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Abstract

Nutrition strategies and supplements may have a role to play in diminishing exercise associ-

ated gastrointestinal cell damage and permeability. The aim of this systematic review was to

determine the influence of dietary supplements on markers of exercise-induced gut endo-

thelial cell damage and/or permeability. Five databases were searched through to February

2021. Studies were selected that evaluated indirect markers of gut endothelial cell damage

and permeability in response to exercise with and without a specified supplement, including

with and without water. Acute and chronic supplementation protocols were included.

Twenty-seven studies were included. The studies investigated a wide range of supplements

including bovine colostrum, glutamine, probiotics, supplemental carbohydrate and protein,

nitrate or nitrate precursors and water across a variety of endurance exercise protocols. The

majority of studies using bovine colostrum and glutamine demonstrated a reduction in

selected markers of gut cell damage and permeability compared to placebo conditions. Car-

bohydrate intake before and during exercise and maintaining euhydration may partially miti-

gate gut damage and permeability but coincide with other performance nutrition strategies.

Single strain probiotic strains showed some positive findings, but the results are likely strain,

dosage and duration specific. Bovine colostrum, glutamine, carbohydrate supplementation

and maintaining euhydration may reduce exercise-associated endothelial damage and

improve gut permeability. In spite of a large heterogeneity across the selected studies,

appropriate inclusion of different nutrition strategies could mitigate the initial phases of gas-

trointestinal cell disturbances in athletes associated with exercise. However, research is

needed to clarify if this will contribute to improved athlete gastrointestinal and performance

outcomes.
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Introduction

Gastrointestinal disturbances are common amongst endurance athletes and can be experi-

enced as mild discomfort or be race ending [1, 2]. Due to the sometimes unpredictable and

deleterious effects of gastrointestinal discomfort on competition or training performance,

there has been an effort to understand the aetiology. In this regard, exercise-associated gas-

trointestinal syndrome (EAGS), originally termed by Costa and colleagues [3], maps the

proposed physiological and neuroendocrine response of the gastrointestinal system to acute

exercise. Subsequently, evaluating nutritional strategies to attenuate gastrointestinal injury

and its consequences in relevant populations has also received considerable attention in the

literature.

The interaction between exercise, the gastrointestinal lining and the experience of gastroin-

testinal symptoms (GIS) is complex. Exercise-associated splanchnic hypoperfusion leads to

localised hypoxia and damage of the gastric endothelial cells [4]. Endothelial cell damage

increases permeability via disruption and dysregulation of tight junction proteins [5, 6].

Increased permeability has been associated with changes in urinary metabolites [7] and

inflammatory markers [8]. Runners with exercise-associated collapse during a marathon had

intestinal fatty acid binding protein (i-FABP) levels in excess of 15,000 ng/l compared to the

mean of 2593 ng/ml in healthy marathon finishers [9]. As such, a recent meta-analysis showed

endurance exercise has a significant and independent effect on indirect markers of gut damage

and permeability [10]. These changes can result in a larger risk of bacterial translocation across

the abnormally permeable gut lining and an increase in endotoxin levels [11]. This in turn

may trigger an increased immune response, which has been found to be amplified in the heat

[11, 12]. Endotoxin levels have been associated with GIS, such as nausea in ultra-endurance

athletes [13], or long distance heated running [11] but not in shorter duration exercise (<150

minutes) [14]. In addition, exercise stimulates the sympathetic neuroendocrine pathways,

which reduces gastric emptying and overall motility, possibly exacerbating any risk of gastric

distress. Gastroparesis or ‘slosh stomach’ may contribute to reduced nutrient absorption or

gastrointestinal cell injury, but the overall rates and consequences in athletes are unknown

[15]. Research continues to build a comprehensive picture around the various aspects of the

cascade and its possible mitigating factors.

As there are multiple mechanisms involved in EAGS, there is no single strategy to mitigate

the impact of exercise. There has been a recent surge in studies examining the impact of vari-

ous dietary supplements on markers of endothelial cell gut damage and permeability. Targeted

dietary supplementation has the potential to mitigate the initial cell damage in response to

exercise and hence arrest the preliminary stages of the exercise-associated gastrointestinal syn-

drome. In theory, any reductions in this initial phase may contribute to better gastrointestinal

outcomes over the duration of an exercise bout. Proposed nutrition support, including supple-

mentation could include nutrients that improve perfusion, increase antioxidant capacity of

endothelial cells, improve tolerance to ischemia or heat, improve the localised immune

response, or strengthen the structural integrity and energy availability of the endothelial cells

and tight junctions. Further, the impact of chronic or acute supplementation protocols with

similar supplements has not been considered.

Given the increase in research with a large variety of supplements used across a wide range

of study designs, it is important to synthesise these data to provide clarity on the current litera-

ture and strengthen evidence-based practice. A recent review has considered specific nutrient-

gut interactions around heated environments [12], but not at thermoneutral ranges. This

study aimed to systematically review the literature examining the use of supplements, where

gut damage and/or permeability have been assessed in response to exercise.
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Methods

This systematic review was prospectively registered with the PROSPERO database

(CRD42020168256) and was completed in accordance with PRISMA (Preferred Reporting

Items for Systematic Review and Meta-analysis) guidelines (PRISMA checklist included in S3

File) [16]. Ethics was approved by University Human Research Ethics committee at Leeds-

Beckett University (Reference: 91711).

Literature search

Pubmed and the Cochrane Library, as well as MEDLINE, CINAHL and SPORTDiscus via

EBSCOhost were searched through to the 1st of February 2021. Keywords searches were per-

formed for: ‘gut’, ‘gastrointestinal’, ‘GI’, ‘intestines’, ‘intestinal’, ‘mucosal’, ‘splanchnic’, ‘perme-

ability’, ‘leaky’, ‘hyperpermeability’, ‘function’, ‘dysfunction’, ‘injury’, ‘exercise’, ‘training’,

‘endurance’, ‘physical activity’, ‘microbiota’, ‘microbiome’, gastrointestinal microbiome’. Ref-

erence lists of eligible studies and review articles were also searched. Publication date and lan-

guage restrictions were not applied. Details of the specific search strategy for each database can

be found in supplementary material (S1 File).

Inclusion criteria

Studies were included if the participants were healthy, 18–65 years of age, without any history

of gastrointestinal illness or any other inflammatory, metabolic, cardiovascular, neurological,

or psychological disease(s). These criteria were selected to target participants free of any dis-

ease or age-related outcomes that may confound the response to exercise or to a dietary sup-

plement. Studies were required to include a biochemical measure of gastrointestinal damage

or permeability. Studies that only examined markers associated to supplementation (e.g. fecal

zonulin collected prior to exercise trial) or generalised inflammatory markers were not

included as these may not be considered to be in response to exercise or gut specific [17–19].

Specific markers that were considered included intestinal fatty acid binding protein and

ingested saccharides (dual saccharide absorption test). I-FABP is present in gastrointestinal

endothelial cells and is involved in the transport of fatty acids. An increase in plasma concen-

trations of i-FABP has been linked to gut ischemia and endothelial cell disruption [20]. Uri-

nary or plasma saccharide absorption tests rely on the different molecular sizes of various non-

digestible saccharides (lactulose, mannose, rhamnose) to illustrate disturbances in transcellular

transport [21]. Lactulose (disaccharide) absorption and appearance in the urine/plasma will

increase with disturbances in endothelial gap junctions while mannitol/rhamnose (monosac-

charide) absorption is used as a normalising factor for lactulose since it utilises paracellular

transport. An increase in the ratio of the larger disaccharide to the smaller monosaccharide

illustrates and increase in paracellular passage and hence intestinal permeability. There are a

range of other biomarkers assessing GI damage [22, 23], of which none have been used regu-

larly outside of diseased populations. It is standard practice for participants to avoid alcohol,

spicy food, non-steroidal anti-inflammatories, caffeine or high intensity exercise in the day

preceding exercise trials [3, 21].

Based on the definition of a supplement by the International Olympic Committee (IOC)

position stand, supplemental macronutrients given as sports foods or supplements in addition

to the standard diet could be defined as a ‘supplement’. Supplements, can include any food, or

substance derived from food that is taken in addition to the existing diet [24]. Recent studies

have examined the impact of weeklong exposure to gluten-containing/gluten-free diets [25], or

high low fermentable oligo-, di-, monosaccharides and polyol (FODMAP) diets (6 and 7 days)

on markers of gut damage [26, 27]. Since these are food-based approaches to change the
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composition of the diet, rather than to supplement the existing diet, they were not included in

the review. For further reading, Lis et al (2019) and Costa et al (2020) have reviewed current

research on FODMAPs thus far [12, 28]. In addition, there is evidence that water intake during

exercise may provide some protection against exercise induced endothelial damage compared

to fluid restriction [29]. Therefore, as an additional consideration for this review, studies were

included where water was the experimental condition (supplement) compared to fluid restric-

tion. These data may highlight considerations when using water as a placebo in future research.

Both acute (pre-exercise or during exercise) and chronic (multiple days) supplementation

protocols were included. In order to assess the impact of both exercise and supplementation,

studies were required to have a treatment and a placebo condition with data collection pre-

and post-exercise (i-FABP), or rest compared to exercise (dual saccharide absorption test

(DSAT)). The studies that included DSAT in their methodology but had no resting control

were excluded from data extraction for that marker [30–33]. Studies were excluded if the post-

exercise measure for the urinary saccharides was not within 24 hours of exercise as this is

unlikely to be an appropriate proxy for exercise-associated permeability [34, 35]. Studies were

included with a variety of exercise protocols (single mode, multi-mode, with/without a time

trial) to broaden the scope of the review. Training based studies that did not include an exer-

cise trial were not included [36]. No restrictions were placed on the training status or sex of

the participants as the limited studies available do not justify this [37, 38].

Two researchers (SC and AG) independently assessed studies for inclusion and later com-

pared notes to reach a mutual consensus. Disagreements about the eligibility of any particular

studies were resolved by a third reviewer (GD). Potential studies that could be included based

on their title or abstract were retrieved in full-text and reviewed against the inclusion/exclusion

criteria independently by two researchers (SC and AG) with a third researcher (GD) used to

settle any disputes. In total, twenty-seven studies met the inclusion criteria and were included

in the systematic review (See Fig 1).

Data extraction

Data were extracted independently by two researchers (SC and AG) into a standardised spread-

sheet, which included the characteristics of articles valid for review; including markers of gastro-

intestinal damage and permeability. Additional data were collected for study design; participant

characteristics; the mode, volume and intensity of exercise; and training status of participants

when provided. Due to recent findings where the timing of the saccharide absorption test drink

(pre, during, post exercise) and fasted status prior to exercise (fasted/fed) had an influence on

the urinary saccharide ratio, these data are noted in the summary table where necessary [10].

Supplement specific data were extracted as target nutrient, dosage and duration. Exercise data

were extracted as mode, duration, intensity (percentage maximal oxygen uptake, percentage

maximal power, time trial, time to exhaustion), and environmental conditions (temperature

and humidity). Data from the change in biomarkers for each individual study are presented in

the summary table (Table 1). These data were taken as reported from each study (mean±stan-

dard deviation / mean±standard error / median (interquartile range)), or where values were

only presented in figure form, the figure was digitized using graph digitizer software (DigitizeIt,

Germany) and the means and standard deviation/standard error or the median (interquartile

range) were manually measured at the pixel level to the scale provided on the figure.

Quality assessment of included studies

To assess the overall methodological quality of the studies, the Cochrane Collaboration tool for

assessing the risk of bias was chosen [39, 40]. The tool targets areas of sequence generation,
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allocation sequence concealment, blinding of participants and researchers and outcomes

reporting to evaluate possible sources of bias.

Statistical analysis

Based on previous work, a high methodological heterogeneity between studies was expected

with a limited number of studies investigating specific supplements [10]. Therefore, it was not

deemed feasible to pool data for a meta-analysis for statistical comparison.

Results

Twenty-seven studies were included in the systematic review (Fig 1), with a large heterogeneity

in study design. Supplementation protocols ranged from a single dose pre and/or during exer-

cise (n = 12, 24 hours pre-exercise) to multiple days of daily supplementation (n = 15; up to 8

weeks). Endurance-style exercise ranged from a 3000m running time trial and 20 minutes of

treadmill running, to registered marathons and a four-day military hike. Nineteen studies used

running as the mode of exercise. The majority of participants were trained male runners or

cyclists with only 10% female participants. Thirteen studies were in heated environments

(>23˚C) whilst the remainder were in thermoneutral conditions [41]. Intestinal fatty acid

binding protein (i-FABP) was used as the primary marker of gut endothelial cell damage

(n = 18), and twelve studies used a combination of urinary saccharides (Lactulose:Rhamnose

(L:R)/ Lactulaose:Mannitol (L:M)/ Sucrose/ Sucralose) to evaluate different sites of intestinal

permeability. Two studies used plasma saccharides measures [42, 43]. Supplements used in

each of the studies are discussed separately below.

Fig 1. Flow chart for selected studies according to the PRISMA guidelines.

https://doi.org/10.1371/journal.pone.0266379.g001

PLOS ONE Dietary supplements, gastrointestinal health and exercise

PLOS ONE | https://doi.org/10.1371/journal.pone.0266379 April 13, 2022 5 / 25

https://doi.org/10.1371/journal.pone.0266379.g001
https://doi.org/10.1371/journal.pone.0266379


Table 1. Summary data from studies investigating the impact of specific supplements on markers of gut cell damage and permeability.

Author Participant details Supplementation protocol

(duration and dosage)

Exercise protocol Outcomes

measured

Result summary

Bovine Colostrum (BC)

Davison et al.

(2016) [5]

8 active males (>4

training sessions/ week);

25 (19–33) years

2 and 14 days

Placebo (capsule) + 20g placebo

(powder)

Fasted, Running for 20 mins at 80%

VO2(max) in laboratory conditions

L:Rc After 2 days:

ΔL:R # BC+ZnC vs placebo

(p<0.01)

0.023±0.002! 0.045±0.002

(BC+ZnC) vs

0.023±0.002! 0.063±0.002

ΔL:R$ BC, ZnC vs placebo

(p>0.05)

After 14 days:

ΔL:R #BC, ZnC and BC

+ZnC vs placebo (p<0.01)

0.023±0.002! 0.045±0.002

(BC+ZnC)

0.023±0.002! 0.043±0.003

(BC)

0.023±0.002! 0.042±0.002

(ZnC)

0.023±0.002! 0.065±0.004

BC (powder) 20g�day-1 + placebo

(capsule)

ZnC (75mg capsule) + placebo

(powder) 20g�day-1

ZnC (75 mg capsule) + BC

(powder) 20g�day-1

March et al.

(2017) [46]

18 recreationally active

healthy males (26±5

years)

14 days

BC (powder) 20g�day-1 vs placebo

(isoenergetic milk protein

concentrate)

Fasted, Running for 20 mins at 80%

VO2(max) at 22˚C /37% RH

L:Rc,

i-FABP

ΔL:R # BC vs placebo

(AUC) (p<0.001)

0.34±0.05! 0.50±0.06 vs.

0.35±0.06! 0.95±0.15

Δi-FABP# BC vs placebo

(p = 0.013)

672(394)! 684(481) vs

578(399)! 928(382 pg�ml-1

March et al.

(2019) [44]

12 recreationally active

healthy males (26±6

years)

14 days

BC (powder) 20g�day-1 vs placebo

(isoenergetic milk protein

concentrate)

Fasted, Running for 60 mins at 70%

VO2(max) at 30˚C /60% RH

i-FABP Δi-FABP# BC vs placebo

(p = 0.015)

727(682)! 1781(1603) vs

661(571)! 1924(1394)

pg�ml-1

Marchbank

et al. (2011)

[45]

12 recreationally trained

males; 26 (19–38) years

14 days

BC (powder) 20g�day-1 vs placebo

(isoenergetic milk protein

concentrate)

Fasted, Running for 20 mins at 80%

VO2(max) in laboratory conditions

L:Rc ΔL:R # BC vs placebo

(p<0.001)

0.022±0.00! 0.026±0.00 vs.

0.023±0.00! 0.042±0.00

McKenna

et al. (2017)

[47]

10 healthy active males

(20 ± 2 years)

14 days

BC (powder) 20g�day-1 vs placebo

(milk protein concentrate)

Fasted, Running 95% of ventilatory

threshold (~46±7 mins) at 40˚C/ 50%

RH

i-FABP Δi-FABP$ between

conditions (p>0.05)

989±490! 1505±788 vs.

851±450! 1267±521 pg�ml-

1

Morrison et al.

(2014) [38]

7 trained (T) males (>6

training sessions/week)

(23 ± 4 years)

7 days

BC (powder) 1.7g�kg�day-1 vs

placebo (corn flour)

Fed, Mixed mode–90 mins; 15 mins

cycling (50% HRR), 60 mins running

(30 mins 80% HRR and 30 mins

distance), 15 mins cycling (50% HRR),

at 30˚C /50% RH

i-FABP T: Δi-FABP$ between

conditions (p>0.05)

139±54! 1110±480 vs

150±44! 797±313 pg�ml-1

8 untrained (UT) males

(<3 sessions/week) (21

±2 years)

UT: Δi-FABP$ between

conditions (p>0.05)

104±46! 470±282 vs

211±103! 428±266 pg�ml-1

Glutamine

Osborne et al.

(2019) [48]

12 trained male cyclists

(cycling a minimum of

2/week); 32±6 years

Pre-exercise

Glutamine 0.9g�kg-1 of FFM vs

placebo (water and cordial)

20km cycling TT at 35 ˚C/ 51% RH i-FABP Δi-FABP$ between

conditions (p>0.05)

0.61(0.42–0.81)! 0.82(0.63–

1.02) vs.

0.51(0.34–0.73)! 0.96(0.78–

1.16) ng�ml-1

(Continued)
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Table 1. (Continued)

Author Participant details Supplementation protocol

(duration and dosage)

Exercise protocol Outcomes

measured

Result summary

Pugh et al.

(2017) [42]

10 recreationally active

males; 24±4 years

Pre-exercise

Glutamine 0.25; 0.5 and 0.9g�kg-1

of FFM vs placebo (water and

cordial)

Fasted, Running for 60 mins at 70%

VO2(max) at 30˚C /40-45% RH (10.1

±0.9 km/hour)

Serum L:Rc,

i-FABP

ΔL:R # glutamine vs placebo

0.025±0.010! 0.063±0.025

(0.25g�kg-1) ES = 0.6; ± 0.5

0.025±0.010! 0.067±0.027

(0.5g�kg-1) ES = 0.5; ± 0.5

0.025±0.010! 0.052±0.013

(0.9g�kg-1) ES = 0.9; ± 0.6

vs.0.025±0.010! 0.085

±0.036 (placebo)

Δi-FABP # glutamine (0.5

and 0.9g.kg-1 of FFM) vs

placebo

313±146! 596±304

(0.25g�kg-1) ES = 0.02; ± 0.38

326±188! 479±263

(0.5g�kg-1) ES = 0.46; ± 0.54

262±183! 486±226

(0.9g�kg-1) ES = 0.44; ± 0.42

vs 351±204! 600±240

pg�ml-1 (placebo)

Zuhl et al.

(2014) [50]

8 endurance trained

participants; (males = 5;

females = 3), 25 ±4 years

7 days

Glutamine 0.9g�kg-1 of FFM�day-1

vs placebo (lemon sugar-free

drink)

Fasted, Running for 60 mins at 65–

70% VO2(max) at 30˚C and 12–20% RH

L:Rb ΔL:R # glutamine vs placebo

(p<0.05)

0.021±0.008!0.027±0.007

vs

0.021±0.008! 0.060±0.047

Zuhl et al.

(2015) [49]

7 endurance trained

participants; (males = 2;

females = 5) 26 ± 4.4

years

Pre-exercise

Glutamine 0.9 g�kg-1 of FFM vs

placebo (lemon sugar-free drink)

Fasted, Running for 60 mins at 65–

70% VO2(max) at 30˚C and 12–20%

RH; 1,585 m altitude

L:Rb ΔL:R # glutamine vs placebo

(p<0.05)

0.02±0.01! 0.04±0.02 vs

0.02 ±0.01! 0.06±0.01

Probiotics

Axelrod et al.

(2019) [51]

7 endurance trained

participants, 31 ± 2.3

years

4 weeks

Single strain probiotic

L. Salivarius UCC118; 2 x 108 CFU

vs placebo (corn starch)

Running for 120 mins at 60% VO2(max)

at 24˚C/ 30.8%RH

Lb, Rb,

Sucroseb
ΔL$ between conditions

(iAUC, relative to baseline)

(p>0.05)

-0.07±0.2 vs 0.36±0.6

ΔR$ between conditions

(iAUC, relative to baseline)

(p>0.05)

-0.05±0.2 vs 0.47±0.2

ΔSucrose # probiotic vs

placebo (iAUC, relative to

baseline) (p = 0.029)

-0.3±0.2 vs 1.6±0.7 (ug�kg-1)

Mooren et al.

(2020) [52]

19 untrained male

athletes (VO2(max) < 53

ml/kg min,18–35 years

4 weeks

Single strain probiotic

Escherichia coli strain Nissle 1917

(suspension, 5ml�day)� vs pre-

supplementation trial

Running 60 mins and 60% VO2(max)

(25mins) and 80% VO2(max) (25 mins)

in laboratory conditions

i-FABP Δi-FABP # in probiotic vs

pre-supplement (p = 0.037)

390±524!509±456 vs

384±450! 559±465 pg�ml-1

Pugh et al.

(2019) [43]

24 recreational runners,

(males = 20;

females = 4), 22–50

years

4 weeks

Four strain probiotic (see below)

(n = 12) vs placebo (corn starch)

(n = 12)

During exercise Carbohydrate gels

(66g/hour) with water (600ml/

hour) during marathon

Fed, Simulated marathon (42.2km)

outside (track); 16–17 ˚C.

Serum L:Rc

i-FABP

ΔL:R$ between conditions

(p>0.05)

0.057±0.022! 0.099±0.062

vs

0.061±0.042! 0.081±0.036

Δi-FABP$ between

conditions (p>0.05)

455±190! 1814±1708 vs

460±221! 1392±867 pg�ml-

1

(Continued)
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Table 1. (Continued)

Author Participant details Supplementation protocol

(duration and dosage)

Exercise protocol Outcomes

measured

Result summary

Pugh et al.

(2020) [31]

7 endurance trained

male cyclists, 23±4 years

4 weeks

Four strain probiotic (see below)

vs placebo (corn starch)

During exercise 10% maltodextrin

(8 ml�kg-1 bolus and 2 ml�kg-1

every 15 min, ~90g/hour)

Fasted, Cycling for 120mins 55%

W(max) + 100kJ of work (simulated

final sprint) in laboratory conditions

i-FABP Δi-FABP$ between

conditions (p = 0.374)

542±145!342±192 vs

643±243! 350±76

Macronutrient

Flood et al.

(2020) [32]

14 endurance trained

participants; (males = 7;

females = 7); 27 ± 8

years

During exercise only

Carbohydrate fluid (16%)

maltodextrin + fructose (M/F)

(143ml/15mins, ~91g/cho�hour-1)

vs placebo (water)

Cycling at 45% VO2(max) for 90mins at

32˚C/ 70% RH with a TT (100 kJ of

work)

i-FABP

(n = 13)

Δi-FABP # in both

carbohydrate conditions vs

placebo (fold change)

(p<0.05)

205±265 (M/F/Pec) and 144

±381(M/F) vs

549±320 pg�ml-1
Carbohydrate fluid (16%)

maltodextrin + fructose with

pectin alginate (M/F/Pec) vs

placebo (water)

Jonvik et al.

(2019) [53]

16 well trained male

cyclists (9±3 hours/week

training); 28±7 years

Pre-exercise (3 hours and 15

mins)

Sucrose 2 x 20g�dose-1 vs placebo

(NaCl)

Fasted, Cycling for 60 mins at 70%

Wmax in laboratory conditions

i-FABP Δi-FABP #sucrose vs nitrate

and placebo (AUC)

(p = 0.002)

57,270±77425 (sucrose) vs

125,106±83,591 (sodium

nitrate)

and 114,907±91527 (placebo)

pg�ml-1

Sodium Nitrate (800mg NO3) vs

placebo (NaCl)

Karl et al.

(2017) [8]

73 army soldier

volunteers, (males = 71;

females = 2)

Placebo (n-18);19±2

years

Carbohydrate (n = 27);

20±1 years

Protein (n = 28); 20±1

years

Four days

Added carbohydrate snack,

(added 4.4MJ/ ~1000kcal�day-1) vs

placebo (standard diet:14.6 MJ/

~3500 kcal�day-1)

Fasted, 4 day arctic military training

exercise, 51-km cross-country ski-

march, 50:10-min work-to-rest ratio

with a ~45-kg pack

Sucralose

(n = 49)

ΔS (% excretion)$ between

conditions (p>0.05)

2.0±0.63! 3.42±2.0

(carbohydrate) and

1.68±1.1! 2.32±1.9

(protein) vs

2.0±0.4! 2.83±1.1

(standard diet)

Added protein snack, (added

4.4MJ/ ~1000kcal�day-1 vs placebo

(standard diet: 14.6 MJ/

~3500kcal�day-1)

Ma et al.

(2020) [54]

7 recreational long

distance male runners;

18.7 ± 1.7 years

8 weeks

Hyper-immunised milk (IMP)

powder (20g�day-1) vs placebo

(protein powder)

3000m running TT on a track (no

conditions reported)

Urinary

i-FABP

/Creatinine

Δi-FABP/Cr # in IMP vs

placebo (p = 0.039)

370±450! 4845±2402 vs

205±206! 7609±4507

Sessions et al.

(2016) [55]

7 trained participants;

(males = 5; females = 2)

24±5 years

During exercise only

Carbohydrate gel (27g glucose:

fructose 2:1 ratio) vs placebo

(water)

Running at 70% VO2(max) for 60 mins

at 30 ˚C/ 12–20% RH

i-FABP Δi-FABP " in carbohydrate

vs placebo (p = 0.02)

261±106!524±381 vs

251±130!337±207 pg�ml-1

Snipe et al.

(2017) [30]

11 non heat acclimatised

participants; (males = 6;

females = 5), 31±5 years

Pre-exercise and every 20 mins

during exercise

Glucose fluid (6% solution)

(15g�20mins-1) vs placebo (water)

Fed, Running at 60% VO2(max) for 2

hours at 35˚C/ 27% RH

i-FABP Δi-FABP # glucose and

protein vs placebo (change

from baseline) (p<0.05)

0! 130±56 (glucose) and

0! 89±51 (protein) vs

0!898±142 pg�ml-1 from

baseline

Whey protein (6.4% solution) vs

placebo (water)

Other nutrients

Buchman et al.

(1999a) [56]

23 males, marathon in

the previous 12 months,

25–49 years

14 days

l-arginine (A) (n = 13) 30g�day-1

vs placebo (P) (glycine) (n = 10)

Marathon race (Houston Methodist

Marathon), -2 ˚C at start; 272 ± 46

mins (A), 215± 28 (P)

L:Mc ΔL:M$ between conditions

(p = 0.47)

0.06±0.11!0.03±0.02 vs

0.02±0.01!0.03±0.02

Buchman et al.

(1999b) [57]

25 males, marathon in

the previous 12 months,

25–49 years

14 days

Vitamin E (d-α-tocopherol, 1000

IU �day-1) (n = 10) vs placebo (soya

lecithin) (n = 15)

Marathon race (Houston-Tennaco

Marathon)

2h43–5h28 mins

L:Mc ΔL:R$ between conditions

(p>0.05)

0.03±0.01!0.04±0.02 vs

0.03±0.02!0.07±0.10

(Continued)
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Overall, the risk of bias across the selected studies was considered low. Sequence generation,

allocation concealment and blinding of participants were low risk across the majority of stud-

ies. Four of the twenty-seven studies used placebo-controlled or matched pairs designs (no

crossover), while all other studies used randomised blinded crossover protocols. Five of the

studies were registered as clinical trials, meaning that the risk of selective reporting for the

remainder of studies was unclear. The risk of bias summary for all studies can be found in Fig

2, and the risk of bias for individual studies are presented in the supplementary data (S2 File).

Table 1. (Continued)

Author Participant details Supplementation protocol

(duration and dosage)

Exercise protocol Outcomes

measured

Result summary

Szymanski

et al. (2018)

[58]

8 non-acclimatised

participants; (males = 6;

females = 2), 19±2 years

3 days

Curcumin (capsules) (500mg�day-

1) vs placebo (capsules)

Fasted, Running for 60 mins at 66–

68% VO2(max) at 36.8˚C at 25–27%

RH, 8.7±0.7km/ hour

i-FABP Δi-FABP # curcumin vs

placebo (p = 0.047)

834±117!1310±200 vs

878±117!1650±320

Van Wijck

et al. (2014)

[33]

10 recreationally trained

males; 24±1 years

Pre-exercise

L-citrulline 10g�dose-1 vs placebo

(L-alanine)

Fasted, Cycling for 60 mins at 70%

Wmax in laboratory conditions

i-FABP Δi-FABP #citrulline vs

placebo (% change from

baseline) (p>0.05)

0! 127±19% vs 0! 155

±22%

Δi-FABP #citrulline vs

placebo AUC -(p<0.01)

185±506 vs 1318±533

Water and carbohydrate

Costa et al.

(2019) [29]

11 trained competing

male runners, 34 ± 11

years

During exercise

Water (844 +/- 271 ml�hour-1; 11

+/- 3.5ml�kg) vs placebo (no water)

Running for 120 mins at 70% VO2(max)

at 24˚C/ 46% RH

i-FABP Δi-FABP$ water vs

placebo (Δfrom pre to post)

(p>0.05)

368±476 vs 538±426 pg�ml-1

Kartaram et al.

(2018) [59]

15 recreationally active

male cyclists (24±2

years)

24 hours prior:

Water ad libitum vs 0.5l�day-1

water

During exercise

Water vs placebo (no water)

Fed, Cycling for 60 mins at 70% Wmax

in laboratory conditions

i-FABP Δi-FABP # water vs no

water (p<0.001)

742 (341)! 1262 (512) vs

689 (309)! 1559 (658)

pg�ml-1

Lambert et al.

(2008) [60]

20 distance trained

runners, (males = 11;

females = 9) 22± 3 years

During exercise

Water (3ml�kg�10mins-1) vs

placebo (no water)

Fasted, Running for 60 mins at 70%

VO2(max) in laboratory conditions

L:Rb,

Sucrose

ΔL:R # in water and glucose

vs no water (p<0.008)0.03

(0.01–0.11)! 0.05(0.02–

0.12) (water)

0.03(0.01–0.11)! 0.05(0.01–

0.11) (glucose)

0.03(0.01–0.11)! 0.06(0.02–

0.17) (no water)

ΔSucrose (% excretion) # in

water and glucose vs no

water (p<0.008)

0.03(0–0.19)! 0.05(0–0.77)

(water)

0.03(0–0.19)! 0.05(0–0.63)

(glucose) vs

0.03 (0–0.19)! 0.09(0–2.01)

And glucose fluid (3ml�kg-1�10

mins-1) vs placebo (no water)

Data are presented as increase (#), decrease (") or no change ($) between the pre and post exercise biomarker measures in the experimental, then placebo condition;

data are presented as mean±SD, mean±SEM, median(interquartile range), area under the curve (AUC), incremental area under the curve (iAUC), or change from

baseline based on the data available from the selected study; Δ, change; ZnC, Zinc Carnosine; i-FABP, intestinal fatty acid binding protein; L, Lactulose; R, Rhamnose;

M, Mannitol; S, Sucralose; a,b,c illustrates the timing of the dual saccharide absorption test drink a, pre-exercise, b, during exercise, c, post-exercise; VO2(max), maximal

oxygen uptake; Wmax, maximal power output in Watts; mins, minutes; ˚C, degrees Centigrade; TEE, time to exhaustion; CFU, colony forming units; �, dosage not

specified in the study; 4 strain probiotic: B. bifidum CU20, L. acidophilus CUL-60, L acidophilus CUL-21, B. animalis sub sp lactis CUL-34, 25 billion CFU; Fasted or Fed

refers to status prior to exercise, p values are those reported in the studies, comparing the magnitude of change between experimental and control groups, P<0.05 was

considered significant.

https://doi.org/10.1371/journal.pone.0266379.t001
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Bovine colostrum

Six studies investigated bovine colostrum supplementation, of which one included colostrum

alone and in combination with zinc carnosine [5, 38, 44–47] (Table 1). Studies ranged from 2

to 14 days. Dosage-matched (20g�day-1) studies evaluating endothelial damage (i-FABP)

showed a positive blunting effect of colostrum subsequent to exercising at 22 ˚C [46] and 30˚C

[44] but not at 40˚C [47]. Morrison et al (2014) showed a larger change from baseline to post-

exercise (90mins) in i-FABP levels in trained compared to untrained participants, but showed

no effect of colostrum, in spite of the high dosages given [38]. Permeability measures were

lower in colostrum compared to a placebo in two studies in thermoneutral laboratory condi-

tions [5, 45]. An additive benefit was found with the addition of zinc carnosine compared to

the other experimental conditions with L:R being 85% lower than the placebo condition after

14 days of supplementation [5].

Glutamine

Four studies investigated glutamine, with three showing lower markers of gut endothelial

damage post-running in the glutamine condition [42, 48–50] (Table 1). All studies were

performed in heated environments (30–35˚C). Three used a single dosage-matched proto-

col pre-exercise (0.9g�kg-1) [42, 48, 49]. One study tested a graded dosage (0.25, 0.5 and

0.9g�kg-1 of fat free mass (FFM)) prior to 60 minutes of heated running. Magnitude based

inferences suggested a likely lower i-FABP levels post-exercise in the 0.5 and 0.9g�kg-1 FFM

conditions compared to the placebo [42]. In contrast, there was no difference in i-FABP lev-

els post-20km cycling time trial between conditions (0.9g�kg-1 FFM vs placebo) [48]. There

were lower markers of permeability (urinary L:R) post-running after both an acute (pre-

exercise) and chronic (7 days) supplementation protocols compared to a placebo

(0.9g�kg�day-1 FFM) [49, 50].

Probiotics

Four studies examined the effects of different probiotic strains on markers of gut permeability

and endothelial damage [31, 43, 51, 52] (Table 1). The studies that supplemented with a single-

strain probiotic showed some benefit in gut cell damage [52] and proximal gut permeability

Fig 2. Summary of the risk of bias for selected studies (released under creative commons CC BY SA Robin N. Kok v2.6 November 2017 www.robinkok.eu.

https://doi.org/10.1371/journal.pone.0266379.g002
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[51] (Escherichia coli and Lactobacillus salivarius respectively). In contrast, the studies using

four-strain probiotic supplementation (B. bifidum CU20, Lactobacillus acidophilus CUL-60,

Lactobacillus acidophilus CUL-21, B. animalis sub sp lactis CUL-34; 25 billion CFU) showed

no difference between conditions. Of note, Pugh and colleagues included exogenous carbohy-

drate supplementation during the exercise due to the length of the exercise bout of ~66g�hr-1

(repeated 22g maltodextrin gels with 200ml water during the running marathon) and ~90g�hr-

1 (10% maltodextrin fluid every 15 minutes during 120 minutes of cycling) in the four-strain

probiotic studies [31, 43].

Macronutrients

Seven studies compared carbohydrate and/or protein-based foods and fluids, to a placebo [8,

30, 32, 53–55, 60] (Table 1). A single study found an increase in i-FABP in response to carbo-

hydrate (27g) supplementation during a cycling time trial [55], while another found no impact

of carbohydrate fluid compared to a placebo post-run [60]. Four studies using carbohydrate

fluids (of various concentrations; 6–16% solution) mitigated the impact of exercise with lower

i-FABP concentrations [30, 32, 53, 60] although all used different saccharide combinations

and concentrations limiting direct comparison (specific values in Table 1).

Two studies considered the impact of acute and chronic protein supplementation, albeit

with different protein compositions. Whey protein (6.4% solution) consumed during exercise

resulted in lower markers of gut cell damage and permeability compared to water [30]. Eight

weeks of hyperimmunised milk protein supplementation (20g�day-1) mitigated endothelial cell

damage (urinary i-FABP/creatinine) in response to a 3000m time trial compared to whey pro-

tein (placebo) [54]. However, additional carbohydrate or protein as snacks (~1000kcal�day-1)

over a four day military hike in the arctic had no impact on intestinal permeability markers

(sucralose excretion) compared to a control group (no snacks) [8].

Anti-oxidants, nitrate and nitrate precursors

Two studies investigated the impact of anti-oxidants [57, 58] (Table 1). Three days of curcu-

min supplementation (500mg�day-1) significantly reduced the impact of 60 minutes of running

in the heat on i-FABP levels [58]. In contrast, Vitamin E (1000 IU d-α-tocopherol�day-1) sup-

plementation for 14 days had no impact on permeability (L:M) post-marathon [57].

Three studies evaluated the impact of dietary nitrate or nitric oxide precursors targeting

nitric oxide (NO) availability [33, 53, 56] (Table 1). A single dose of sodium nitrate did not

affect i-FABP compared with placebo post-exercise [53]. L-citrulline pre-exercise, as an argi-

nine precursor, showed lower concentrations of i-FABP (measured every 15 minutes) and area

under the curve during exercise compared to placebo, in spite of similar changes from baseline

to post-exercise (72% increase) [33]. L-arginine supplementation over 14 days made no impact

post-marathon on gut permeability markers [56].

Hydration status

Three studies investigated the role of hydration status. Two studies evaluated the impact of

complete fluid restriction during exercise and showed higher markers of gut cell damage and

permeability (i-FABP, L:R) compared to water ad libirtum [29, 59]. The final study showed

higher permeability of the upper gastrointestinal tract (Sucrose) with fluid restriction com-

pared to water or carbohydrate fluid [60] (Table 1). However, there was no significant differ-

ence between the carbohydrate and water conditions.
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Discussion

The aim of this systematic review was to synthesise the current available data on the impact of

acute or chronic dietary supplement protocols on markers of gut endothelial cell damage and

permeability in response to exercise. Studies showed that bovine colostrum and glutamine

may be useful in moderately heated (<30˚C) endurance environments. Carbohydrate supple-

mentation, specifically maltodextrin (glucose) and fructose, prior to and during exercise

reduced endothelial cell damage compared to water, but there is no clarity around optimal

dosage or saccharide type. Water intake, beyond being used as a placebo, showed lower mark-

ers of cell damage compared to fluid restriction. Probiotics require further research around

dosage and strain specificity for gut specific outcomes. Other supplements, such as nitrate,

nitrate precursors or anti-oxidants demonstrated equivocal findings and need more research

to support any inclusion in an athlete nutrition plan. In summary, no supplement showed

results that can be generalised across athletes, and therefore, practitioners and athletes should

introduce with caution.

Bovine colostrum

The bioactive compounds present in bovine colostrum are hypothesised to improve gut cell

wall integrity as well as tolerance to hypoxia, thermal, and oxidative stress [45]. Four of six

studies presented here showed positive effects. It is one of the few supplements to draw from

both in vivo and in vitro studies, informing and improving the understanding of the physiolog-

ical mechanisms. In vitro, colostrum supplementation, and colostrum combined with zinc car-

nosine, protect against temperature induced increases of apoptosis and upregulated heat shock

protein induction and the phosphorylation of tight junction proteins in human intestinal cell

lines [5, 45]. These mechanisms may be similar and therefore contribute to the results seen in
vivo with improve thermotolerance of tight junctions in response to exercise and hence the

lower i-FABP and dual saccharide levels seen in the in vivo studies [5, 44, 45]. Some of the

mechanisms have been investigated and reviewed [61] but will require further research around

exercise to elucidate further.

Supplementation of zinc carnosine and bovine colostrum showed additional benefit com-

pared to colostrum or zinc alone [5]. The protocol showed a synergistic effect as the combina-

tion reduced the exercise-associated intestinal permeability significantly more than bovine

colostrum alone, or zinc carnosine alone [5]. Zinc carnosine has previously been shown to

decrease NSAID-associated gut permeability [62]. This compliments existing research show-

ing an important role for zinc in immune function and the health of the gut mucosal mem-

brane [63]. Often clinical studies do not test possible synergistic effects, but this was

demonstrated by the four way double blinded randomised cross over study [5]. This is the

only study to have evaluated Zinc in this context.

In spite of the improved thermotolerance indicated by the in vitro studies, one study

showed no benefit of colostrum supplementation (20g�day-1) on markers of gut damage (i-

FABP) post-running at 40˚C [47]. Heat, in addition to exercise, amplifies splanchnic hypoxia

by redistributing blood to the skin, possibly contributing to additional endothelial cell damage

[12]. This has been shown with significantly higher i-FABP concentrations post-exercise in

heated compared to thermoneutral environments [10]. While initial colostrum data supports

improved thermotolerance at 30˚C [44], this effect may be negated at higher temperatures.

Another reason for the difference in results may be a difference in the bioactive components in

the bovine colostrum itself. Due to some inconsistent results between bovine colostrum stud-

ies, Halasa and colleagues investigated the impact of delayed milking post-partum on the abil-

ity of bovine colostrum to reduce permeability markers in recreational athletes [64]. They
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found that bovine colostrum obtained 72-hour post-partum was less effective than colostrum

from 2- and 24-hours post-partum. They surmised that the difference in efficacy may be from

the natural change in bioactive compounds post-partum. This has been confirmed by recent

laboratory studies [65]. Studies here used products that claimed milking within the first day

(24 hours) post-partum [5, 44, 47], but not all studies had the information available, and this

may be a factor.

In the single study that considered trained and untrained participants, training status did

not alter the response to bovine colostrum supplementation compared to the placebo condi-

tion. The authors did note a higher i-FABP concentration post-exercise in the trained partici-

pants compared to untrained (p = 0.006), but this was independent of colostrum

supplementation [38]. Higher output during exercise based on training status reflected in

body temperature, could have contributed to this difference, but there was no significant dif-

ference in body temperature during exercise between groups. All, but one study [52], used

trained participants, and therefore, there is limited understanding if training status alters the

gut perfusion-exercise relationship. This would be useful for future studies to consider. This

study used a high dosage of bovine colostrum (126-140g�day-1, based on mean body mass)

with no reported negative effects [38]. However, as there were no measurable benefits to this

high dosage, 20g�day-1 may be an appropriate dosage based on the findings from other studies.

Glutamine

Glutamine supplementation had a positive impact on markers of gut damage and permeability

in both the acute and chronic supplementation studies using running [42, 49, 50], but not

cycling [48]. Pugh et al (2017) illustrated a possible dose-dependent benefit but was the only

study to compare different dosages. Higher dosages (0.9g�kg) had minimal impact on GIS in

spite of some concerns around tolerance [42]. While there are no studies directly comparing

markers of gut damage induced by different exercise modalities, certain studies have shown

that subjective (self-reported gastrointestinal symptoms) and objective (gastroesophageal

reflux) gastrointestinal issues are higher in running compared to cycling [66, 67]. This has

been partially attributed to differences in biomechanical movement, as well as the possible

implications of drinking or eating on breathing patterns whilst running [66]. Whilst elevated

i-FABP levels were observed in both groups post-cycling, the authors reported no increase in

endotoxin levels. This may illustrate initial endothelial cell damage but without sufficient phys-

iological stress to cause increased permeability and bacterial translocation, suggesting the exer-

cise stimulus was not sufficient to benefit from higher glutamine availability [48].

It is worth noting that in a separate study, no additional benefit to permeability measures

was found with adding glutamine (0.6%) to a carbohydrate drink (6%) after 60 minutes of run-

ning [68]. This aligns with data in rats to suggest that in the presence of glucose, both sub-

strates can improve energy production for the enterocytes [69]. Glutamine is considered

conditionally essential under physiological stress as a primary fuel for gut mucosal cells as well

as a being a crucial component of immune cells [70]. In vitro data by Zuhl et al. (2014) showed

glutamine supplementation augmented heat shock protein 70 (HSP70) and heat shock factor-

1 (HSF-1) expression with heat exposure, alongside preserved occludin expression [50]. Heat

shock protein upregulation can improve cell tolerance to oxidative stress and inflammation

and interact with occludin to preserve tight junction integrity [71]. This is reflected in the

lower permeability markers (L:R) levels seen by Zuhl and colleagues [49, 50], and may high-

light multiple modes of action where glutamine can improve tight junction stability and

increase thermotolerance [72]. Therefore, based on the included studies, glutamine may be

most useful if carbohydrate is restricted to preserve gut endothelial function in the heat in
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runners. To note, chronic high dosages are not recommended due to possible alterations in

amino acid metabolism [73].

Probiotics

Of the four studies in this review, there were positive results with lower upper gastrointestinal

permeability and endothelial cell damage post-running, but only in single-strain protocols [51,

52]. The two single strains (Escherichia coli and Lactobacillus salivarius) have been shown to

improve tight junction stability in response to induced damage in vitro [74, 75]. Other sub-spe-

cies of Lactobacillus were used in the four-strain studies (L. acidophilus; CUL60 and 61) with-

out any impact on endothelial damage and permeability. This aligns with the current research

showing that effects of probiotics are dosage and strain specific [76]. Probiotics reportedly con-

tribute to an improved microbiota profile which one might expect to increase exercise toler-

ance of the gut endothelium [77, 78]. Unfortunately only one study presented here examined

the change in microbiota, where they showed some minor changes and no shift in diversity

measures [51], limiting the understanding of the knock-on effects of the strains.

Furthermore, two studies gave supplemental carbohydrate during the exercise trial due to

the duration (�120mins) [31, 43]. This may have altered the ability to differentiate between

the two groups, based on the effect of exogenous carbohydrate [30]. Alongside, one study

showed no exercise-associated increase in markers of gut damage (i-FABP), which reflected

the low intensity of the exercise protocol (55% maximal power output) [31]. This same study

did report higher exogenous carbohydrate oxidation in the probiotic group compared to pla-

cebo [31], while the other reported lower gastrointestinal symptoms during the last third of

the marathon [43]. This may illustrate that any benefits from probiotics for athletes may come

via different mechanisms, which have been illustrated in other studies investigating illness

severity [79, 80] or overall performance [78, 81].

As mentioned, Jäger et al (2019) showed that the results of probiotic use are influenced by

species, dosage and supplementation duration [82], which adds to the complexity of any prac-

tical prescription for athletes. While four weeks of supplementation may be long enough to see

changes, the gut microbiome is highly individualised, and responsive to intervention [83].

While it is not practical to control dietary intake for long periods of time, a recent study

showed that a three-week dietary intervention was associated to measurable changes in micro-

biome and metabolites in elite race walkers during a training camp [84]. In addition, there is

an independent effect of exercise and exercise volume (specifically endurance) on gut micro-

biota diversity and species profiles [85–89]. Longer duration events (days) have been shown to

alter the gut microbiome profile and resulting metabolites [8, 89]. Further discussion is beyond

the scope of this review, but the individual variability and flux in dietary intake and training

regimes complicates results found in probiotic studies. Overall, different probiotics may

improve the microbiota profile or endothelial cell integrity and therefore the gastrointestinal

tolerance to a ‘stressful’ training/race period [8], but more research is required to establish the

mechanisms whereby we see some positive impact.

Macronutrients

Despite the well-established ergogenic effect of carbohydrate supplementation on endur-

ance performance [90, 91], research exists demonstrating that different saccharides (e.g.

glucose, fructose) can impact gastrointestinal comfort [92] and are popular amongst self-

selected athlete dietary exclusions [93]. While Sessions et al. (2016) did find that a mixed

glucose/fructose gel (27g) during exercise increased gut cell damage (i-FABP) compared to

water [55], other studies presented here found either negligible impact [8, 60] or a positive
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blunting in markers of gut damage with carbohydrate supplementation [30, 32, 53]. The

form of the carbohydrate gel (semi-solid) or the high concentration of the bolus may have

affected gut damage (27g/250ml water, 10.6%), but this result seems contrary to the other

studies that have used carbohydrate gels [43]. The range of carbohydrate intakes (~20-

90g�hr-1) and use of different saccharide combinations makes any optimal dosage or combi-

nation challenging to determine.

In spite of the carbohydrate intake variability, the continuous provision of exogenous

fuel (glucose, fructose or sucrose) may improve the energy availability to gut cells, limiting

the exercise associated damage, especially in the heat [30, 53]. Based on these results above,

it is interesting that there was no impact of extra carbohydrate or protein snacks

(~1000kcal�day-1) on permeability markers during a four-day military hike [8]. It was noted

that the participants had an average energy deficit of 55% compared to their energy expen-

diture (and a 2.7±2.1kg loss in body mass). This may indicate that an acute energy deficit

may prioritise macronutrients elsewhere and decrease energy available to the endothelial

lining [8]. This adds to the estimated high metabolic requirements of the gastrointestinal

organs. Research in piglets has shown that ~50% of dietary amino acids are used by the gas-

trointestinal organs (intestines, stomach, spleen and pancreas) after feeding [94]. These gas-

trointestinal associated energy costs may be higher in athletes over longer duration exercise.

Considering energy balance, gastrointestinal symptoms and illness have been found to be

higher in athletes with low energy availability, specifically females [95, 96], which may align

with these findings.

Methodologically, another reason for the variation in results may be the timing (pre and/or

during) of carbohydrate-containing fluid and being fed/fasted prior to exercise. Permeability

markers (L:R) have been shown to be lower in studies where the participants were fed com-

pared to fasted prior to exercise [10]. Pre-exercise feeding (containing carbohydrate and/or

protein) may reduce the magnitude of the splanchnic hypoperfusion at the beginning of exer-

cise due to digestion requirements. This trend was shown previously with a maintenance of

portal perfusion with carbohydrate compared to water during running [97]. This may explain

the lack of difference in permeability in some studies starting in a fed state [98], but is likely to

interact with the factors such as exercise duration, intensity and temperature. Many of the

studies target a low FODMAP pre-exercise meal, but there is also no understanding as yet of

the impact of fibre (in solid or fluid) intake prior to exercise on gastric emptying and endothe-

lial cell support.

Acute protein supplementation had a positive impact on markers of gut damage [30].

Although whey protein did blunt the change in i-FABP levels in response to exercise, the

authors reported higher gastrointestinal symptoms in the protein trial, which may there-

fore be impractical [30]. The authors saw similar changes in i-FABP with carbohydrate

supplementation and concluded that the blood flow to the microvilli was sustained with

macronutrient intake during exercise. Chronic supplementation of concentrated hyperim-

munised milk powder resulted in lower i-FABP levels in the urine [54]. There is limited

data around using hyperimmunised milk powder, and how this compares to the bioactive

profile of bovine colostrum. The rationale of the study was that the additional immune

properties would be more beneficial than protein powder supplementation alone. While

the study showed a benefit in lower i-FABP levels post 3000m time trial (~9–10 minutes)

compared to standard protein supplementation, the study used urinary i-FABP as the

marker of endothelial damage adjusted for urinary creatinine levels. This may highlight

renal clearance of i-FABP rather than systemic appearance and may require prudent inter-

pretation. This measure has yet to be validated elsewhere and may contribute to the >10

fold increase in concentration.
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Nitrate and nitrate precursors

Arginine, citrulline and nitrate supplementation are hypothesised to increase nitric oxide

(NO) availability via the nitrate-nitrite pathway, and improve vasodilation and tolerance to

hypoxia during exercise [99]. This could be beneficial if it extended to the perfusion of the

gut. The effect of dietary nitrates and NO precursors on performance have been reviewed

elsewhere [100–102]. In this review, one study showed no benefit of arginine supplementa-

tion for attenuating exercise-induced gut cell damage and permeability [56]. L-citrulline is

the NO precursor of choice due to its improved bioavailability compared to arginine [101].

Citrulline supplementation resulted in a lower plasma i-FABP concentration (area under

the curve) after an hour of cycling [33]. Increases in plasma citrulline concentration post

supplementation corresponded to a maintenance of splanchnic perfusion (gapCO2) during

exercise, and lower i-FABP concentration, illustrating a possible NO-mediated effect [33].

Conversely, sodium nitrate supplementation increased plasma nitrate concentration but

did not impact gapCO2 levels, and had no consequent benefit to endothelial damage [53].

Although the dosage of sodium nitrate (800mg nitrate) was matched to other studies, it may

have been affected by the acid reducing medication taken prior to the study to assist with

the gapCO2 measurement, since an acidic environment is preferred for the nitrite conver-

sion. This would explain the increase in plasma concentration with no further benefit.

Recently, the role of the oral microbiome as an important adjunct for the conversion to

nitrite was confirmed and may be affected by macronutrient balance in an athlete’s diet

[102–104]. Practically, a diet rich in nitrate containing foods can achieve the same plasma

nitrate concentration as supplementation [105]. Nitrate supplementation (via beetroot and/

or other high nitrate foods, e.g. rhubarb and amaranth) has become popular with athletes

and more research to investigate the perfusion sparing effect to assist with gut related

ischaemia is needed.

Antioxidants and other nutrients

A moderate dosage of curcumin showed capacity to reduce endothelial cell damage [58],

while vitamin E had no impact [57]. The limited number of studies using antioxidants

makes it difficult to draw specific conclusions. Curcumin, as a part of turmeric and curry

powders, has been shown to promote tight junction stability and may have a role in micro-

bial diversity [106, 107]. This informs the lower i-FABP concentrations, and inflammatory

cytokines seen after heated (~37˚C) running compared to a placebo shown in the selected

study [58]. The authors suggested that less damage to the intestinal barrier might have

reduced bacterial translocation, and therefore the need for an inflammatory response.

These results were accompanied by lower physiological strain and change in core tempera-

ture compared to the placebo [58]. Other positive findings around curcumin and gut

derived effects are mostly in vitro and studies struggle to be replicated in vivo due to its low

bioavailability [108]. There is currently an effort to improve the bioavailability of curcumin

and initial results in intestinal disease are promising [109]. Further studies in different

sporting populations, different durations and replicability are required to increase the

understanding of this popular compound.

Vitamin E supplementation had no benefit on gut permeability in marathon runners [57].

The large range of finishing times, reflecting a heterogeneous sample of runners, may have

influenced the result, but there is limited data to support that anti-oxidants can be effective in

a localised manner on the gut endothelial lining. Foods and spices (e.g. plant polyphenols, cur-

cumin, pomegranate, tart cherry, grape extract) that have anti-oxidant properties may target

multiple mechanisms for reducing oxidative damage or improving redox balance but
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performance and immune function studies still support food-based intakes of fruit and vegeta-

bles rather than supplementation [110, 111]. Chronic supplementation with high doses of

anti-oxidants is not currently recommended due to possible dampening of other physiological

adaptions associated with some types of training [24, 112], and therefore, further research will

be needed to confirm their place amongst nutrition strategies for gut health.

Hydration

In the included studies there was a consistent finding illustrating the negative impact of water

restriction during exercise on markers of gut cell damage and permeability [29, 59, 60]. Fluid

restriction may exacerbate the impact of splanchnic hypoperfusion, ischemia and increased

the risk of hyperthermia, causing tight junction disruption and increased endotoxaemia [11].

Studies included here showed increased plasma i-FABP concentrations [59] and permeability

measures [60] when fluid was restricted (~1.5% body mass loss) during exercise. Further fluid

restriction (resulting in a ~3.1% loss in body mass) did not exacerbate this response [29]. Due

to the possible negative impact of large fluid losses (>2–5% body mass) on exercise perfor-

mance, the included studies continue to support that hydration in hot or long duration events

is important and may improve gastrointestinal outcomes along with other components of per-

formance. The impact of hydration status on marker of gut damage should be kept in mind for

research when using water as a placebo condition. In addition, the temperature of fluid may

play a role as previous research indicated that cold water (0.4 ± 0.4˚C) can also mitigate gut

damage after 2 hours of running in the heat (35˚C) and improve upper GIS compared to cool

water (7.3 ± 0.8˚C) and water at room temperature [113].

Limitations and future research

Whilst this review provides an overview of the current literature specific to markers of gut cell

damage and permeability, there are several limitations associated with research of this nature.

The biomarkers of gut cell damage and permeability used in athletes are adapted from clinical

studies, without consensus on clinically relevant cut-offs. Although supplement strategies may

improve damage at the endothelial cell level, the translation to improve GIS and long-term GI

health needs further elucidation. The markers are valid and reliable in athlete populations, but

there are still no standardised protocols [4, 21, 114–116]. Introducing a standardised protocol

for DSAT would be an advantage since there were studies excluded from this review due to no

resting control. Longitudinal studies cannot fully control for dietary intake or training pro-

grammes during chronic supplementation periods, making it difficult to isolate specific effects.

While the risk of bias was low and studies were individually well designed, the large heteroge-

neity in experimental design (even within supplements) affects the ability to generalise results.

In the broader context of gastrointestinal distress alongside supplements, ‘gut training’ [117,

118] and dietary interventions such as low FODMAP diets [26, 27, 119] have also had positive

results and have been recommended to limit the impact of exercise associated damage. Finally,

there are no studies in team or intermittent sports, nor equal representation of female athletes.

Collision sport such as Rugby League have shown higher metabolic cost post-collision [120],

and further investigation into the mechanical impact on the gut may be warranted, especially

with anecdotal reports of high non-steroidal anti-inflammatory usage. While there is no clear

sex-based differences in response to exercise expected [37], other issues such as higher rates of

irritable bowel syndrome in females and menstrual cycle associated changes in GIS deserve

more attention [121]. As such, a greater quantity of research should be conducted which

relates to specific athletic populations and sports.
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Conclusion

This systematic review identified specific supplements that may benefit the initial phase of

exercise-associated gastrointestinal syndrome. Bovine colostrum, with or without zinc carno-

sine, and glutamine may ameliorate exercise induced gut damage and permeability in running,

especially in moderate heat and if carbohydrate is restricted. Maintaining euhydration and

consuming exogenous carbohydrates are likely to blunt the response to exercise. Antioxidants

and nitrate or nitrate precursors require more research to confirm the mechanisms of action

and their place within nutrition strategies. Probiotics may have a role within the larger picture

of gastrointestinal health, but the mechanisms are not evident. As such, many of the supple-

ments presented here should be evaluated for their effectiveness in a context dependent man-

ner. External factors such as previous GIS, exercise modality, duration and intra-event fuelling

opportunities should contribute to decision making. These data provide clarity on the current

literature and may be useful to inform nutritional strategies to attenuate gut damage and per-

meability in response to exercise.
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