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ABSTRACT

Model organism and human databases are rich with
information about genetic and physical interactions.
These data can be used to interpret and guide the
analysis of results from new studies and develop
new hypotheses. Here, we report the development
of the Molecular Interaction Search Tool (MIST; http://
fgrtools.hms.harvard.edu/MIST/). The MIST database
integrates biological interaction data from yeast, ne-
matode, fly, zebrafish, frog, rat and mouse model sys-
tems, as well as human. For individual or short gene
lists, the MIST user interface can be used to identify
interacting partners based on protein–protein and
genetic interaction (GI) data from the species of in-
terest as well as inferred interactions, known as in-
terologs, and to view a corresponding network. The
data, interologs and search tools at MIST are also
useful for analyzing ‘omics datasets. In addition to
describing the integrated database, we also demon-
strate how MIST can be used to identify an appropri-
ate cut-off value that balances false positive and neg-
ative discovery, and present use-cases for additional
types of analysis. Altogether, the MIST database and
search tools support visualization and navigation of
existing protein and GI data, as well as comparison
of new and existing data.

INTRODUCTION

Physical and genetic interactions (GIs) underlie important
biological functions in all living organisms. For example,
many proteins within a signaling pathway, components of

a protein complex and kinases and their substrates are an-
notated in the literature as having genetic and/or physical
interactions with one another. There are many public re-
sources providing interaction data. For example, Database
of Interacting Proteins (DIP) (1) was built on interactions
manually curated based on small-scale studies from the
literature, providing a small but well-annotated network.
Resources like BioGrid (2) and IntAct (3) include large-
scale screen data in addition to manually curated data from
small studies, and thus provide much larger networks. Sev-
eral resources integrate interactions from multiple public
resources. For example, IMEx (4), a consortium effort, in-
tegrates the binary protein–protein interaction (PPI) data
from multiple resources such as DIP and IntAct. Another
example is iRefWeb (5), which integrates both physical and
GIs from multiple public resources. These resources are
available for a broad range of organisms and serve the im-
portant role of providing evidence-based interaction data
(most typically, PPI data). In addition, protein and/or GI
data are also available through species-specific databases
such as DroID (6) and FlyBase (7) for Drosophila, Human
Protein Reference Database (HPRD) for human and mouse
(8), and PomBase (9) for fission yeast.

A challenge for bench scientists who are interested to
mine and use protein or GI data is that these various re-
sources have different coverage and the results obtained for
a given gene or protein can vary significantly depending
on which resource is queried (Supplementary Figure S1).
In addition, there is a need for more effective mapping of
gene or protein interactions among species. In particular as
this can provide testable hypothetical interactions for other-
wise unannotated genes or proteins in a given species, based
on what is available for one or more other species. We ad-
dressed this need by developing the Molecular Interaction
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Search Tool (MIST) database. MIST integrates both physi-
cal and genetic interactions from major public resources as
well as annotations from species-specific resources like Fly-
Base, and maps interaction data among major model or-
ganisms using an effective ortholog mapping mechanism.
In addition to providing flat files and API, MIST is also
supported by a web-based user interface, which provides
search options and filters so that user can search different
types of interactions for one gene or a list of genes or gene-
pairs, and build customized networks. We also demonstrate
that MIST can be used for ‘omics data analyses. MIST dif-
fers from tools such as STRING (10) and GeneMania (11)
as those resources primarily focus on functional prediction,
rather than mining of existing evidence-based data (Tables
1 and 2). Altogether, MIST serves as an integrated, search-
able database of physical and GI data for major model or-
ganisms and human, allowing users to analyze screen data
and build evidence-based networks.

DATABASE DESCRIPTION

The MIST online resource (Figure 1) includes an integrated
database of biological interaction data for most major
model organisms: Saccharomyces cerevisiae, Schizosac-
charomyces pombe, Caenorhabditis elegans, Drosophila
melanogaster, Danio rerio, Xenopus tropicalis, Rattus
norvegicus, Mus musculus and Homo sapiens. The data in
MIST are from curated public databases such as BioGrid,
IntAct, DIP, mentha, as well as from the few species-specific
resources (FlyBase, DroID and HPRD) (Table 1). The data
types that MIST covers are curated physical and GIs for
all of the organisms, as well as predicted kinase–substrate
relationships, a predicted correlation network based on
expression pattern (12) and phenotype (13) and phospho-
proteomics data (14) for Drosophila. The MIST online
resource also maps data among the included organisms
using the DRSC Integrative Ortholog Prediction Tool
(DIOPT) (15). Thus, in addition to viewing interactions
from high-throughput data sources and literature mining,
users can also view orthology-based inferred interactions
or ‘interologs’ (16). The MIST user interface is designed to
provide an intuitive search interface and visualization tools
useful for functional discovery surrounding one or a few
genes/proteins, or a larger network.

This integrated resource has much larger coverage as
compared with individual sources (Table 1). Coverage is fur-
ther increased by inclusion of interactions mapped among
species. For example, when interologs are included, we ob-
serve an ∼18-fold increase in coverage of PPI interactions
in mouse, and a 2-fold increase in the total number of
genes for which an interaction is included (http://fgrtools.
hms.harvard.edu/MIST/stats.jsp). In addition to integrat-
ing data from different sources, we also assigned a rank to
each interaction. A rank of ‘high’ is assigned for interac-
tions supported by multiple experimental methods and/or
reported in multiple publications. A rank of ‘moderate’ is
assigned if these criteria are not met but the interaction is
supported by data from another species. For interologs, we
assigned a rank of ‘moderate’ if the interaction was mapped
from orthologous genes of multiple species. We propose that
high-confidence interactions will be useful as positive con-

trols or benchmarks during the analysis of large-scale data
using MIST (see below). The ranking also allows users to
filter results, such that they can view higher confidence sub-
sets of interactions as a network or table (Figure 1).

Altogether, features that distinguish MIST from some or
all similar databases include: (i) availability of both PPIs
and GIs; (ii) availability of data from small and large-scale
studies, and from broad and organism-focused sources,
leading to improved coverage; (iii) availability of interologs
for PPIs and GIs, further increasing coverage; and (iv) a user
interface that supports a variety of queries and visualiza-
tions by researchers, as described below.

WEB-BASED FEATURES OF THE MIST RESOURCE

The MIST online user interface facilitates the query of
genes from common model organisms and human genes.
Specifically, on the MIST search page (Figure 1, top panel),
users can enter a list of genes and select the type of inter-
action(s) that they are interested to view, i.e. PPIs or GIs,
with or without inclusion of interologs. The results display
page (Figure 1, bottom panel) includes both a graphical
network view and a table. The network view is built us-
ing Cytoscape.js (17). Edges in the network are color-coded
based on the type of interaction (e.g. solid red for PPIs, dot-
ted purple for PPI-interologs, solid blue for GIs and dotted
green for interologs of GIs). MIST is also linked to litera-
ture based complex annotation from COMPLEAT [(18)],
at the search result page, the list of complexes that overlap
with the network will be listed and users can highlight the
nodes of each complex.

Results can be filtered based on the rank assigned to
the interactions. With the advanced search option, users
can also filter the data based on other criteria. PPIs can
be filtered based on approach, which can help distinguish
direct binary interactions from interactions that might or
might not be direct. Those most interested in binary in-
teractions, for example, can select to view only yeast two-
hybrid data, which provide evidence of a direct interaction.
Alternatively, a user can choose to view only protein com-
plex data from mass spectrometry (mass spec) interaction
studies, in which the proteins with an annotated interac-
tion might or might not have a direct binary interaction.
In addition to filtering by evidence type, users can also filter
by evidence count (i.e. the number of different types of ev-
idence that support an interaction) and publication count
(i.e. the number of publications that report the interaction).
The same types of filters are also available for interologs.
Moreover, regarding interologs, users can limit results to
interactions detected for orthologs in some user-specified
number of species (e.g. two or more species). For GIs, users
can filter by evidence count or by publication count. A logi-
cal operator (i.e. AND or OR) can be used to combine these
options.

In addition to supporting search of the MIST database
with a simple gene list, the MIST user interface also sup-
ports search with a list of gene or protein pairs, for example
to search MIST with a list of pairs detected in a new study.
With this application, MIST can be used to quickly identify
existing evidence in the same or other species, allowing the

http://fgrtools.hms.harvard.edu/MIST/stats.jsp
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Figure 1. MIST online user interface. The MIST user interface allows users to select a species of interest; upload a single gene, a list of genes or gene pairs;
and select one or more interaction types. Users also have the option to apply filters based on confidence and/or data type. The output contains a Cytoscape
network view with edges color-coded for different interaction types as well as a summary table about the interaction partners that includes references and
experimental approaches. The summary table can be downloaded as a file.
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Table 1. Data sources and summary of integrated data in MIST

Source
Interactions included
in MIST

unique interactions not
in other database

Interaction
types

Species
for MIST

Reference
(pmid)

DIP (1) 106 660 6517 PPI 10 14681454
DroID (including DPiM) (6,29) 247 816 129 219 PPI,GI 1 21036869
BioGrid (2) 1 827 231 1 105 722 PPI,GI 9 27980099
IntAct (including MINT) (3) 634 547 16 381 PPI,GI 10 24234451
FlyBase (7) 64 007 21 192 PPI,GI 1 27799470
HPRD (8) 76 233 23 363 PPI 2 18988627
PomBase (9) 5290 3624 PPI 1 25361970
mentha (4,28) 1 020 351 9454 PPI 9 23900247
HumanMAPK (30,31) 4530 2941 PPI 1 20936779
MIST (without interologs) 2 376 341 PPI,GI 10
MIST (including interologs) 13 573 897 PPI,GI 10

Table 2. Comparison of MIST to similar resources

Note: some UI features are available through other resources. For example, the ability to do a batch search of BioGrid data is available at iRefWeb.

user to quickly sort known, interolog-supported, and novel
interactions represented in the list.

The web-based user interface was designed to help bench
scientist. MIST also provides API as well as flat files of the
data per organism to facilitate access by programs or bioin-
formaticians so that MIST can be easily integrated into
other resources.

USING CROSS-SPECIES INTERACTION DATA TO
GAIN INSIGHT INTO ORTHOLOGOUS GENES

Overall there are 1 340 739 PPIs in MIST and 965 817 GIs
identified using proteins from the same species. Compar-
ing the data with data for orthologous genes from other
species, 114 396 of PPIs (9%) and 14 776 of GIs (2%) over-
lap with data for orthologous genes. We analyzed the over-
all overlap for each model organism (Figure 2). We also
compared the pairwise overlap (Figure 2C). The most over-
lap is seen between human and mouse (27% of mouse PPIs
overlap with human PPIs). The human and budding yeast
PPI datasets are the largest datasets, and this is reflected
in higher percent overlap. In MIST, about 5% of interac-
tions were directly tested between proteins from different
species, an experimental approach sometimes undertaken
due to the availability of reagents. For example, in a study

by Hein et al. (19), 1125 GFP-tagged mouse proteins were
expressed in the human HeLa cell line and tested for inter-
actions with host proteins. Specifically, we selected 26 482
PPIs experimentally identified by testing of mouse versus
human proteins from 2591 reports in PubMed, then asked
if there is human versus human evidence supporting the
idea that the corresponding human ortholog of the mouse
protein interacts with the human partner protein identified
in the mouse–human study (Supplementary Figure S2). To
do this, we first mapped mouse to human orthologs us-
ing DIOPT, and then reconstructed human–human protein
pairs to compare with PPI data obtained directly among
human proteins. Among the reconstructed human–human
pairs, 32% overlap with human PPI data, a percentage that
is significantly higher than what we obtain using recon-
structed human–human pairs from random mouse–human
gene pairs (Supplementary Figure S2A). Due to the current
limits of human PPI coverage, 9% of the human ortholo-
gous genes were not covered by current human PPI data;
therefore, we expect that the overlap will increase as more
human PPI data become available. In addition, the over-
lapping pairs are enriched for high DIOPT score orthologs,
which reflects the confidence of ortholog mapping (Supple-
mentary Figure S2B). This analysis confirms that orthol-
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Figure 2. Comparison of PPI and GI data with data from orthologous
genes. (A) Overlap of PPI and interolog (derived from PPI of other species)
for each species. (B) Overlap of GIs and interologs (derived from GIs of
other species) for each species. (C) Pairwise comparison of PPI data by
orthologous mapping. Species are organized from largest number of PPIs
(human) to least (Schizosaccharomyces pombe). Overlap percentage is cor-
rected for pairwise conservation (DIOPT score ≥ 3 for both partners).

ogous genes tend to preserve their ability to interact with
other genes (16), supporting the idea that our approach of
including interologs to build more comprehensive network
has validity.

EXAMPLE APPLICATIONS USING MIST

Below, we describe three example applications of MIST that
go beyond its utility as a tool for querying and viewing PPI
and GI networks. The first exemplifies the use of MIST for
analysis of a gene list, in this case obtained using a func-
tional genomics approach. The other two use MIST to an-
alyze lists of pairs, one compiled based on gene features (in

this case, paralogs) and the other representing raw experi-
mental data.

Asking if essential genes are likely to interact with one an-
other

As our first analysis use-case, we analyzed essential genes
identified in cancer cell lines (20). We made first the assump-
tion that the number of different cancer cell lines for which
a given gene was detected as an essential gene is a mea-
sure of confidence that the gene is indeed essential. We then
queried the list of essential genes at MIST to ask if essential
genes tend to interact with one another. Interestingly, the
MIST analysis shows that genes for which more cell lines
support the idea that the gene is essential are more likely
to interact with one another as compared with a random
gene list. This was true to the same extent for both PPIs
and GIs (Figure 3A). This indicates the potential use of
MIST in analyzing data from large-scale screens, for exam-
ple to set a cutoff value or to prioritize subsets of genes for
follow-up studies. As exemplified below for paralogs, this
approach can be used to determine whether any grouped
sets of genes/proteins are more likely to interact with one
another than what is expected at random.

Asking if paralogs are likely to interact with one another

Paralogs are genes that originate from a duplication event
within a genome. Paralogs therefore typically share high se-
quence similarity, and may serve redundant or partially re-
dundant functions. DIOPT predicts paralogous gene pairs
within a genome, and the count of algorithms supporting
the prediction serves as a measure of prediction strength.
In addition to providing a count, the current version of
DIOPT further annotates paralog predictions as high, mod-
erate or low based on the count of algorithms supporting
paralogy, as well as whether the pair has the best score
by forward or reverse search. We compared all paralogous
pairs predicted by DIOPT with the integrated interaction
data at MIST. We find that paralog gene pairs are signif-
icantly enriched for MIST interactions (2–48%) compared
to random gene pairs (0.3%) for both PPIs and GIs. In addi-
tion, the level of enrichment of interactions correlates with
the confidence of paralog prediction in all nine species (Fig-
ure 3B). This finding supports the idea that paralogs are
likely to participate in the same molecular and/or genetic
functions as their partners, and that this likelihood increases
with sequence similarity (21). GIs among paralogs likely
reflect their functions in the same or redundant pathways.
Physical interactions among paralogs were not unexpected
either (e.g. as some paralog form heteromers) (22) but never-
theless were more surprising. We further analyzed paralogs
positive in the analysis for physical interactions with one an-
other using COMPLEAT (18) and identified protein com-
plexes annotated from the literature that are enriched with
paralogs. Based on this analysis, we conclude that this is not
solely due to simple interactions among paralogs; it some-
times reflects formation of larger complexes that include
both members of one or more paralogous pair. One exam-
ple is the human GST–Smad3 complex, in which two pairs
of proteins among the 10 proteins in the complex are paral-
ogous (SMARCC1 and SMARCC2, NCOR1 and NCOR2)
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Figure 3. Using MIST to analyze gene or gene pair lists. (A). Using MIST to analyze results of a genome-wide study of essential genes in cancer cells.
Genes scoring as ‘hits’ (positive results) in the CRISPR screen by Hart et al. (20) with higher confidence are more likely to interact with each other, showing
that MIST can facilitate the analysis and interpretation of large-scale screen data. (B) Using MIST to analyze paralogs. Paralog pairs as identified using
DIOPT overlap with both PPIs and GIs in model organisms and human. The overlap correlates with paralog rank. Protein complexes identified using
COMPLEAT provides supporting evidence for the idea that some paralogs (blue circles) physically interact. (C) Using MIST to analyze proteomics data.
Analysis with MIST of a raw mass spectrometry interactome dataset can help define a SAINT score cutoff that improves sensitivity without undue increase
in specificity. As shown at the top of panel C, the x-axis is the SAINT score, and the y-axis is the percent overlap with PPI and/or interologs. As shown in at
the bottom of panel C, MIST can also help ‘rescue’ interactions supported by independent evidence. The blue circle represents the published hits selected
by SAINT score cutoff. The areas outside the blue circle but inside the red or green circles represent ‘rescued’ interactions that are included in the raw data
and do not meet the cutoff, but are supported by independent evidence.

(23). Another example is the human SIN3–HDAC–SAP30–
ARID4 complex, in which two pairs of proteins among the
seven proteins in the complex are paralogous (RBBP7 and
RBBP4, HDAC1 and HDAC2) (24). We conclude that an-
alyzing paralogs using MIST can help generate hypotheses
regarding the biological mechanisms of functionally related
proteins or complexes.

Setting cut-off values for experimental protein interaction
datasets

As introduced above, users can search MIST using a list
of gene pairs, such as a list of pairs of interactors iden-
tified in a new low- or high-throughput experiment. This
should be particularly useful to analyze interaction datasets
obtained using large-scale approaches such as Y2H and
mass spec. Specifically, MIST can help to create a refer-
ence set that can be used to choose an appropriate cut-off
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value for small and large-scale interactome data, and after
a cutoff value is set, to recover sub-threshold biologically
meaningful interactions that would otherwise be discarded
as non-hits. To exemplify how MIST can be used to analyze
raw high-throughput interaction data, we used MIST to re-
analyze Hippo pathway interactome data from Drosophila.
The source of the data was a study in which bait-prey in-
teractions were identified by mass spec (25). Specifically, we
looked at the overlap between interactions identified in the
mass spec study and Drosophila data in MIST (both PPIs
and interologs). We found a correlation between the mass
spec SAINT score, which is a confidence score assigned to
bait-prey pairs using the SAINT algorithm (26), and the
fraction of pairs that overlap with data in MIST (Figure
3C). This demonstrates the potential use of MIST interolog
data to create a reference set and set an appropriate cut-off
value when analyzing raw interactome datasets. This analy-
sis also revealed that 161 interactions that were considered
sub-threshold based on the SAINT analysis are supported
by additional evidence, which represents 79% more inter-
actions than the published Hippo interactome (25). Thus,
a considerable fraction of overlapping interactions is lost
when a stringent threshold is applied. In such cases, users
can supplement the high-confident interactions that pass
the cutoff with an additional list of sub-threshold interac-
tions that are supported by data in MIST (i.e. supported
by the literature, by other high-throughput studies, and/or
by interologs). This approach might help reduce false neg-
ative discovery without significantly impacting false posi-
tive discovery. Similarly, we also analyzed a low-confidence
subset of data from a human Y2H study (27). Using MIST,
we identified 1928 additional interactions that overlap with
other studies or data from different species, which repre-
sents 14% more interactions than the human Y2H interac-
tome published by this study. These analyses demonstrate
that MIST can facilitate the analysis, interpretation, and
prioritization of interactions identified in new large-scale
studies.

MATERIALS AND METHODS

Data sources and algorithms

We downloaded interaction data from BioGrid (release:
3.4.149; (2)), IntAct (release: June 2017; (3)), FlyBase (re-
lease:FB2017 03, June 2017; (7)), HPRD (release: April
2010; (8)), DroID (release: December 2015; (6)), PomBase
(release: June 2017; (9)), DIP (release: February 2017; (1)),
mentha (release: 19 June 2017; (28)). We developed a se-
ries of in-house programs to: (i) parse the ftp files from
each public resource; (ii) select the interactions for the 10
model organisms covered by MIST; (iii) synchronize dif-
ferent protein/gene identifiers to NCBI Entrez Gene IDs
before integration; (iv) annotate PPIs depending on di-
rect or indirect evidence based on the type of experimen-
tal approach. Before we integrated the interactions, we first
formatted each gene/protein pair as A-B and B-A if the
source database had not done so, then removed redundancy
per source database. We then used DIOPT release 6.02 to
map interactions among genes from different organisms.
We used the most stringent filter for orthologous mapping,
which identifies the best matching candidate(s). In addition,

we filtered out the mappings with low rank as well as the
mappings with scores lower than 3 (15). We also assigned
ranks to all MIST interactions based on the number of ap-
proaches, number of publications and comparison to in-
terologs. Interactions with more than one reference and/or
more than one approach are ranked as high, while interac-
tions that failed these criteria but have support from differ-
ent species are ranked as moderate. Interologs mapped from
multiple independent data from more than one species are
also ranked moderate. All other interactions are ranked as
low. For the pairwise comparison, the percent overlap was
calculated based on the PPIs for which both genes are con-
served (DIOPT score ≥ 3).

Online implementation

MIST is a Java web-based application backed by a MySQL
database. We use Cytoscape.js library (17) to display net-
work information, and DataTables.js plugin (datatables.net)
for jQuery to add table pagination and sorting. Form
handling and other client-side functions were written in
JavaScript using the jQuery library (jquery.com). The appli-
cation and database is hosted by the Research Computing
group at Harvard Medical School.

CONCLUSION AND FUTURE DEVELOPMENT

Proteins function mainly through interactions with other
proteins. Moreover, functionally related genes, such as par-
alogs or genes with similar mutant phenotypes, are more
likely to interact with each other than unrelated genes.
The MIST database integrates protein and GI data from
multiple public resources and as such, has more cover-
age than any given source. Mapping data among species
(i.e. identification of interologs) further improved cover-
age. We showed that this resource is useful for analysis
of lists of genes/proteins identified through bioinformat-
ics approaches or functional assays, and for analysis lists of
gene/protein pairs identified in interaction assays. We ex-
pect that MIST will have general utility for analysis of sim-
ilar gene or pair lists. MIST currently supports data from
the ten most commonly used model organisms. As large
datasets become available for other species, these could be
easily added. In the near future, we plan to integrate more
interaction types, such as drug–gene interactions, and more
types of data, including protein abundance data and tissue
or subcellular localization data, so that users can further
prioritize interactions based on expression levels and loca-
tion. We also plan to integrate gene annotation and func-
tional predictions to help functional discovery.

AVAILABILITY

MIST is available for online use without any restrictions at
http://fgrtools.hms.harvard.edu/MIST/.
Flat files and API are available at http://fgrtools.hms.
harvard.edu/MIST/downloads.jsp.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

http://fgrtools.hms.harvard.edu/MIST/
http://fgrtools.hms.harvard.edu/MIST/downloads.jsp
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