
Chlamydia trachomatis is the leading cause of prevent-
able blindness and bacterial sexually transmitted diseases 
worldwide. Plaque assays have been used to clonally segre-
gate laboratory-adapted C. trachomatis strains from mixed 
infections, but no assays have been reported to segregate 
clones from recent clinical samples. We developed a novel 
shotgun cell culture harvest assay for this purpose because 
we found that recent clinical samples do not form plaques. 
Clones were strain-typed by using outer membrane protein 
A and 16S rRNA sequences. Surprisingly, ocular trachoma 
reference strain A/SA-1 contained clones of Chlamydophila 
abortus. C. abortus primarily infects ruminants and pigs 
and has never been identifi ed in populations where tra-
choma is endemic. Three clonal variants of reference strain 
Ba/Apache-2 were also identifi ed. Our fi ndings refl ect the 
importance of clonal isolation in identifying constituents of 
mixed infections containing new or emerging strains and 
of viable clones for research to more fully understand the 
dynamics of in vivo strain-mixing, evolution, and disease 
pathogenesis.  

Chlamydia trachomatis is a ubiquitous human patho-
gen that is responsible for the most prevalent bacte-

rial sexually transmitted diseases (STDs) worldwide (1). 
As an obligate intracellular bacterium, it has a distinctive 
biphasic developmental cycle (2). The cycle begins when 
metabolically inactive elementary bodies (EBs) infect the 
host cell and reside in a vacuole termed an inclusion body. 
EBs differentiate into noninfectious, metabolically active 

reticulate bodies that multiply by binary fi ssion and redif-
ferentiate into EBs after 30–48 hours and then are released 
from the cell by lysis or exocytosis to initiate a new round 
of infection (2).

The organism comprises 2 biovars, trachoma and lym-
phogranuloma venereum (LGV) (3). These biovars com-
prise 19 serologic variants (serovars), which are identifi ed 
by monoclonal antibodies that react to epitopes on the 
major outer membrane protein (MOMP) (4). Variants of 
ompA, the gene that encodes MOMP, differentiate geno-
types of these serovars (5–7). Phylogenetic analyses and 
statistical modeling have enhanced ompA genotyping. For 
example, serovar B is restricted to the ocular mucosa while 
Ba is found in the eye and urogenital tract (8). The LGV bi-
ovar (L1, L2, L2′, L2a, L2b, L3) causes invasive STDs (9,10). 
The trachoma biovar (A, B, Ba, C, D, Da, E, F, G, H, I, Ia, 
J, Ja, K) is responsible for ocular disease, termed trachoma, 
and for STDs globally. The former is caused by serovars A 
to C and Ba and the latter by D through K, Da, Ia, Ja, and 
rarely Ba and C (4,5,11). 

Approximately 8%–57% of clinical STD samples 
mixed infections (5–7,9,12,13). Thus, an inherent problem 
with strain typing is detecting mixed infections. These in-
fections can be identifi ed by using PCR primers that are 
specifi c for each strain followed by sequencing (5), by 
cloning PCR products and sequencing >10 clones (11,13), 
or by reverse dot-blot hybridization of PCR amplicons to 
serovar-specifi c probes (14). However, none of these tech-
niques can detect new genetic strains that fail to either an-
neal with the current selection of primers or hybridize with 
the available probes. The end product is also a nonviable 
DNA sequence. 

Discovering and Differentiating New 
and Emerging Clonal Populations of 
Chlamydia trachomatis with a Novel 
Shotgun Cell Culture Harvest Assay

Naraporn Somboonna,*† Sally Mead,* Jessica Liu,† and Deborah Dean,*†‡

 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 14, No. 3, March 2008 445 

*Children’s Hospital Oakland Research Institute, Oakland, Califor-
nia, USA; †University of California, Berkeley, California, USA; and 
‡University of California School of Medicine, San Francisco, Cali-
fornia, USA 



RESEARCH

Increasingly, isolates representing single clones are 
needed for in vitro and in vivo research, including genom-
ic, murine, and translational studies, to advance our under-
standing of chlamydial pathogenesis. Although a few studies 
have described methods for segregating clones of labora-
tory-adapted C. trachomatis clinical and reference strains 
(12,15,16), none has clonally purifi ed all 19 C. trachomatis 
reference strains nor determined optimal methods to clon-
ally segregate clinically mixed samples. Consequently, we 
modifi ed the plaque-forming assay of Matsumoto et al. (16) 
to segegrate  clones from reference strains and developed a 
novel cell culture shotgun harvest assay to segregate viable 
clones from recent clinical samples because typical plaques 
do not form for most of these samples. 

Our culture techniques coupled with outer membrane 
protein A (ompA ) and 16S rRNA sequencing identifi ed the 
constituents of mixed infections that represented new and 
emerging Chlamydiaceae strains and clonal variants in hu-
man disease. These results stress the importance of clonal 
isolation for these types of discoveries. Clonal isolates will 
also be essential for chlamydial research to ensure repro-
ducibility of experiments among laboratories and to under-
stand the dynamics of in vivo strain-mixing, evolution, and 
disease pathogenesis.  

Materials and Methods 

C. trachomatis Reference and Clinical Strains 
We studied 19 C. trachomatis reference strains (A/

SA-1, B/TW-5, Ba/Apache-2, C/TW-3, D/UW-3, Da/
TW-448, E/Bour, F/IC-Cal3, G/UW-57, H/UW-4, I/UW-
12, Ia/IU-4168, J/UW-36, Ja/UW-92, K/UW-31, L1/440, 
L2/434, L2a/TW-396, and L3/404) and 5 clinical strains, 
representing ompA genotypes G, F, H, Ja, and K (Table 
1). Reference strains were the original isolates. A/Har-13; 
Chlamydophila caviae, strain GPIC; Chlamydia murida-
num, strain Nigg; Chlamydophila abortus, strain S26/3; 
and another seed stock of A/SA-1 were included for PCR 
amplifi cation analyses (see Preparation of Genomic DNA 
and Sequencing of ompA and 16S rRNA for Each Clone). 
Clinical strains were isolated from acute (Ja and K strains; 
no prior history of chlamydial STD) and persistent cervical 
strains (F, G, and H; same-ompA genotypes occurring in 
the same woman over several years despite antimicrobial 
drug therapy). Clinical samples were identifi ed by a unique 
identifi cation number with no link to patient names.

C. trachomatis Culture and Titration 
of Inclusion-Forming Units

Confl uent monolayers of McCoy cells were inoculated 
with reference and clinical strains by centrifugation at 550 
× g for 1 h at 35°C. Cultures were maintained at 37°C and 
5% CO2 in chlamydial growth medium (CMGH), which 

contains minimal essential medium (MEM; Cellgro, Man-
nassas, VA, USA]; 10% fetal bovine serum (FBS; Uni-
versity of California, San Francisco [UCSF] Cell Culture 
Facility, San Francisco, CA, USA); 0.45% glucose solu-
tion (Cellgro); 20 mmol/L HEPES (UCSF Cell Culture 
Facility); 0.08% NaHCO3, 10 μg/mL gentamicin (MP Bio-
medicals, Solon, OH, USA); 25 μg/mL vancomycin (Acros 
Organics, Morris Plains, NJ, USA); 25 units/mL nystatin 
(MP Biomedicals), 375 μg/mL amphotericin B (Pharma-
Tek, Huntington, NY, USA); 1 μg/mL cyclohexamide for 
48 h and harvested as described (18,19). Inclusion-forming 
units (IFUs) were titrated after 30–48 h of growth, depend-
ing on the strain, by using chlamydial lipopolysaccharide 
(LPS)–specifi c monoclonal antibodies (LPS-MAbs; Viro-
stat, Portland, ME, USA) (2,18).

Plaque Assay for Reference Strains 
and Clinical Samples 

We modifi ed the plaque assay of Matsumoto et al. (16) 
by using low speed centrifugation at 550 × g and 6-well 
plates for infections, and 1-dram shell vials (Kimble Chase 
Inc., Vineland, NJ, USA) for propagation. To ensure de-
tection of mixed infections, 1:3 and 1:1 ratios of IFUs for 
reference strains E/Bour and D/UW-3, and a 1:1 ratio for 
clinical strains F and G, were created for inoculation and 
harvest. 

Reference and clinical strains were serially diluted in 
sucrose-phosphate-glutamine (SPG) (219 mmol/L sucrose;  
3.82 mmol/L KH2PO4; 8.59 mmol/L Na2HPO4; 4.26 mmol/
L glutamic acid; 10 μg/mL gentamicin; 100 μg/mL vanco-
mycin; 25 U/mL nystatin in distilled water, pH 7.4). Each 
6-well plate contained dilutions from 1.25 × 106 IFUs in the 
1st well to 1.25 × 10 IFUs on 60%–70% confl uent McCoy 
cell monolayers. Two 6-well plates were prepared identi-
cally per strain except that the second plate contained a 
glass coverslip in each well. After centrifugation, the inoc-
ula were removed and replaced with CMGH plus 1 μg/mL 
cyclohexamide and maintained at 37°C in 5% CO2. 

At 24 h postinfection (p.i.), culture medium was aspi-
rated, and wells were overlaid with initial agarose (IAO: 
0.5% SeaKem ME agarose [BMA, Rockland, ME, USA]) 
in phenol red–free MEM (BioWhittaker, Walkersville, MD, 
USA); 10% FBS; 1 μg/mL cyclohexamide. Two milliliters 
of CMGH without cyclohexamide were added to the solidi-
fi ed IAO. Medium was replaced every 4 days to optimize 
chlamydial growth. 

Once small plaques formed by visual inspection at 7–
12 days p.i., medium was removed, and fi nal agarose over-
lay (FAO: 0.5% SeaKem ME agarose in phenol red–free 
MEM; 10% FBS; 1/100 volume of 3% neutral red [Sigma-
Aldrich, St. Louis, MO, USA]) was dispensed onto IAO. 
CMGH, without cyclohexamide, was added, and the plates 
were incubated for 12–24 h. 

446 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 14, No. 3, March 2008



New and Emerging Clonal Populations of Chlamydiaceae 

At 48 h, duplicate plates with coverslips were fi xed 
with methanol and stained with a fl uorescein isothiocya-
nate (FITC)–conjugated C. trachomatis LPS-MAbs (18). 
Inclusions on each cover slip were counted to determine 
IFUs per milliliter per well and effi cacy of infection given 
the calculated IFUs inoculated for each well.

Plaques were visualized as a central area of cellular de-
bris surrounded by viable infected cells with red staining of 
cytoplasm at the cell periphery (Figure 1, panels A and C). 
Inclusion bodies and nonviable cells remained clear. Any 
plaque (≈1–2 mm) that was clearly isolated from another 
plaque, or appeared as a solitary plaque in a well, was se-
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Table 1. Results of the modified plaque assay for Chlamydia reference strains and shotgun cell culture harvest technique for clinical 
strains representing acute and persistent infections*  

Strain

Days p.i. to 
plaque

formation or 
harvest 

No. plaques or 
shotgun

harvested
areas

ompA genotype 
(no.)

Location of nucleotide 
substitutions in ompA

(amino acid substitution 
location) 16S rRNA (no.)

Reference D/UW-3 
and E/Bour 1:1† 

9 25 D (13)
E (9) 

D/E (3) 

–
–
–

Chlamydia trachomatis D (13) 
C. trachomatis E (9) 

C. trachomatis D/E (3) 
Reference D/UW-3 
and E/Bour 3:‡ 

9 9 D (9)
E (0) 

–
–

C. trachomatis D (9) 
C. trachomatis E (0) 

D/UW-3/E/Bour 
mixed infection§

9 11 D (7)
E (4) 

C. trachomatis D (7) 
C. trachomatis E (4) 

Acute clinical Ja  8 11 Ja (11) – C. trachomatis Ja (11) 
Acute clinical K 10 11 K (11) – C. trachomatis K (11) 
Persistent H 7 5 H (5) – C. trachomatis H (5) 
Persistent G 14 7 G (7) – C. trachomatis G (7) 
Persistent F 10 5 F (5) – C. trachomatis F (5) 
Persistent clinical F 
and G strains 1:1† 

10 13 F (1)
G (12) 

–
–

C. trachomatis F (1) 
C. trachomatis G (12) 

A/SA-1 10

10¶

18

21

A (14) 
Chlamydophila 

abortus (4) 
A/C. abortus (21) 

–
–

C. trachomatis A (14) 
C. abortus (4) 

C. trachomatis A/C. abortus (21) 
B/TW-5 9 15 B (15) – C. trachomatis B (15) 
Ba/Apache-2 8 14 Ba (9)

Ba1 (1) 
Ba2 (1) 

Ba3 (1) 

–
C662T (P221L) 
C662T (P221L)  
G673A (E225K) 
C662T (P221L) 
A717C (K239N) 

C. trachomatis Ba (14) 

C/TW-3 12 13 C (13) – C. trachomatis C (13) 
D/UW-3 9 11 D (11) – C. trachomatis D (11) 
Da/TW-448 10 12 Da (12) – C. trachomatis Da (12) 
E/Bour 9 9 E (9) – C. trachomatis E (9) 
F/IC-Cal3 9 13 F (10) 

F-III (3) 
–

G269A (G90E)# 
C. trachomatis F (13) 

G/UW57/Cx 7 10 G (10) – C. trachomatis G (10) 
H/UW-4 12 12 H (10) – C. trachomatis H(10) 
I/UW-12 11 14 I (14) – C. trachomatis I (14) 
Ia/IU-4168 12 11 Ia (12) – C. trachomatis Ia (12) 
J/UW-36 11 15 J (15) – C. trachomatis J (15) 
Ja/UW-92 12 12 Ja (12) – C. trachomatis Ja (12) 
K/UW-31 11 13 K (13) – C. trachomatis K (13) 
L1/440 9 11 L1 (11) – C. trachomatis L1 (11) 
L2/434 9 11 L2 (8) 

L2’ (3) 
–

C471G,
G496A (A166T)¶ 

C. trachomatis L2 (10) 
C. trachomatis L2a (1) 

L2a/TW-396 9 13 L2a (13) – C. trachomatis L2 (13) 
L3/404 9 14 L3 (14) – C. trachomatis L3 (14) 
*p.i.,.postinoculation; ompA, outer membrane protein A; –, no evidence for nucleotide substitution. 
†Represents an equal mixture of inclusion-forming units (IFUs) of each strain. 
‡Represents a 3:1 mixture of IFUs of reference strains D/UW-3 and E/Bour. 
§Represents the plaques from the 1:1 mixture of D/UW-3 and E/Bour when both reference strains were found in 3 plaques. 
¶Represents the plaques that were harvested from the wells with 10–8 dilution. 
#Boldface denotes nonconservative amino acid substitution (17). 



RESEARCH

lected. A blunt-ended transfer pipette was used to punch a 
hole ≈1–2 mm in diameter through the gels over the plaque. 
The contents were placed into a microcentrifuge tube con-
taining CMGH, sonicated and added to shell vials contain-
ing McCoy monolayers for propagation. Centrifugation of 
shell vials at 2,400 × g for 1 h at 35°C was required to 
successfully grow each clonally segregated strain. Strains 
were propagated and purifi ed using gradient ultracentrifu-
gation as previously described (2,18–20). The pellet was 
resuspended in SPG, and stored at –80°C.

Shotgun Harvest, Isolation, and Propagation 
of Single Clonal Populations for Clinical Strains 

Because no visible plaques formed for the clinical 
strains, except for clinical H, the plates were inspected un-
der 100× and 400× light microscopy. Wells were selected 
for our shotgun harvest as shown in the diagram (Figure 2). 

Ten spots per well were numbered where the infections 
were observed under microscopy. Each spot was harvested 
(≈2–3 wells × 10 spots per well = 20–30 harvests) using a 
sterile, blunt-ended transfer pipette.

IAO and FAO were carefully removed, and the wells 
were stained using FITC-conjugated C. trachomatis LPS-
MAb (Virostat). Only harvested areas that corresponded to 
a confi ned group of infected cells with a clear margin from 
uninfected cells were selected, sonicated, inoculated, prop-
agated in shell vials and fl asks purifi ed and stored as above. 
The original clinical samples were also independently 
propagated in shell vials as described previously (2,18–20) 
for comparison with growth in the plaque assay.

Preparation of Genomic DNA and Sequencing 
of ompA and 16S rRNA for Each Clone

Purifi ed culture was used for genomic DNA extraction 
according to High Pure Template Preparation Kit package 
insert (Roche Diagnostics, Indianapolis, IN, USA). PCR 
was performed and reagents, thermocycling profi le, and se-
quencing were used according to previously described pro-
tocols (21). Table 2 (22) shows the primers used for PCR 
and sequencing to identify the strain-type of each clone. 
Multiple sequences were aligned by using MegAlign soft-
ware (DNASTAR, Madison, WI, USA) and compared with 
public sequences (21,23). A variant was defi ned as having 
>1 nucleotide difference(s) from the sequence of the refer-
ence strain for either ompA or 16S rRNA genes.
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Figure 1. Photographs and optical microscopy views of the wells 
showing plaques formed by Chlamydia trachomatis F/IC-Cal3 (A, 
C, E) and no plaque formed by clinical F persistent strain (B, D, F). 
A) Single well showing 2 distinct plaques (indicated by arrows). B) 
Well showing no plaque morphology. C) and D) Optical microscopy 
image showing plaque areas with little or no neutral red staining 
(arrows) surrounded by viable cells stained red (magnifi cation 
×100). Higher magnifi cation (×400) showed numerous cells that 
had been infected by reference strain F/IC-Cal3 (E) and the clinical 
persistent F strain (F).

Figure 2. Diagram of the cell culture and shotgun harvest assay for 
Chlamydia trachomatis clinical strains propagated in McCoy cells. 
Serial dilutions of each clinical sample were used for inoculating 
wells 1 to 6. IAO, initial agarose overlay; FAO, fi nal agarose 
overlay.
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Phylogenetic Construction of ompA Nucleotide 
and Amino Acid Sequence Alignments 

Nucleotide and amino acid alignments and phyloge-
netic analyses of the 19 reference strains and clonal vari-
ants were performed by using MEGA 3.1 (Center for 
Evolutionary Functional Genomics, Tempe, AZ, USA) as 
described (21,23). Briefl y, neighbor-joining trees were cal-
culated using the Kimura 2-parameter model that assumes 
that nucleotide frequencies and rates of substitution do not 
vary among sites. For amino acids, neighbor-joining trees 
were calculated using the gamma distance model that con-
siders the dissimilarity of substitution rates among sites. 
We used bootstrap analysis (1,000 replicates) to determine 
confi dence intervals for each branch.

Results 

Plaque Formation by Reference C. trachomatis Strains 
Figure 1, panel A, shows typical plaque formation for 

F/IC-Cal3. Higher inocula resulted in plaques that fused 
and, therefore, were not suitable for harvest. These fi nd-
ings are similar to those of others who have used plaque- or 
focus-forming assays for clonal segregation of laboratory-
adapted chlamydial strains (16,24).

Table 1 shows the day p.i. that plaques were visual-
ized and the number of isolated clones and nucleotide poly-
morphisms with respect to reference strain sequences. All 
reference strains formed mature plaques ≈1–2 mm in di-
ameter. Experimentally mixed infections of D/UW-3 and 
E/Bour resulted in 13 D, 9 E and 3 D/E clones, and 9 D 
and 0 E clones. The 3 D/E clones were identifi ed as mixed 
based on electropherograms where 2 peaks were observed 
in a single nucleotide position that corresponded to D and E 
sequences for ≈20 nucleotide positions. These 3 mixed in-
fections were further plaque-purifi ed as above and yielded 
single clonal populations of D or E, which validated our 
plaque assay for isolating clonal populations.

Detection of Clonal Populations of C. trachomatis 
Clinical Strains by Shotgun Harvest

The clinical strains Ja, K, F, and G showed no plaques, 
while persistent strain K showed signs of <0.5-mm plaques 
at 10 days p.i., and strain H showed typical plaques at 7 
days p.i. A longer growth period up to 20 days p.i. did not 
result in distinct plaque formation for Ja, K, F, or G. Figure 
1, panels B and D, show a well with an inoculum of 1.25 × 
103 at day 10 p.i. where no plaques were visualized. 

Approximately 20–30 regions of 2 mm each (Figure 3, 
panel A) from 2–3 wells per isolate were harvested for each 
of the clinical strains after light microscopic examination 
(Figure 3, panels B and C). On the basis of fl uorescent 
microscopic examination of the wells after removal of the 
agarose layers and staining with FITC-conjugated LPS-
MAb to detect segregated areas of chlamydial infection 
(Figure 3, panel D), 11 clinical Ja, 11 clinical K, 5 clinical 
H, 5 clinical F, and 7 clinical G harvests were selected for 
propagation. 

Notably, the size of the inclusion body was much 
smaller for clinical strains than for reference strains. Figure 
1, panel E shows typical large inclusion bodies formed by 
reference F/IC-Cal3 compared with tiny and occasional me-
dium-sized inclusion bodies at day 10 for persistent clinical 
strain F (Figure 1, panel F). Similar results were observed 
for persistent clinical strains G and H when compared 
with respective reference strains. In contrast, acute clinical 
strains Ja and K had inclusion bodies that were intermedi-
ate in size (data not shown). When original clinical samples 
were propagated in shell vials, inclusions remained small 
and the rate of growth was similar as for the plaque assay.

Mixed clinical G and F strains yielded 12 G clones 
(92.31%), 1 F clone (7.69%), and no mixed clones based 
on sequencing. Figure 3, panel A, represents 1 well after 
10 random areas were harvested since no plaque was vis-
ible (Figure 3, panel B). Figure 3, panel C, represents a 
microscope photo where chlamydial inclusions are diffi cult 
to visualize due to their small size. Figure 3, panel D, is a 
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Table 2. PCR and sequencing primers used for determining strain types of clonal isolates from reference strains and clinical samples 
Primer Sequence (5 3 ) Location Ref 
CTompA-F GTCCCGCCAGAAAAAGATAG –60 to –41 This study 
CTompA-seqF ATAGCGAGCACAAAGAGAGC –44 to –25 This study 
VB3 CATCGTAGTCAATAGAGGCAT 817 to 797 (22) 
MVF3 TGTAAAACGACGGCCAGTGCCCGTGCAGCTTT 561 to 611 (22) 
CTompA-B ACGGATAGTGTTATTAACAAAGAT 1261 to 1225 This study 
CTompA-seqB GTAAAACGACGGCCAGT 562 to 596 This study 
C16SrRNA-F CAGTCGAGAATCTTTCGCAAT 359 to 380 This study 
C16SrRNA-seqF AAGGCTCTAGGGTTGTAAAGCACTTT 419 to 444 This study 
C16SrRNA-B TACTGGCCATTGTAGCACGTGTGT 1230 to 1253 This study 
Plasmid-PF5 AGACTTGGTCATAATGGACTT 1022 to 1002 This study 
Plasmid-seqPF5 AGACTTGGTCATAATGGACTT 1022 to 1002 This study 
Plasmid-PB5 TTGTCTCGGATTTTAAAAAATGT 588 to 566 This study 
FCabortus GGTATGTTTAGGCATCTAAAA 172 to 192 This study 
RCabortus2 GGCCATTGTAGCACGTGTGTA 1248 to 1228 This study 
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fl uorescent image of Figure 3, panel C, displaying small 
and medium-sized inclusion bodies. 

Sequence Analyses of ompA and 16S rRNA 
C. trachomatis Clonal Populations 

A total of 30 chlamydial ompA genotypes were identi-
fi ed from the plaque assay and shotgun harvest based on 
sequence analyses using BLAST and MegAlign as we 
have described (21,22) (Table 1). Three reference strains 
showed mixed infections: Ba/Apache-2 with new Ba ompA 
genotypes, Ba1, Ba2, and Ba3 (1 clone each), F/IC-Cal3 with 
F-III (5), L2/434 with L2′ (9), and A/SA-1 with C. abortus 
S26/3 (25), which were clonally segregated into 14 A and 
4 C. abortus clones (Table 1). All 4 C. abortus clones had 
the same sequences for ompA and 16S rRNA. 

The C. abortus–specifi c primers (Table 2) were 
used to amplify another seed stock of A/SA-1, C. abor-
tus (from our plaque assay), C. trachomatis strain A/
Har-13, and C. caviae and C. muridanum. For the C. 

abortus–specifi c PCR amplifi cation, only A/SA-1 and 
C. abortus samples were positive, while the rest were 
negative.

Phylogenetic Analyses of ompA C. trachomatis 
Reference and Clonal Populations 

Phylogenetics of ompA nucleotide and amino acid se-
quence alignments were performed to evaluate divergence 
of 5 clonal variants of Ba/Apache-2 and F/IC-Cal3. The 
trees showed the  clustering of the 5 clonal variants with 
their respective parental strains (Figure 4, panels A and B). 

Discussion 
Plaque- and focus-forming assays have been devel-

oped to isolate individual clonal populations of reference 
strains of C. trachomatis (12,15,16) and Chlamydophila 
pneumoniae (24). The fi rst methods for C. trachomatis 
used L (15) and McCoy cells (16). More recently, fl ow cy-
tometry has been used to segregate cells infected with C. 
trachomatis, C. caviae, and Chlamydia suis (12). However, 
these techniques have focused on laboratory-adapted clini-
cal and reference strains and have not used nonpropagated 
or nonlaboratory-adapted clinical samples.

The novel shotgun harvest assay that we developed 
was successful in segregating clonal populations of C. tra-
chomatis strains and variants that were devoid of plaque-
forming characteristics. Consequently, our method is an 
important advance in reliably detecting and purifying clonal 
isolates from clinical samples. We also modifi ed the plaque 
protocol of Matsumoto et al. (16), which allowed us to use 
lower concentrations of reference strains, ensuring widely 
separated or single plaques. Most important, our methods 
showed sample collections that contained mixtures of new 
and emerging strains and variants based on ompA and 16S 
rRNA sequences. 

The most remarkable mixed infection was for reference 
strain A/SA-1 in which C. abortus was identifi ed. C. abor-
tus was not a likely contaminant because A/SA-1 was an 
original isolate. PCR of another seed stock of A/SA-1 was 
positive for C. abortus, and C. abortus had not previously 
been propagated in our laboratory. The original sample was 
obtained from the conjunctiva of a trachoma patient in Sau-
di Arabia in 1957. This fi nding was unexpected because C. 
abortus has not been described among trachoma-endemic 
populations. Although C. abortus may be responsible for 
zoonoses in pregnant women, it resides in a unique niche, 
the placenta, compared with C. trachomatis (26). Thus, 
an explanation for our fi ndings is that C. abortus is now 
capable of crossing species or niche barriers. Indeed, we 
recently identifi ed mixed conjunctival infections with C. 
trachomatis, Chlamydophila psittaci, and/or C. pneumoni-
ae in 35% of infected persons residing in a trachoma-en-
demic region of Nepal (27). The fi ndings were statistically 
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Figure 3. Photographs of light and fl uorescent microscopy showing 
the shotgun cell culture harvest method for isolating clonal 
populations of clinically persistant strains. A) 1 well in a 6-well plate 
after harvesting 10 random areas using sterile pipettes; no plaques 
could be visualized in any well unlike the situation for the reference 
strains in Figure 2. B) The same well before harvesting infected 
areas (magnifi cation ×100). C) Light microscopy view of an area 
with infected cells containing small inclusion bodies after agarose 
overlays had been removed (magnifi cation ×400). D) Fluorescent 
microscopy view of the same fi eld as in C (magnifi cation ×400); 
infected cells were stained with Chlamydia trachomatis–specifi c 
lipopolysaccharide antibodies. Arrows denote small fl uorescing 
inclusion bodies within the cell cytoplasm. 
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unlikely to have occurred by chance.  Additionally, infec-
tion with C. pneumoniae or C. psittaci was signifi cantly 

associated with trachomatous infl ammation, a precursor for 
scarring. With mounting evidence for widespread interstrain 
recombination among intracellular bacteria such as Chla-
mydiaceae (8,10,21–23,28), the A/SA1 coinfection with C. 
abortus along with those described above are likely the tip 
of the iceberg in terms of the prevalence of mixed Chla-
mydiaceae infections and the possibility for recombination 
that may result in diverged tissue tropism (21,23). We are 
currently examining samples from other trachoma-endem-
ic populations for coinfection with C. abortus and other 
Chlamydiaceae species.

Reference strain Ba/Apache-2 also comprised clonal 
populations of 3 previously unrecognized ompA genotypes, 
Ba1, Ba2 and Ba3, that were distinct from publicly available 
Ba ompA sequences (6,7,29). The C662T mutation among 
our clones encoded a nonsynonymous P221L substitu-
tion in a constant region (CR) between variable segments 
(VSs) II and VSIII of MOMP, which contains 5 CRs and 
4 VSs. This change from a proline, an imino amino acid 
with unique “kink,” to a nonpolar leucine on CRIII might 
disrupt the mid-portion ß-strand transmembrane of MOMP 
(30–32). Furthermore, the E225K in Ba2 occurs in VSIII 
where the subspecies-specifi c epitope for LGV and A–K 
strains (32) is located, likely changing polarity of the epit-
ope from a negative to a positive charge. These mutations, 
then, may lead to adaptive structural and/or functional 
changes for MOMP.

The presence of mutations in Ba1, Ba2, and Ba3 sug-
gests that these have occurred under immune selection in 
vivo, because growing reference strains in vitro has not 
shown detectable mutations (3,14), although in theory this 
could occur. On the basis of phylogenetic reconstructions 
(Figure 4), the clonal variants likely represent natural di-
versity arising from the respective parental strain. Also, the 
ability of Ba strains to either mutate specifi c protein regions 
or recombine may facilitate their invasion of other mucosal 
sites. Urogenital Ba infections do occur, and we have previ-
ously described a Ba/D recombinant that was isolated from 
the genital tract (8). 

Notably, most of the ompA mutations were located 
within CRs and encoded for nonsynonymous substitutions, 
the majority of which encoded for nonconservative amino 
acids with altered properties. For instance, ompA geno-
type F-III contains a nonconservative G90E substitution. 
G90E is located in CRII next to VSI, which may decrease 
membrane hydrophobicity and disrupt the >0.5 nonpolar 
or hydrophobic index requirement for the MOMP span-
ning region (32). In 2 separate studies, we identifi ed F-III 
variants as statistically signifi cantly associated with pelvic 
infl ammatory disease (PID) (5,33). The F-III mutation may 
explain, in part, the association with PID. However, addi-
tional studies will be required to delineate these associa-
tions. 
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Figure 4. Neighbor-joining trees representing evolutionary 
relatedness of the 19 reference strains, Chlamydophila abortus and 
5 clonal variants based on ompA nucleotide (A) and amino acid (B) 
sequence alignments. The trees were constructed from ClustalW 
1.8 alignment (www.ebi.ac.uk/Tools/clustalw2/index.html), and the 
values at the nodes are the bootstrap confi dence levels calculated 
from 1,000 bootstrap resamplings. See Materials and Methods for 
details.
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In our experimentally mixed infections, recovery of 
separate clones of D/UW-3 and E/Bour, and of clinical G 
and F validated each assay (Table 1). The greater number 
of clones for D/UW-3 (52%) than for E/Bour (36%), and 
for G (92.31%) than for F (7.69%) might indicate different 
growth rates and timelines for plaque formation and char-
acteristics of each strain (15,16). It is also possible that 1 
strain produces byproducts of growth that are inhibitory for 
coinfecting strains. Nevertheless, these data emphasize the 
importance of selecting multiple wells of low inocula for 
plaque or shotgun harvests to identify all strains that are 
present. Additionally, mixed infections may occur where 
some strains cause plaque formation and others do not, 
which stresses the importance of the shotgun harvest even 
when the morphologic features of plaque are present.

In the present study, we analyzed clones by sequenc-
ing ompA, the plasmid, and 16S rRNA to enhance strain 
categorization. The plasmid was evaluated because its 
absence has been reported to correlate with reduced or 
no plaque formation (34). However, all of our clones con-
tained the plasmid, which is consistent with other studies 
(35–37). The lack of classic plaque formation for clinical 
isolates likely stems from their slow growth and lack of 
adaptation to conventional cell culture. This was borne out 
by their slow growth in shell vials and fl asks, experiments 
which were performed separately from the plaque assay. 
Clinical strains may exit the cell without cellular disrup-
tion, facilitating subsequent rounds of infection and lack of 
plaque formation. Beatty recently showed,that EBs could 
be released without lysis and also be retained by host cells 
(38). However, our clinical H formed plaques similar in 
morphology to reference strains. The presence of a com-
plete toxin gene, as in H/UW-4 and J/UW-36 (39), may 
have contributed to clinical H plaque formation. H/UW-4 
has been shown to produce more cytotoxicity than D/UW-
3, which contains a partial toxin gene, and C. muridanum, 
which contains a full-length gene (40). Although all 19 ref-
erence strains formed classic plaques morphology, some 
have no toxin (LGV strains) or a partial gene, which sug-
gests that plaque formation refl ects adaptation to culture 
that has occurred over decades instead of the effects of the 
toxin. Further experiments will be required to determine 
the genetic factors involved in plaque formation.  
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