝑠
P
𝑠
. If A is

the adjacency matrix of a graph 𝐺, then y = (I − 𝛼A)−1j =
∑
∞

𝑘=0
𝛼
𝑘A𝑘j = ∑𝑝

𝑖=1
∑
∞

𝑘=0
(𝛼𝜇
𝑖
)
𝑘P
𝑖
j = ∑𝑝

𝑖=1
(1/(1 − 𝛼𝜇

𝑖
))P
𝑖
j =

∑
𝑝

𝑖=1
(‖P
𝑖
j‖/(1−𝛼𝜇

𝑖
))z(𝑖), sinceP

𝑖
j = 0 exactly for the nonmain

eigenvalues of A.

By Theorem 16, the walk centrality vector depends on
𝛼 and, as 𝛼 tends to 1/𝜆max, it approaches the eigenvector
centrality. Estrada and Rodŕıguez-Velázquez suggested a
damping factor of 1/𝑟! forA𝑟.The centrality of vertex 𝑖 is then
defined as the diagonal entry at position 𝑖 of (I +A +A2/2! +
⋅ ⋅ ⋅ + A𝑟/𝑟! + ⋅ ⋅ ⋅ ) = 𝑒A and is referred to as the Estrada index
[14]. It has also been used as a community detection tool.

4.2. Irregularity Scaled-Walk Vertex Representations. In our
quest to capture further the realistic possible influences
of remote actors, we now consider another vertex ranking
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Figure 2: Neighbourhoods of different type for the vertices of
highest degree in 𝐺

14
on 14 vertices.

parameter, also based on the number of walks of different
lengths, which is very sensitive to graph structure. The
number of walks 𝑁

ℓ
(𝑖) of length ℓ in the range 0 to 𝑛 − 1

from a vertex 𝑖 of a 𝑛-vertex graph can form a row vector
N(𝑖) = (𝑁

0
(𝑖),𝑁
1
(𝑖), . . . , 𝑁

𝑛−1
(𝑖)) representing 𝑖.

For the graph in Figure 2,N(11) = (1, 4, 13, 60, 180, 774,

2452, 9928, 32882, 127860). The same representation may be
shared by different vertices as is the case for vertices 8 and 10.

Note that the column vector N
ℓ

= (𝑁
ℓ
(𝑖)) =

(𝑁
ℓ
(1),𝑁

ℓ
(2), . . . , 𝑁

ℓ
(𝑛))
𝑡, giving the number of walks of a

particular length ℓ from each vertex is Aℓj. We note that for
a regular graph and a specific length ℓ,𝑁

ℓ
(𝑖) is a constant for

all vertices 𝑖 andN
ℓ
= 𝑁
ℓ
(1)j. Therefore vertices of a regular

graph are equivalent with respect to the number of walks. We
observe also that, for irregular graphs, it is not always the case
that the number of walks from the vertices, as ℓ increases,
ranks the vertices according to the vertex degrees.

The entries of columns Aj,A2j, . . . ,A9j are the sequences
of walks of length 1, 2, . . . , 9. Table 1 shows the entries from
the 8th, 10th, and 11th vertices, respectively, according to the
labelling of the graph 𝐺

14
in Figure 2. They demonstrate

oscillating vertex priorities for small lengths, as shown in
Table 1.

However we prove, again using the main eigensystem
alone, that there exists a positive integer 𝑅 such that the
ranking of the vertices according to the number of walks of
length 𝑅 + 𝑘 remains unchanged for all 𝑘 > 0.

Theorem 18. Let 𝐺 be a connected nonbipartite graph and
𝑁
𝑟
(𝑖) the number of walks of length 𝑟 from 𝑖. Then there exists

𝑅 ∈ Z+ such that, for all 𝑘 > 0, the ordering of the magnitudes
of the number𝑁

𝑅+𝑘
(𝑖) of walks of length𝑅+𝑘 from each vertex

𝑖 is independent of 𝑘.

Proof. Let 𝜇
1

= 𝜆
1
, 𝜇
2
, . . . , 𝜇

𝑝
be the main eigenval-

ues of 𝐺 with corresponding orthonormal eigenvectors
z(1), z(2), . . . , z(𝑝). If j = ∑𝑝

𝑖=1
𝛽
𝑖
z(𝑖), then

A𝑞j =
𝑝

∑

𝑖=1

𝛽
𝑖
𝜇
𝑖

𝑞z(𝑖) = (𝜆max)
𝑞

𝑝

∑

𝑖=1

𝛽
𝑖
(
𝜇
𝑖

𝜆max
)

𝑞

z(𝑖). (8)

As 𝑞 → ∞, (𝜇
𝑖
/𝜆max)

𝑞
→ 0 for |𝜇

𝑖
| < 𝜆max, which is the

case for all eigenvalues of a nonnegative matrix. Hence for all
real 𝜖 > 0, there exists 𝑅 such that



𝛽
1
z(1) −

𝑝

∑

𝑖=1

𝛽
𝑖
(
𝜇
𝑖

𝜆max
)

𝑞

z(𝑖)


< 𝜖j ∀𝑞 > 𝑅. (9)

Now Perron-Frobenius theorem guarantees that each entry
of z(1) is positive. Hence if 𝜖 is chosen to be less than the
minimum value of the entries of 𝛽

1
z(1), then all the entries of

∑
𝑝

𝑖=1
𝛽
𝑖
(𝜇
𝑖
/𝜆max)

𝑞z(𝑖) will be positive for 𝑞 > 𝑅. Hence there
exists 𝑅 such that, for all 𝑞 > 𝑅, the order of magnitude of
the number 𝑁

𝑞
(𝑖) of walks of length 𝑞 from each vertex 𝑖 is

independent of 𝑞.

An implicit result in the proof of Theorem 18 is that, as
𝑞 → ∞, A𝑞j is proportional to the eigenvector centrality.
This suggests a vertex representationwhich we term the irreg-
ularity scaled-walk centrality, where a vertex is represented by
SN(𝑖) := (j, 𝛼Aj, 𝛼2A2j, . . . , 𝛼𝑛−1A𝑛−1j), where𝛼 = 1/(Δ+1),
Δ being the maximum vertex degree in the network. The
vertex priority given by the second entry of SN(𝑖) is the
degree centrality, whereas, by Theorem 18, the entries of
𝛼
ℓAℓj for larger ℓ approach the eigenvector centrality, given

in Definition 2.
The overall efforts we considered so far, to make sure

that the contribution by distant actors is taken into con-
sideration, involved the concept of distance and walks
in graphs. For any network, the walk probability vector
and the second entry of the irregularity scaled-walk ver-
tex representation were shown to agree with the degree
centrality vector. On the other hand, as 𝛼 → 1/𝜆max,
the walk centrality was shown to approach the eigenvec-
tor centrality. The vectors 𝛼ℓAℓj in the irregularity scaled-
walk vertex representation also give rankings close to the
eigenvector centrality for large ℓ. Therefore so far, the
centralities that may give different vertex rankings turned
out to be covered by the degree, the square, and the walk
centralities.

4.3. Power Centrality. Now we present a very different con-
cept of authoritative power, derived from everyday experi-
ence, which goes counter to that governing the spread of data.
Dominance of ego on others may not depend solely on the
number of direct subordinates but also on the extent to which
the latter are dependent on ego for access to information.The
larger the number of connections a subordinate has, themore
independent of ego it tends to be, reducing ego’s power. This
contrasts sharply with all the other centrality measures we
have considered.

We choose to measure the importance of ego (vertex
V
𝑖
) by considering ∑

𝑗∼V𝑖 1/𝜌
2

𝑗
, for 𝑗 adjacent to V

𝑖
, which

we term power centrality, denoted by 𝑃𝑜𝑤𝑒𝑟(V
𝑖
) or some-

times by 𝑃𝑜𝑤𝑒𝑟
𝑖
. In this way, the power of ego’s neigh-

bours is restricted rather than enhanced by the neighbours’
connections.
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Table 1

Vertex j Aj A2j A3j A4j A5j A6j A7j A8j A9j
8 1 3 14 44 188 610 2458 8236 31932 109672
10 1 3 14 44 188 610 2458 8236 31932 109672
11 1 4 13 60 180 774 2452 9928 32882 127860

5. Threshold Graphs

In this section we focus on threshold graphs. For this class of
graphs, the value of 𝑅 in Theorem 18 has been proved to be
0 in [10]. Therefore for threshold graphs the ranking of the
vertices according to the number of walks is independent of
the length of the walks.

Proposition 19 (see [10]). For threshold graphs, the ranking of
the vertices according to the number of walks of any length is
the same as that for the degree centrality.

Proposition 19 asserts that, for threshold graphs, the
irregularity scaled-walk vertex representation gives the same
vertex priorities as the degree centrality. Degree and eigen-
vector centralities usually differ as the latter is sensitive to the
importance of second neighbours [9]. Moreover, we observe
that according to Proposition 19, for threshold graphs, the
eigenvector centrality does not add information to the degree
centrality.

Corollary 20. For threshold graphs, the degree and eigenvector
centralities rank the vertices in the same way.

Since the contribution to power centrality decreases with
increasing degree of a neighbouring vertex, this measure is
specifically designed to give a ranking of the vertices possibly
different from other centralities. It is surprising that for
threshold graphs this is not the case.

Theorem 21. For threshold graphs, the ranking of the vertices
according to the power centrality is the same as that for the
degree centrality.

Proof. Let 𝐶(𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑟
), for 𝑎

1
≥ 2 and |𝐴

𝑖
| = 𝑎

𝑖
, be a

connected threshold graph conformal with the notation used
in Figure 1. For 𝑖 ∈ {1, 2, . . . , 𝑟}, let V

𝑖
be a vertex lying in the

group𝐴
𝑖
having degree 𝜌

𝑖
. Recall that𝑃𝑜𝑤𝑒𝑟(V

𝑖
) = ∑

𝑗∼V𝑖 1/𝜌
2

𝑗

denotes the power centrality of a vertex V
𝑖
.

Case 1. For odd 𝑟, we show that 𝑃𝑜𝑤𝑒𝑟
𝑟
> 𝑃𝑜𝑤𝑒𝑟

𝑟−2
> ⋅ ⋅ ⋅ >

𝑃𝑜𝑤𝑒𝑟
1
> 𝑃𝑜𝑤𝑒𝑟

2
> 𝑃𝑜𝑤𝑒𝑟

4
> ⋅ ⋅ ⋅ > 𝑃𝑜𝑤𝑒𝑟

𝑟−1
agrees with

the degree centrality.
We consider the independent subsets first. For 𝑖 ∈

{2, 4, . . . , 𝑟 − 3}, the neighbourhood N(V
𝑖
) of V
𝑖
is N(V

𝑖+2
) ∪

𝐴
𝑖+1

. Hence

𝑃𝑜𝑤𝑒𝑟 (V
𝑖
) = 𝑃𝑜𝑤𝑒𝑟 (V

𝑖+2
) +

𝑎
𝑖+1

(𝜌
𝑖+1
)
2

thus 𝑃𝑜𝑤𝑒𝑟 (V
𝑖
) > 𝑃𝑜𝑤𝑒𝑟 (V

𝑖+2
) .

Now N (V
1
) = (𝐴

3
∪ 𝐴
5
∪ ⋅ ⋅ ⋅ ∪ 𝐴

𝑟
) ∪ 𝐴
1
\ {V
1
} ,

N (V
1
) =N (V

2
) ∪ 𝐴
1
\ {V
1
}

therefore 𝑃𝑜𝑤𝑒𝑟 (V
1
) = 𝑃𝑜𝑤𝑒𝑟 (V

2
) +

𝑎
1
− 1

𝜌
1
2
,

𝑃𝑜𝑤𝑒𝑟 (V
1
) > 𝑃𝑜𝑤𝑒𝑟 (V

2
) .

(10)

For the cliques 𝐴
𝑖
, 𝑖 ∈ {3, 5, . . . , 𝑟},

N (V
𝑖
) =N (V

𝑖−2
) ∪ 𝐴
𝑖−1
∪ {V
𝑖−2
} \ {V
𝑖
}

therefore 𝑃𝑜𝑤𝑒𝑟 (V
𝑖
) = 𝑃𝑜𝑤𝑒𝑟 (V

𝑖−2
) +

𝑎
𝑖−1

𝜌
𝑖−1
2
+

1

𝜌
𝑖−2
2
−
1

𝜌
𝑖
2
,

𝑃𝑜𝑤𝑒𝑟 (V
𝑖
) > 𝑃𝑜𝑤𝑒𝑟 (V

𝑖−2
) .

(11)

This completes the proof for odd 𝑟.

Case 2. For even 𝑟, we show that 𝑃𝑜𝑤𝑒𝑟
𝑟
> 𝑃𝑜𝑤𝑒𝑟

𝑟−2
> ⋅ ⋅ ⋅ >

𝑃𝑜𝑤𝑒𝑟
2
> 𝑃𝑜𝑤𝑒𝑟

1
> 𝑃𝑜𝑤𝑒𝑟

3
> ⋅ ⋅ ⋅ > 𝑃𝑜𝑤𝑒𝑟

𝑟−1
agrees with

the degree centrality.
We consider the independent subsets first. For 𝑖 ∈

{1, 3, . . . , 𝑟 − 3}, the neighbourhood N(V
𝑖
) of V

𝑖
∈ 𝐴
𝑖
is

N(V
𝑖+2
) ∪ 𝐴
𝑖+1

. Hence

𝑃𝑜𝑤𝑒𝑟 (V
𝑖
) = 𝑃𝑜𝑤𝑒𝑟 (V

𝑖+2
) +

𝑎
𝑖+1

𝜌
𝑖+1
2
,

𝑃𝑜𝑤𝑒𝑟 (V
𝑖
) > 𝑃𝑜𝑤𝑒𝑟 (V

𝑖+2
) ,

N (V
2
) =N (V

1
) ∪ 𝐴
1
\ {V
2
}

therefore 𝑃𝑜𝑤𝑒𝑟 (V
2
) = 𝑃𝑜𝑤𝑒𝑟 (V

1
) +

𝑎
1

𝜌
1
2
−
1

𝜌
2
2
,

𝑃𝑜𝑤𝑒𝑟 (V
2
) > 𝑃𝑜𝑤𝑒𝑟 (V

1
) .

(12)

For 𝑖 ∈ {4, 6, . . . , 𝑟},

N (V
𝑖
) =N (V

𝑖−2
) ∪ 𝐴
𝑖−1
∪ {V
𝑖−2
} \ {V
𝑖
}

therefore 𝑃𝑜𝑤𝑒𝑟 (V
𝑖
) = 𝑃𝑜𝑤𝑒𝑟 (V

𝑖−2
) +

𝑎
𝑖−1

𝜌
𝑖−1
2
+

1

𝜌
𝑖−2
2
−
1

𝜌
𝑖
2
,

𝑃𝑜𝑤𝑒𝑟 (V
𝑖
) > 𝑃𝑜𝑤𝑒𝑟 (V

𝑖−2
) .

(13)

Thus the result follows.

For the class of threshold graphs, we have shown that the
degree centrality alone determines vertex ranking.
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Theorem 22. For a threshold graph, the degree centrality, the
eigenvector centrality, the walk probability vector, the walk
centrality, each entry of the irregularity scaled-walk centrality,
and the power centrality give the same vertex ranking.

6. SWIPD-Centrality

Paying attention to detail in structure throughout a network,
by considering all distances from ego, has revealed that
the walk probability vector entries approximate closely the
vertex degree centrality.The vertex degree indicates first level
priority among the actors of the ability of creating awareness.
The walk centrality, for attenuation factor 𝛼 near 1/𝜆max,
approaches the eigenvector centrality. On the other hand, the
vectors 𝛼ℓAℓj in the irregularity scaled-walk vertex represen-
tation the vectors for 𝛼 = 1/(Δ + 1) approach the degree
centrality for small values of ℓ and the eigenvector centrality
for large values of ℓ. The square centrality emphasises the
influence of “friends of friends.” In contrast to all these
centralities, if the number of second neighbours of ego is
large, power centrality usually reduces ego’s importance.

The analysis found in the literature for most of the natu-
rally occurring networks in computer, biological, and social
networks places subjective emphasis on some centralities
more than on others depending on the aspect that is being
studied. We propose a balanced centrality vector, termed
ySWIPD,

ySWIPD := 𝛾1A
2D−1Aj + 𝛾

2(D − 𝛼DA)
−1Aj

+ 𝛾
3
AD−2j + 𝛾

4
AD−1Aj,

(14)

where the successive terms are the square, the walk, the
power, and the degree centralities, respectively. It incorpo-
rates the salient features of a network’s iterated interactions
and can be adjusted to focus on selected aspects of centrality.
This centrality is particularly simple to evaluate since it can
be expressed solely in terms of an attenuation factor 𝛼, the
adjacency matrix A, and the degree diagonal matrix D. A
balance of intended priorities can be achieved by adjusting
the coefficients 𝛾

𝑖
, for 1 ≤ 𝑖 ≤ 4, of the four terms in

SWIPD. The value of the coefficients can give more weight
to certain centralities in the ranking of vertices, depending
on the intended objectives of the network.

Good performance requires timely delivery of objectives
which is achieved by the network structures that determine
collaboration (high SWIPD centrality). For regular graphs
none of the terms in the SWIPD centrality discriminate
among the vertices. The centrality measure SWIPD can be
viewed as the extent to which a network is irregular. Only for
irregular nonbipartite graphs does the SWIPD centrality give
a meaningful ranking of the vertices.

The graph 𝐺 in Figure 2 brings out the salient differences
among vertices of the same degree as well as among second
neighbours. Recall that to ensure the well definition of the
walk centrality vector, we take (𝛼)−1 > 𝜆max(A). Since in
general, the maximum vertex degree Δ of a graph is an
upper bound for the maximum eigenvalue 𝜆max of A, in our

exampleswe choose𝛼 = 1/(Δ+1) as in the irregularity scaled-
walk vertex representation.

The graph 𝐺
14

in Figure 2 has degree sequence
{1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 4, 4, 6, 6} and the Perron vector
for A is proportional to {0.277, 0.277, 0.277, 0.277, 0.277,
1.058, 1.058, 2.946, 2.231, 2.946, 3.239, 3.585, 3.825, 1.} The
(𝛾
1
𝛾
2
𝛾
3
𝛾
4
)-SWIPD-centrality of the 14-vertex graph 𝐺

14

for 𝛾
1
= 𝛾
2
= 𝛾
3
= 𝛾
4
is {0.139674, 0.139674, 0.139674,

0.139674, 0.139674, 0.140477, 0.140477, 0.323735, 0.355234,
0.323735, 0.336275, 0.384093, 0.441474, 0.354914} which
gives a ranking that largely agrees with the degree centrality
but discriminates among nonsimilar vertices of the same
degree. Measures of the (𝛾

1
𝛾
2
𝛾
3
𝛾
4
)-SWIPD-centrality for

different weightings 𝛾
𝑖
are shown in Table 2.

In 𝐺
14
, vertex 14 has neighbours totally dependent on

it for access to the network. It has higher ranking than
vertex 13 for the power centrality even though they have the
same degree. It is also interesting to compare the ranking of
vertices 14 and 9, which varies considerably with different
centralities. As indicated in [9] and as shown above the degree
and eigenvector centralities can give contrasting priority as
in the case of vertex 14 in the graph 𝐺

14
. Note that the

eigenvector centrality yields an aspect of centrality or status
that is not captured by othermeasures. Vertex 14, for instance,
has neighbours with low eigenvector centrality (status) and
has low priority according to the eigenvector centrality index.
The eigenvector centrality is an appropriate measure when
one believes that actors’ status is determined by that of their
neighbours. This concept of vertex priority is meaningful
when social status is highly dependent on that of one’s
associates [15]. It is noted that the last entry of the irregularity
scaled-walk centrality ranks the vertices as the eigenvector
centrality as predicted in Theorem 18. From Theorem 22, it
follows that the following is true.

Corollary 23. For threshold graphs, the ranking of the vertices
according to the 𝑆𝑊𝐼𝑃𝐷 centrality is independent of the
weightings of the contributing terms.

7. Conclusion

All the centralities we discussed assign equal importance to
all the vertices of a regular graph. On the other extreme of
the degree distribution for a prescribed number of vertices,
we find antiregular graphs [16] for which only two vertices
have the same degree. Antiregular graphs are threshold
graphs. A general irregular graph is expected to have different
vertex ranking given by the degree, eigenvector, square, and
power centralities. For threshold graphs, we discovered the
surprising result that the degree centrality, the eigenvector
centrality, the power, the walk probability vector, the walk
centrality, and each entry of the irregularity scaled-walk
centrality give the same ranking. It would be interesting to
gauge whether an arbitrary network 𝐺 is sufficiently close to
a threshold graph, in which case the degree centrality of the
threshold graph would suffice to rank the vertices of 𝐺.

SWIPD captures intended behaviour and other relation
substructural forces that may not be immediately apparent.
Themeasure of arbitrariness in the choice of coefficients is not
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Table 2

Graph 𝐺
14

Centrality Rank Priority
1 2 3 4 5 6 7 8

1111SWIPD 13 12 9 14 11 8, 10 6, 7 1, 2, 3, 4,
5

2341SWIPD 13 14 12 9 11 8, 10 6, 7 1, 2, 3, 4,
5

3214SWIPD 13 12 9 11 8, 10 14 6, 7 1, 2, 3, 4,
5

Power 14 13 11 12 8, 10 9 1, 2, 3, 4,
5, 6, 7

Walk 13 12 14 11 8, 10 9 6, 7 1, 2, 3, 4,
5

Degree 13, 14 11, 12 8, 9, 10 1, 2, 3, 4,
5, 6, 7

Eigenvector 13 12 11 8, 10 9 6, 7 14 1, 2, 3, 4,
5

Irregularity
Scaled-Walk
(for high indices)

13 12 11 8, 10 9 6, 7 14 1, 2, 3, 4,
5

a weakness. Indeed the ease of determining the values of the
matrix expression (14) for SWIPD enables centrality vertex
ranking based on diverse network invariants to be compared
leading to a clearer picture of the more central vertices and a
better understanding of centrality.
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