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Abstract: Oxidative stress plays a crucial role in neurodegeneration. Therefore, reducing oxidative
stress in the brain is an important strategy to prevent neurodegenerative disorders. Thunbergia laurifolia
(Rang-jued) is well known as an herbal tea in Thailand. Here, we aimed to determine the protective
effects of T. laurifolia leaf extract (TLE) on glutamate-induced oxidative stress toxicity and mitophagy-
mediated cell death in mouse hippocampal cells (HT-22). Our results reveal that TLE possesses a high
level of bioactive antioxidants by LC–MS technique. We found that the pre-treatment of cells with TLE
prevented glutamate-induced neuronal death in a concentration-dependent manner. TLE reduced
the intracellular ROS and maintained the mitochondrial membrane potential caused by glutamate.
Moreover, TLE upregulated the gene expression of antioxidant enzymes (SOD1, SOD2, CAT, and
GPx). Interestingly, glutamate also induced the activation of the mitophagy process. However,
TLE could reverse this activity by inhibiting autophagic protein (LC3B-II/LC3B-I) activation and
increasing a specific mitochondrial protein (TOM20). Our results suggest that excessive glutamate can
cause neuronal death through mitophagy-mediated cell death signaling in HT-22 cells. Our findings
indicate that TLE protects cells from neuronal death by stimulating the endogenous antioxidant
enzymes and inhibiting glutamate-induced oxidative toxicity via the mitophagy–autophagy pathway.
TLE might have potential as an alternative or therapeutic approach in neurodegenerative diseases.

Keywords: autophagy; glutamate; mitophagy; neurodegenerative diseases; oxidative stress; Thunber-
gia laurifolia

1. Introduction

The accumulation of reactive oxygen species (ROS) contributes to the oxidative stress
condition due to the imbalance of redox homeostasis. Normally, ROS are generated during
the oxidative phosphorylation process, which is neutralized by antioxidant enzymes
including superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT).
However, these antioxidant systems tend to deteriorate with age. Overproduction of
ROS or dysfunction of the antioxidant system can contribute to cellular destruction and
cell death. ROS are the most common free radicals, which cause damage to the cells,
especially neurons due to their high metabolic rate [1,2]. This is one of the critical factors
of neurodegenerative diseases. Alzheimer’s disease (AD) is an important disease that
accounts for 60–70% of dementia cases [3–5], with other diseases such as Parkinson’s disease
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(PD), Huntington’s disease (HD), multiple sclerosis (MS) and amyotrophic lateral sclerosis
(ALS) also contributing significantly towards cognitive decline. Various researchers believe
that the inhibition of ROS accumulation with antioxidant compounds or drugs could be
effective in treating neurodegenerative diseases [6,7].

Glutamate is a neurotransmitter involved in the excitatory process, and it is significant
for brain functions such as memory and learning. However, a high concentration of gluta-
mate can cause damage and death to neuronal cells, leading to various neurodegenerative
diseases, including AD [8–10]. Previous reports indicate that high glutamate content in
the hippocampus is related to the accumulation of amyloid beta and tau proteins [11].
Glutamate can trigger ROS and oxidative-stress-induced neuronal cell death through both
glutamate receptor and non-glutamate receptor (cystine/glutamate antiporter) mecha-
nisms. Excessive extracellular glutamate content can interrupt cystine uptake through the
cystine/glutamate antiporter system, leading to the depletion of intracellular antioxidants
(glutathione) and accumulation of ROS [9,10]. The consequences of this process cause
oxidative damage in neuronal cells, especially mitochondria, the first damaged organelles,
which are then cleared and recycled [12].

Autophagy is a mechanism that involves the clearance and recycling of damaged
and unnecessary components in the cells. The damaged and unnecessary components are
enveloped with a double-membrane vesicle “Autophagosome”, then fused with lysosome
to be degraded and recycled [13–15]. However, the continuous trigger of autophagy
upon high ROS production results in an inappropriate autophagic process, reaching the
point of no return and causing autophagic cell death. Furthermore, one type of selective
autophagy is mitophagy, which is involved in the programmed mitochondrial elimination
mechanism, and maintains a balance between mitochondrial quantity and quality [16,17].
This process can be initiated in the condition of prolonged ROS, hypoxia, starvation,
and cell senescence [18], leading to mitochondrial membrane depolarization or a loss of
mitochondrial membrane potential status. This process is also a significant regulator of
other types of cell death, such as apoptosis and necrosis in the nervous system. Supporting
evidence suggests that mitophagy and autophagy are related to oxidative stress conditions
and cell death in neurons, causing neurodegenerative disease [19,20].

Thunbergia laurifolia (Rang jued) belongs to the Acanthaceae family. Rang jued is a
well-known herbal tea in Thailand with anti-inflammatory, anti-bacterial and antioxidant
properties. Raw leaf of Rang jued is widely used as a detoxification agent against pesti-
cides [21]. However, the neuroprotective effects of Rang jued leaves on neuronal cells have
not yet been studied. Therefore, the present study attempted to investigate, for the first
time, the neuroprotective effects of T. laurifolia leaf extract (TLE) against glutamate-induced
oxidative stress and neuronal cell death through autophagy and mitophagy processes and
to further elucidate its underlying mechanisms against oxidative glutamate toxicity using
a mouse hippocampal neuronal cell line (HT-22) as a neurodegenerative cellular model.

2. Materials and Methods
2.1. Chemicals and Reagents

The analytical-grade reagents used in the extraction process were purchased from
RCI Labscan (Bangkok, Thailand). The 2,7-dihydrofluorescein diacetate (H2DCF-DA)
was obtained from Thermo Scientific (Waltham, MA, USA). Dulbecco’s modified Eagle
medium (DMEM), sodium selenite, chloroquine, 4′,6-diamidino-2-phenylindole (DAPI)
and L-glutamic acid were purchased from Sigma-Aldrich (St. Louis, MO, USA). The
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) was obtained from
Biobasic (Markham, ON, Canada). CytoTox 96 ® Non-Radioactive Cytotoxicity assay
was purchased from Promega (Madison, WI, USA). Alexa Fluor 488, carbonyl cyanide
m-chlorophenylhydrazone (CCCP), mouse monoclonal anti-β-actin antibody, mouse mon-
oclonal anti-rabbit IgG, HRP-linked antibody, rabbit polyclonal anti-LC3B antibody, rabbit
monoclonal anti-TOM20 (D8T4N) antibody and tetramethylrhodamine ethyl ester (TMRE)
were purchased from Cell Signaling Technology (Denvers, MA, USA). All primers, the
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AccuPower® RT Premix kit and AccuPower® 2X GreenStarTM qPCR Master Mix were
purchased from Bioneer (Daejeon, South Korea). Mitotracker Red CMXRos was obtained
from Molecular Probes (Eugene, OR, USA).

2.2. Plant Material and Extraction

T. laurifolia leaves were collected from HRH Princess Maha Chakri Sirindhorn Herbal
Garden in Rayong Province, Thailand. The plant was identified at the herbarium of
Kasin Suvatabhandhu (Department of Botany, Faculty of Science, Chulalongkorn Univer-
sity, Thailand), with the voucher specimen A013700 (BCU). Plant materials were washed
3 times and dried in a ventilated incubator at 40 ◦C. The dried leaves were mashed into
powder. Forty grams of TLE powder was packed in the cellulose extraction thimble and
extracted in Soxhlet apparatus. Then, 400 mL of extracting solvent (ethanol) was added
to the boiling flask. After 36 h of extraction, the extracted solvent was evaporated and
concentrated with a rotary evaporator and miVac concentrator, respectively. The yield of
ethanol extract was 7.96%.

2.3. Qualitative Bioactive Compounds of TLE by LC–MS Analysis

The phytochemical profiling of TLE was analyzed by liquid chromatography–mass
spectrometry (LC–MS), with a DionexTM Ultimate 3000 UHPLC system (Thermo Fisher
Scientific, Rockford, IL, USA) coupled with a high-resolution micrOTOF-Q III (Bruker
Daltonics, Bremen, Germany) at the Institute of Systems Biology (Universiti Kebangsaan
Malaysia, Malaysia). The AcclaimTM Polar Advantage II C18 column (3 mm × 150 mm,
3µm particle size) (Thermo Fisher Scientific, Rockford, IL, USA) was used as the chro-
matographic column with a flow rate of 400µL/min. The gradient elution conditions were
as follows: 5% B (0–3 min); 80% B (3–10 min); 80% B (10–15 min) and 5% B (15–22 min),
where solvent A is 0.1% formic acid in water and solvent B is 100% acetonitrile. The mass
analysis was detected by electrospray ionization (ESI) with ion positive mode. Then, the
m/z values from the experiment were compared with the METLIN (La Jolla, CA, USA) and
the KNApSAcK (Keyword Search Web Version 1.000.01) databases, with the acceptance of
mass error less than 30 parts per million (ppm).

2.4. Cell Culture

The mouse hippocampal neuronal HT-22 cells were a generous gift from Prof. David
Schubert (The Salk Institute, San Diego, CA, USA). HT-22 cells were cultured with Dul-
becco’s modified Eagle’s medium (DMEM) containing 10% fetal bovine serum, 100 U/mL
penicillin, and 100 µg/mL streptomycin. Cells were incubated under 5% CO2 in a humidi-
fied atmosphere at 37 ◦C. The culture medium was renewed every 3 days and cells were
grown to 80–85% confluence for the experiments. The passage number of HT-22 cells was
selected for use in the range No. 9–20, throughout the experiments.

2.5. Cell Viability Assay

The cell viability of mouse hippocampal cells was assessed by 3-(4,5-Dimethylthiazolyl)-
2,5-diphenyltetrazolium bromide (MTT) assay. HT-22 cells were seeded in 96-well plates at
a density of 3000 cells per well for 18–24 h. Cells were pre-treated with different concentra-
tions of TLE for 24 h, followed by glutamate (5 mM) in complete medium at 37 ◦C in a 5%
CO2 incubator with a humidified atmosphere for 18 h. Then, 20 µl of 5 mg/mL MTT cell
viability reagent (Biobasic, Markham, ON, Canada) was added for 3 h. The supernatant
was removed and the formazan crystals were dissolved with 150 µl dimethyl sulfoxide
(DMSO), and the absorbance was measured using a microplate reader (Enspire, Perkin-
elmer, Waltham, MA, USA) at 550 nm. The percentages of cell viability were calculated
and compared with the control.
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2.6. Cytotoxicity Assay

Cytotoxicity was measured from LDH enzymes released from damaged cells. HT-22
cells were seeded in 96-well plates at a density of 3000 cells per well overnight. Cells were
pre-treated with different concentrations of TLE for 24 h, followed by glutamate (5 mM)
in complete medium at 37 ◦C in a 5% CO2 incubator with a humidified atmosphere for
18 h. After the incubation period, 50 µL of supernatant was pipetted and added to a new
96-well plate. Cell cytotoxicity was analyzed by CytoTox 96® Non-Radioactive Cytotoxicity
Assay (Promega, Madison, WI, USA) according to the manufacturer’s instructions. Lysis
buffer was added for 30 min and was used as a cell lysis control. To measure the LDH
enzyme, 50 µl of cytotox reagent was added in to the new 96-well plate from the previous
description and incubated for 30 min at room temperature. At the end of the incubation
period, 50 µl of stop solution was added to stop the reaction. After that, the absorbance
was measured using a microplate reader (Enspire, Perkin-Elmer, Waltham, MA, USA) at
490 nm. The percentages of LDH release were calculated and compared with the control.

2.7. Intracellular ROS Assay

Intracellular ROS was measured using H2DCF-DA. Shortly, HT-22 cells were seeded
in 12-well plates at a density of 10,000 cells per well. Cells were pre-treated with selected
concentrations of TLE for 24 h followed by glutamate (5mM) in complete medium at
37 ◦C in a 5% CO2 incubator with a humidified atmosphere for 18 h. After the incubation
period, 10 µm H2DCF-DA was added and incubated at 37 ◦C for 45 min. The stained cells
were washed twice with cold phosphate-buffered saline (PBS) before trypsinization and
resuspended in cold PBS. The dihydroethidium (DHE) fluorescence was analyzed with a
flow cytometer (FACSCalibur, BD biosciences, San Jose, CA, USA) at excitation wavelength
488 nm and emission wavelength 525 nm.

2.8. Mitochondrial Membrane Potential Staining (TMRE) Assay

The mitochondrial membrane potential was measured by staining with the tetram-
ethylrhodamine ethyl ester (TMRE). HT-22 cells were grown on a cover slip for 18–24 h and
pre-treated with selected concentrations of TLE for 24 h, followed by glutamate (5 mM)
in the complete medium at 37 ◦C in a 5% CO2 incubator with a humidified atmosphere
for 12 h. After the incubation period, the cells were stained with 200 nM TMRE solution
for 30 min. The mitochondrial membrane potential disruption agent carbonyl cyanide
3-chlorophenylhydrazone (CCCP) (50 µM) was used as a positive control. After washing
with PBS, cells were mounted and analyzed with a confocal laser scanning microscope
(LSM 700) (Carl Zeiss, Jena, Germany) at excitation wavelength 550 nm and emission
wavelength 580 nm.

2.9. Western Blot Analysis

HT-22 cells were seeded in 6-well plates for 18-24 h. Afterwards, HT-22 cells were
treated with selected concentrations of TLE (24 h) followed by glutamate (5 mM) in com-
plete medium at 37 ◦C in a 5% CO2 incubator with a humidified atmosphere for 18 h before
harvest. The collected cells were washed with cold PBS and lysed on ice in pre-cooled
RIPA lysis buffer containing protease inhibitors. A total of 20 µg of proteins was added in
each lane of 12% acrylamide gel (Biorad, Hercules, CA, USA). After the separation step,
the proteins were transferred to PVDF membranes (GE Healthcare) and blocked with 5%
nonfat dry milk (Biorad, Hercules, CA, USA) in Tris-buffered saline and 0.1% Tween 20
detergent (1XTBS-T) for 1 h. Target proteins were probed with primary antibodies against
LC3B (1:8000, 2775, Cell Signaling Technology, USA), TOM20-D8T4N (1:10000, 42406, Cell
Signaling Technology, USA) and β-actin (1:16000, Cell Signaling Technology, Danvers, MA,
USA) at 4 ◦C overnight. Then, the proteins were probed with a HRP conjugated secondary
antibody (1:16000, Cell Signaling Technology, Danvers, MA, USA) at room temperature
for 1 h. Finally, the proteins were detected using an enhanced chemiluminescence (ECL)
Western Blot kit. The proteins were analyzed using NIH image J.
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2.10. Immunofluorescent Colocalization Analysis

HT-22 cells were seeded on coverslips in 6-well plates. The cells were treated with TLE
(24 h) followed by glutamate (5 mM) in complete medium at 37 ◦C in a 5% CO2 incubator
with a humidified atmosphere for 18 h before harvest. After washing with PBS, cells were
stained with Mitotracker (200 nM) for 30 min and fixed with 4% paraformaldehyde at room
temperature for 15 min then permeabilized in 0.3% Triton X-100 in PBS for 10 min and
blocked with 2% FBS for 1 hr. Then, cells were probed with monoclonal rabbit antibody to
LC3B (1:200 dilution) at 4 ◦C overnight. After washing with PBS, cells were probed with
Alexa 488 anti-rabbit secondary antibody (Cell Signaling Technology) at room temperature
for 1 h. Then, cells were washed with PBS and stained with DAPI. After mounting with
prolonged anti-fade, slides were analyzed with a confocal laser scanning microscope (LSM
700) (Carl Zeiss, Jena, Germany).

2.11. Real-Time PCR Analysis

HT-22 cells were seeded in 6-well plates. The cells were treated with TLE for 12 h
before harvest. Total RNA was extracted by Trizol reagent and RNA concentration was
measured using a Nanodrop spectrometer (Thermo Scientific, Rockford, IL, USA). RNA
was converted to complementary DNA (cDNA) by reverse transcription using AccuPower
RT Premix kit (Bioneer, South Korea). The cDNA was used as a sample for the real-time
PCR step. Real-time PCR assay was performed using AccuPower 2X GreenStarTM qPCR
Master Mix (Bioneer, South Korea) in ExicyclerTM 96 (Bioneer, Daejeon, South Korea) using
gene-specific primers (Table 1) [22,23]. The mRNA expression level was calculated by the
delta-delta Ct method with β-actin as an internal control.

Table 1. List of primers.

Genes Gene Accession Number Sequence of Primer

SOD1 forward NM_011434 5′-CAGGACCTCATTTTAATCCTCAC-3′

SOD1 reverse NM_011434 5′-CCCAGGTCTCCAACATGC-3′

SOD2 forward NM_013671 5′-CTGGACAAACCTGAGCCCTA-3′

SOD2 reverse NM_013671 5′-TGATAGCCTCCAGCAACTCTC-3′

CAT forward NM_009804 5′-CAGCGACCAGATGAAGCA-3′

CAT reverse NM_009804 5′-CTCCGGTGGTCAGGACAT-3′

GPx forward NM_008160 5′-ACAGTCCACCGTGTATGCCTTC-3′

GPx reverse NM_008160 5′-CTCTTCATTCTTGCCATTCTCCTG-3′

β-actin forward NM_007393 5′-GGCTGTATTCCCCTCCATCG-3′

β-actin reverse NM_007393 5′-CCAGTTGGTAACAATGCCATGT-3′

2.12. Molecular Docking

Co-crystal structures of Kelch-like ECH-associated protein 1 (KEAP1) complexed
with 2-[[4-[2-hydroxy-2-oxoethyl-(4-methoxyphenyl)sulfonyl-amino]-3-phenylmethoxy-
phenyl]-(4-methoxyphenyl)sulfonyl-amino]ethanoic acid (GX8) (PDB ID: 6HWS, https://
www.rcsb.org/structure/6HWS, accessed on 23 August 2021) and PTEN-induced kinase 1
(PINK1) complexed with ubiquitin (PDB ID: 6EQI, https://www.rcsb.org/structure/6EQI,
accessed on 23 August 2021) [24], and E3 ubiquitin–protein ligase parkin (PDB ID: 5C1Z,
https://www.rcsb.org/structure/5C1Z, accessed on 23 August 2021) [25] were obtained
from RCSB Protein Data Bank. Protein and compound files were prepared following the
previous procedure [26]. Briefly, the proteins were prepared by removing all waters and
original ligands, as well as adding missing hydrogen atoms and Kollman charges using
the AutoDockTools-1.5.6 program. The protein files were saved in PDBQT format for
further analysis. Ligand structures were drawn by BIOVIA Draw 2019 software. The clean
geometry of all ligands was performed by using BIOVIA Discovery Studio 2020, then the
ligand structures were saved in PDB file. After that, the format files were converted to
PDBQT format by using AutoDockTools-1.5.6.

https://www.rcsb.org/structure/6HWS
https://www.rcsb.org/structure/6HWS
https://www.rcsb.org/structure/6EQI
https://www.rcsb.org/structure/5C1Z
https://www.rcsb.org/structure/5C1Z
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Molecular docking was performed by using AutoDock Vina software [27] with all
default parameters, following the procedure of Forli S et al. [28]. For KEAP1, the grid box
was set based on the original inhibitor with the number of points in the xyz dimension of
30 × 30 × 30, spacing 0.375 Å and center grid box at -13.549 × 6.01 × 13.387 (xyz). The
gid box of PINK1 docking was set to 40 × 40 × 40 points in the xyz dimension, spacing
0.375 Å and center grid box at 62.7479 × 5.4715 × 11.7265 (xyz) [29]. At the catalytic
domain of parkin, the grid box was adjusted to 35 × 35 × 35 xyz dimension points, spacing
0.375 Å and center grid box at -12.543 × 34.705 × 27.038 (xyz). The best conformation
exhibited the lowest binding energy. The protein–ligand interaction was visualized by
BIOVIA Discovery Studio 2020.

2.13. Lipinski’s Rule of Five Parameters and ADMET Property Analysis

Physicochemical properties of all compounds were predicted using the SwissADME
online database (http://www.swissadme.ch accessed on 1 October 2021) [30]. The drug-
likeness of all compounds was considered by Lipinski’s rule of five parameters: molecular
weight ≤ 500; the number of hydrogen bond acceptors ≤ 10; the number of hydrogen bond
acceptors ≤ 5; and MlogP ≤ 4.15 [31]. Moreover, the pharmacokinetic properties, adsorp-
tion, distribution, metabolism, excretion, and toxicity (ADMET), of all compounds were
predicted by using the pkCSM online database (http://biosig.unimelb.edu.au/pkcsm/
prediction accessed on 1 October 2021) [32].

2.14. Statistical Analysis

All the results are presented as the mean ± standard error of the mean (SEM) from at
least three independent experiments and were analyzed by SPSS 16.0 software. One-way
ANOVA was used for the evaluation of statistical significance with a post hoc Dunnett’s
test and Bonferroni. A p-value of less than 0.05 was considered statistically significant.

3. Results
3.1. Characterization of Bioactive Compounds from TLE

The putative compounds of TLE were determined by LC–MS analysis. The chro-
matographic peaks were identified by comparing the m/z value with the MS databases in
ion positive mode, as shown in the supplementary data (Figure S1). Epicatechin (6.08%),
apigenin-7-O-glucoside (5.14%), 7-hydroxycoumarin (4.29%), apiin (3.85%) and betaine
(2.00%) were found to be the five major bioactive compounds in TLE by LC–MS.

3.2. TLE Attenuates Glutamate-Induced Toxicity in HT-22 Cells

To evaluate the effect of TLE on glutamate-induced oxidative toxicity in neurons,
we used the HT-22 mouse hippocampal cell line as a model. From our previous study, a
toxic level of glutamate (5 mM) caused HT-22 cell death after 18 h of treatment [22,23].
TLE (2.5–50 µg/mL) did not show any toxic effect in HT-22 cells [33]; therefore, TLE at
2.5–50 µg/mL was used in this experiment. In the present study, the HT-22 cells were
pre-treated with TLE at various doses, followed by glutamate (5 mM). According to Ku-
mari and Mehta et al. (2012), selenium (in the form of sodium selenite), which exerted a
neuroprotective effect against glutamate toxicity, was used as a positive control [34]. The
results show that 5 mM of glutamate caused about 70% cell death in HT-22 cells. However,
TLE at 12.5–50 µg/mL significantly increased cell viability in a dose-dependent manner
(p < 0.001). TLE at 50 µg/mL increased cell viability to approximately 90%, similar to
that of 100 nM selenium (positive control), as shown in Figure 1a. Moreover, the cell
cytotoxicity (LDH) assay was used to support cell viability. The cell cytotoxicity results
show that TLE at 2.5–50 µg/mL and selenium (100 nM) reduced the toxicity of glutamate
in a dose-dependent manner (Figure 1b). Furthermore, the cell morphology examination
under the light microscope showed that glutamate caused nuclear condensation and cell
shrinkage, while pre-treatment of cells with TLE and selenium sustained the cell morphol-
ogy (Figure 1c), with 50 µg/mL of TLE being the most effective concentration to reduce

http://www.swissadme.ch
http://biosig.unimelb.edu.au/pkcsm/prediction
http://biosig.unimelb.edu.au/pkcsm/prediction
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cytotoxicity from glutamate. Thus, the results show that TLE exerts a neuroprotective effect
against glutamate-induced toxicity.
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Figure 1. TLE attenuates glutamate-induced toxicity in HT-22 cells. The effect of TLE on glutamate-induced cytotoxicity
in HT-22 was assessed by MTT assay and LDH assay. HT-22 cells (passage 12–15) were pre-treated with TLE at different
concentrations (2.5–50 µg/mL) and selenium as a positive control for 24 h, followed by 5 mM glutamate for 18 h. Bar graphs
show the % cell viability (a) and % LDH release (b). The morphology of HT-22 cells was visualized under the inverted light
microscope (scale bar is 50 µm) (c). The data were collected from at least three independent experiments and the results are
shown as mean ± SEM. * p value < 0.05, ** p value < 0.01, *** p value < 0.005, **** p value < 0.001 compared with glutamate
treatment group, # p value < 0.001 compared with untreated control.

3.3. TLE Inhibits Glutamate-Induced Intracellular ROS Generation

Glutamate causes cytotoxicity in the neuronal cells by inducing the production of ROS.
To determine the effect of TLE against glutamate-induced oxidative stress, the intracellular
ROS was analyzed from the fluorescent intensity using H2DCF-DA probe. HT-22 cells were
pre-treated with TLE or selenium, which protected HT-22 cells from glutamate toxicity
in previous experiments, followed by 5 mM glutamate for 18 h. The results show that
glutamate notably increased the intracellular ROS to 4 times that of the non-treatment
group. However, TLE and selenium significantly inhibited ROS production in HT-22
cells in a dose-dependent manner when compared with the glutamate treatment group
(Figure 2a). Flow cytometry histograms of each treatment are shown in Figure 2b. Upon
glutamate treatment, the histogram was found to shift to the right, which shows the
increasing H2DCF-DA intensity (increase in intracellular ROS) compared with the ROS
control (250 mM H2O2). However, pre-treatment with TLE can reduce the intracellular
ROS, similar to the untreated control (no shift). Thus, TLE at 50 µg/mL is the most effective
dose to prevent glutamate-induced intracellular ROS in HT-22 cells.
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Figure 2. TLE inhibits glutamate-induced intracellular ROS production. Flow cytometry was used to detect the fluorescence
intensity of DCF. HT-22 cells (passage 15,16,18,19) were pre-treated with TLE at different concentrations (10–50 µg/mL) or
selenium (100 nM) for 24 h and then exposed to 5 mM glutamate for 18 h. (a) The bar graph of each treatment shows the
relative ROS level in HT-22 cells. (b) The flow cytometry histogram and the overlay of the histogram of each treatment;
unstained (black), TLE treatment with glutamate (green), 5 mM glutamate treatment (pink) and 250 mM H2O2 treatment
(blue). The data were collected from at least three independent experiments and the results are shown as mean ± SEM.
*** p value < 0.005, **** p value < 0.001 compared with glutamate treatment group, # p value < 0.001 compared with
untreated control.

3.4. TLE Sustains the Membrane Potential of Mitochondria

Mitochondrial membrane potential is sensitive to oxidative stress, resulting in the loss
of membrane potential and then neuronal cell death. In order to investigate the membrane
potential status of mitochondria, HT-22 cells were stained with TMRE (a fluorescent dye
that stains active mitochondria). As TLE (50 µg/mL) showed effective reduction of intracel-
lular ROS generation, this dose was selected for this experiment. Figure 3a shows that the
control group (untreated group) emitted a high fluorescence intensity, while the glutamate
treatment group caused the loss of fluorescence intensity, which was related to the loss of
mitochondrial membrane potential. Quantification of the relative fluorescence intensity of
TMRE exhibited that glutamate significantly decreased the fluorescence intensity compared
with the control group (Figure 3b). The mitochondrial uncoupling agent (CCCP), which
was used as the system control of this experiment, also showed a loss of fluorescence inten-
sity similar to the glutamate treatment group. CCCP interferes with the proton gradient
and disrupts the membrane potential of mitochondria. Interestingly, the pretreated cells
with TLE and selenium (positive control) prior to glutamate treatment could sustain the
mitochondrial membrane potential compared with the glutamate treatment group. These
results suggest that TLE rescue the loss of mitochondrial membrane potential in response
to glutamate.
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Figure 3. TLE restores mitochondrial membrane potential status. HT-22 cells (passage 911) were
pre-treated with TLE at 50 µg/mL or selenium for 24 h followed by 5 mM glutamate. (a) The status
of the mitochondrial membrane potential of each treatment was stained using a TMRE probe. They
were observed under the confocal laser scanning microscope; scale bar 20 µm. (b) Data are expressed
as the relative TMRE level of the non-treated control. CCCP, mitochondrial uncoupling agent. Values
were collected from at least three independent experiments and the results are shown as mean± SEM
(n = 3). **** p value < 0.001 compared with glutamate treatment group, # p value < 0.001 compared
with untreated control.

3.5. TLE Upregulates the mRNA Expression Level of Antioxidant Enzyme Genes

Antioxidant enzymes are an important defense mechanism against ROS in the cells,
and play a significant role in neutralizing, stabilizing and deactivating free radicals [1,35].
In this study, HT-22 cells were treated with TLE at different concentrations (10–50 µg/mL)
and the mRNA expression of SOD1, SOD2, GPx and CAT enzymes were analyzed with
real-time PCR. The results indicate that the highest concentration (50 µg/mL) of TLE
significantly stimulated the mRNA level of SOD1, SOD2 and CAT (Figure 4a–c), while the
mRNA level of GPx was only activated by selenium (Figure 4d) compared to the untreated
control. Thus, this result suggests that TLE can upregulate the endogenous antioxidant
enzyme genes in HT-22 cells.
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Figure 4. TLE increases the mRNA expression of antioxidant enzyme genes. HT-22 cells (passage 13,15,16) were treated
with TLE (10-50 µg/mL) for 12 h and then analyzed with the real-time PCR technique. The mRNA expression levels of
(a) SOD1, (b) SOD2, (c) CAT and (d) GPx were normalized with β-actin and the results are shown as fold change in mRNA
expression with mean ± SEM (n = 3). * p value < 0.05, ** p value < 0.01, *** p value < 0.005 compared with untreated control.

In order to clarify and explain the interaction between identified compounds from
TLE and the binding site of KEAP1, a negative regulator of Nrf2, molecular docking was
studied. The KEAP1 in complex with GX8 (PDB ID: 6HWS) was retrieved from the RCSB
Protein Data Bank. Initially, the GX8 was removed from the complex, then the removed
ligand was re-docked into the original binding site of KEAP1 by using AutoDock Vina.
The re-docking results show that GX8 was capably docked into the original binding pocket
with a binding energy of -8.6 kcal/mol; this value was set as a benchmark value for the
result interpretation of the candidate ligands. The ligand provides a binding energy less
than the reference value, which is considered a potential KEAP1 inhibitor. Interestingly,
apigenin-7-O-glucoside was capably docked into the binding site of KEAP1 with a binding
energy lower than that found in GX8 (the reference ligand). Interactions between KEAP1
and candidate ligands are presented in Table 2 and Figure 5.

Table 2. Molecular docking results of candidate ligands at the binding site of KEAP1 (PDB ID: 6HWS).

Ligand
Binding Energy

(kcal/mol)
Amino Acid Interaction

Hydrogen Bond Hydrophobic Bond Electrostatic Bond

GX8 (reference ligand) −8.6

SER363
ARG380
ASN414
ARG415

ARG483 (2)
SER508 (2)

SER555
SER602

TYR334
ALA556
TYR572

ARG415 (2)
ARG483
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Table 2. Cont.

Ligand
Binding Energy

(kcal/mol)
Amino Acid Interaction

Hydrogen Bond Hydrophobic Bond Electrostatic Bond

7-Hydroxycoumarin −6.5
SER363
ARG380
SER602

TYR334 (2)
ALA556 -

Apigenin-7-O-
glucoside −8.7

SER363
ARG380 (2)

ASN382
SER602

PHE478 ARG415 (2)

Apiin −8.4

TYR334
SER363 (2)
ARG380
ASN382
ASN414
SER508
SER555
SER602

ALA556 ARG415 (2)

Betaine −3.9
ARG415 (3)
SER508 (2)

SER555
TYR525 TYR525

Epicatechin −7.8 SER363
SER555 (2)

TYR334
TYR525
ALA556
TYR572

-
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3.6. TLE Inhibits Glutamate-Induced Excessive Mitophagy in HT-22 Cells

Prolonged generation of ROS and oxidative stress in neurons can promote autophagy
and mitophagy processes [36–38]. Glutamate has been well known to induce oxidative
stress and activate autophagy, leading to neuronal cell death in HT-22 cells [39,40]. To
evaluate the correlation between glutamate-induced oxidative stress and an excessive
mitophagy process, the protein expressions of specific autophagy and mitophagy markers,
including the LC3 and mitochondrial protein (TOM20), were detected by Western blot
analysis. LC3 is one of the most important proteins involved in the autophagy process,
especially the LC3B isoform, and is often used as an autophagy marker. Moreover, the
co-localization of LC3 and TOM20 are often used to represent the mitophagy process.
Serum withdrawal (starvation), which is frequently used to increase the LC3-II level, was
used as a positive control for autophagic flux [41]. HT-22 cells were pretreated with the
most effective dose of TLE (50 µg/mL). Selenium (100 nM) was used as the positive control.
We found that the treated cells with glutamate alone significantly increased the protein
levels of the ratio of LC3B-II/LC3B-I, compared with the untreated group. Furthermore,
both TLE and selenium treatment inhibited LC3B conversion compared with the untreated
group (Figure 6a,b). In addition, the TOM20 protein expression level was significantly
decreased in the glutamate treatment group compared with the untreated group, indicating
that glutamate could cause the loss of mitochondrial protein. However, TLE and selenium
treatment could sustain the TOM20 protein level compared with the untreated group
(Figure 6a,c), indicating the maintenance of the mitochondrial protein by the extract upon
glutamate treatment. These results indicate that TLE can inhibit glutamate-mediated
oxidative stress and the excessive mitophagy in HT-22 cells.

To further clarify the glutamate-stimulated process of excessive mitophagy in HT-22
cells, the co-localizations of LC3B and mitochondria were assessed by immunocytochem-
istry assay to substantiate the protein expression results. LC3B was observed as punctate
staining representing the autophagosomes. In this experiment, HT-22 cells were pretreated
with 50 µg/mL of TLE and 100 nM selenium (positive control) for 24 h followed by 5 mM
glutamate for 18 h. Moreover, chloroquine (lysosome inhibitor) was used as a positive
control for autophagic flux [41]. Figure 7a exhibits that the control group showed no
LC3 puncta formation, whereas glutamate treatment promoted the LC3 puncta formation,
which was similar to that of 50 µM chloroquine (CQ) treatment (the autophagy control
group). Noticeably, the pretreatment cells with TLE showed no LC3 puncta staining to
cells, indicating the inhibition of autophagy (Figure 7a). Additionally, Pearson’s correla-
tion coefficient was calculated. The co-localization occurred in the glutamate treatment
group and autophagy control group (CQ), and was significantly suppressed by TLE treat-
ment (Figure 7b). To demonstrate if the glutamate induced mitochondria dysfunction,
the mitochondrial morphology was investigated (Figure 7c). Glutamate treatment led to
mitochondrial fragmentation and also significantly increased the number of cells with
fragmented mitochondria (Figure 7d). However, pre-treatment of 50 µg/mL TLE reduced
the number of cells with fragmented mitochondria and prevented the glutamate-induced
mitochondrial fragmentation, showing a normal morphology of mitochondria (tubular
and round forms), the same as the cell control. Thus, our results indicate that glutamate
could induce the overaccumulation of ROS, to further activate the excessive mitophagy
process, leading to neuronal cell death. Taken together, these findings suggest that TLE
provides neuroprotection by inhibiting the mitophagy signal.
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Figure 6. TLE inhibits glutamate-induced excessive mitophagy. HT-22 cells (passage 14,16,17) were
pretreated with 50 µg/mL of TLE or 100 nM selenium followed by 5 mM glutamate for 18 h. (a) The
protein expression level of LC3B (autophagy) and TOM20 (mitochondria) were analyzed by Western
blot, and β-actin served as the loading control. Relative protein levels of (b) LC3B and (c) TOM20
were quantified by densitometry and the mean data from at least three independent experiments
were normalized to the results. Cont, untreated control; Starv, starvation. The data represent the
means ± SEM. * p value < 0.05, ** p value < 0.01, *** p value < 0.005 compared with untreated control
# p value < 0.05, ## p value < 0.01 compared with only the glutamate-treated group.
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Figure 7. The immunofluorescence staining of LC3B protein and mitochondria. HT-22 cells (passage 10–12) were pre-
treated with 50 μg/mL of TLE followed by 5 mM glutamate for 18 h and 50 μM chloroquine (CQ) alone for 18 h is used as 
positive control (a) HT-22 cells were stained with the mitochondria (Mitotracker: red), LC3B protein (Alexa 488: green) 
and nucleus (DAPI: blue). They were observed under the confocal laser scanning microscope (scalebar is 10 μm). (b) The 
bar graph of co-localization was considered with Pearson’s correlation coefficient. (c) Micrograph of mitochondrial mor-
phology. The normal morphology of mitochondria (tubular and round forms) was shown in the cell control. Glutamate 
altered the mitochondrial morphology, causing the mitochondrial fragmentation. (d) The numbers of cells with mitochon-
drial fragmentation were quantified as a percentage, data represent the means ± SEM (n = 3) and the averages of cells are 
at least 20 cells. ****p value < 0.001 compared with untreated control ###p value < 0.005, ####p value < 0.001 compared with 
glutamate-treated group. 
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3.7.1. Interaction between TLE-Identified Compounds and PINK1 

The possible inhibitory effect of TLE-identified compounds on PINK1 activity was 
predicted by molecular docking study. Curcumin, a known natural PINK1 inhibitor [29], 
was utilized as a reference ligand in this study. Molecular docking results demonstrated 
that curcumin was docked into the binding pocket and interacted with LYS298 and 
LYS298 residues, similar to the previous report [29] (Table 3 and Figure 8). The binding 
affinity of curcumin at the PINK1 binding pocket was -5.4 kcal/mol. None of the candidate 
compounds had binding energies lower than the binding energy of curcumin. However, 
among all the candidate compounds, apigenin-7-O-glucoside showed the lowest binding 

Figure 7. The immunofluorescence staining of LC3B protein and mitochondria. HT-22 cells (passage 10–12) were pretreated
with 50 µg/mL of TLE followed by 5 mM glutamate for 18 h and 50 µM chloroquine (CQ) alone for 18 h is used as positive
control (a) HT-22 cells were stained with the mitochondria (Mitotracker: red), LC3B protein (Alexa 488: green) and nucleus
(DAPI: blue). They were observed under the confocal laser scanning microscope (scalebar is 10 µm). (b) The bar graph
of co-localization was considered with Pearson’s correlation coefficient. (c) Micrograph of mitochondrial morphology.
The normal morphology of mitochondria (tubular and round forms) was shown in the cell control. Glutamate altered
the mitochondrial morphology, causing the mitochondrial fragmentation. (d) The numbers of cells with mitochondrial
fragmentation were quantified as a percentage, data represent the means ± SEM (n = 3) and the averages of cells are at
least 20 cells. **** p value < 0.001 compared with untreated control ### p value < 0.005, #### p value < 0.001 compared with
glutamate-treated group.

3.7. In Silico Virtual Screening of Binding Affinity between TLE-Identified Compounds and
Mitophagy Protein Markers
3.7.1. Interaction between TLE-Identified Compounds and PINK1

The possible inhibitory effect of TLE-identified compounds on PINK1 activity was
predicted by molecular docking study. Curcumin, a known natural PINK1 inhibitor [29],
was utilized as a reference ligand in this study. Molecular docking results demonstrated
that curcumin was docked into the binding pocket and interacted with LYS298 and LYS298
residues, similar to the previous report [29] (Table 3 and Figure 8). The binding affinity
of curcumin at the PINK1 binding pocket was −5.4 kcal/mol. None of the candidate
compounds had binding energies lower than the binding energy of curcumin. However,
among all the candidate compounds, apigenin-7-O-glucoside showed the lowest binding
affinity at −5.1 kcal/mol, which was closer to the affinity of curcumin (the reference

Figure 7. The immunofluorescence staining of LC3B protein and mitochondria. HT-22 cells (passage 10–12) were pretreated
with 50 µg/mL of TLE followed by 5 mM glutamate for 18 h and 50 µM chloroquine (CQ) alone for 18 h is used as positive
control (a) HT-22 cells were stained with the mitochondria (Mitotracker: red), LC3B protein (Alexa 488: green) and nucleus
(DAPI: blue). They were observed under the confocal laser scanning microscope (scalebar is 10 µm). (b) The bar graph
of co-localization was considered with Pearson’s correlation coefficient. (c) Micrograph of mitochondrial morphology.
The normal morphology of mitochondria (tubular and round forms) was shown in the cell control. Glutamate altered
the mitochondrial morphology, causing the mitochondrial fragmentation. (d) The numbers of cells with mitochondrial
fragmentation were quantified as a percentage, data represent the means ± SEM (n = 3) and the averages of cells are at
least 20 cells. **** p value < 0.001 compared with untreated control ### p value < 0.005, #### p value < 0.001 compared with
glutamate-treated group.

3.7. In Silico Virtual Screening of Binding Affinity between TLE-Identified Compounds and
Mitophagy Protein Markers
3.7.1. Interaction between TLE-Identified Compounds and PINK1

The possible inhibitory effect of TLE-identified compounds on PINK1 activity was
predicted by molecular docking study. Curcumin, a known natural PINK1 inhibitor [29],
was utilized as a reference ligand in this study. Molecular docking results demonstrated
that curcumin was docked into the binding pocket and interacted with LYS298 and LYS298
residues, similar to the previous report [29] (Table 3 and Figure 8). The binding affinity
of curcumin at the PINK1 binding pocket was −5.4 kcal/mol. None of the candidate
compounds had binding energies lower than the binding energy of curcumin. However,
among all the candidate compounds, apigenin-7-O-glucoside showed the lowest binding
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affinity at −5.1 kcal/mol, which was closer to the affinity of curcumin (the reference
ligand). The protein–ligand interactions are illustrated in Figure 8. These results imply
that apigenin-7-O-glucoside was a candidate compound from TLE that suppressed the
mitophagy process by inhibiting PINK1 activity.

Table 3. Molecular docking results of candidate ligands at the binding site of PINK1 (PDB ID: 6EQI).

Ligand
Binding Energy

(kcal/mol)
Amino Acid Interaction

Hydrogen Bond Hydrophobic Bond Electrostatic Bond

Curcumin (reference
ligand) −5.4 LYS298

GLU418 ARG302 LYS298
ASP423

7-Hydroxycoumarin −4.9

LEU301
ASN421 (2)

ASP423
ASN424

LEU301 GLU418
ASP423

Apigenin-7-O-
glucoside −5.1

LYS298
ASP423
GLU418

TYR427 LYS298 (2)

Apiin −4.4 - TYR427 (2) LYS336

Betaine −3.4
LYS298 (2)
GLU418 (3)

ASP423 ASN424
- GLU418

ASP423

Epicatechin −4.6 GLU418
ASP423 - LYS298
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3.7.2. Interaction between TLE-Identified Compounds and E3 Ubiquitin-Protein
Ligase Parkin

Parkin has a functional role in E3 ubiquitin-protein ligase and mediates the mitophagy
process [42]. The targeting of parkin could provide therapeutic effects on neurodegener-
ative disorders [43]. In comparison, we studied the binding affinity of mavoglurant, an
anti-Parkinson drug [44], which was reported to inhibit parkin activity [43]. The molec-
ular docking results show that mavoglurant capably docked into the catalytic domain
of parkin with a binding energy of −5.4 kcal/mol. Moreover, mavoglurant formed hy-
drophobic bonds with CYS431 and HIS433 residues, which were the conserved domain of
E3 ubiquitin-protein ligase [45]. Interestingly, two out of five phytochemical compounds,
namely epicatechin (−6.6 kcal/mol) and apigenin-7-O-glucoside (−6.2 kcal/mol), exhib-
ited better binding affinities than mavoglurant (the reference ligand). The interactions
between candidate compounds and E3 ubiquitin-protein ligase parkin at the catalytic site
are shown in Table 4 and Figure 9. These results suggest that epicatechin and apigenin-7-O-
glucoside could be potential candidate compounds from TLE that inhibit mitophagy by
preventing E3 ubiquitin-protein ligase parkin activity.

Table 4. Molecular docking results of candidate ligands at the catalytic domain of E3 ubiquitin-protein ligase parkin (PDB
ID: 5C1Z).

Ligand
Binding Energy

(kcal/mol)
Amino Acid Interaction

Hydrogen Bond Hydrophobic Bond Electrostatic Bond

Mavoglurant (reference
ligand) −5.4 GLY179

VAL425 (2)
CYS431
HIS433

MET434 (2)
PRO437

-

7-Hydroxycoumarin −4.8
GLY429
CYS431
LYS435

CYS431 -

Apigenin-7-O-
glucoside −6.2

GLY179
ASN428
GLY429

VAL425
CYS431
MET434
PRO437

-

Apiin 1.6 LYS435 (2) HIS433
LYS435 (2) -

Betaine −3.4

ASN428
GLY429
CYS431

HIS433 (2)

- -

Epicatechin −6.6

GLY179
GLU426
GLY429
CYS431

HIS433 (2)
LYS435

- LYS435

3.8. Lipinski’s Rule of Five Parameters and ADMET Properties of TLE Phytochemical Compounds

The drug-likeness property of TLE’s phytochemical constituents was evaluated by
Lipinski’s rule of five with the following criteria: molecular weight ≤ 500; the number
of hydrogen bond acceptors ≤ 10; the number of hydrogen bond acceptors ≤ 5; and
MlogP ≤ 4.15 [31]. Compounds that provided no more than one violation were considered
drug-like compounds. As shown in Table 5, all TLE-identified compounds passed Lipin-
ski’s criteria except apiin, which had an excess acceptable molecular weight and several
hydrogen bond acceptors. In addition, pharmacokinetic properties, adsorption, distribu-
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tion, metabolism, excretion, and toxicity (ADMET), of the identified compounds were
predicted and are tabulated in Table 6. Overall, all compounds could absorb through the
intestine. Interestingly, betaine and 7-hydroxycoumarin showed high intestinal absorption,
and the percentage of absorption was 100% and 94.551%, respectively. Moreover, all iden-
tified compounds had no AMES toxicity and hepatotoxicity, except 7-hydroxycoumarin,
which exhibited hepatotoxicity.
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Table 5. Physicochemical properties of TLE phytochemical compounds based on Lipinski’s rule of five parameters.

Compound Molecular Weight
(≤500)

#H-Bond
Acceptors

(≤10)

#H-Bond Donors
(≤5)

MLOGP
(≤4.15)

Lipinski
#Violations

(≤1)

7-Hydroxycoumarin 162.14 3 1 1.04 0

Apigenin-7-O-
glucoside 432.38 10 6 −1.61 1

Apiin 564.49 14 8 −3.16 3

Betaine 117.15 2 0 −3.67 0

Epicatechin 290.27 6 5 0.24 0

# indicates number.
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Table 6. ADMET properties of TLE-phytochemical compounds.

Pharmacokinetic Property

7-
H

yd
ro

xy
co

um
ar

in

A
pi

ge
ni

n-
7-

O
-G

lu
co

si
de

A
pi

in

B
et

ai
ne

Ep
ic

at
ec

hi
n

Absorption

Water solubility (log mol/L) −2.131 −2.559 −2.851 0.723 −3.117
Caco2 permeability (log Papp in 10-6 cm/s) 1.206 0.33 −0.966 1.44 −0.283
Intestinal absorption (human) (% Absorbed) 94.551 37.609 17.411 100 68.829
Skin permeability (log Kp) −2.6 −2.735 −2.735 −2.78 −2.735
P-glycoprotein substrate No Yes Yes Yes Yes
P-glycoprotein I inhibitor No No No No No
P-glycoprotein II inhibitor No No No No No

Distribution

VDss (human) (log L/kg) 0.032 0.342 1.004 −0.304 1.027
Fraction unbound (human) (Fu) 0.432 0.218 0.171 0.875 0.235
BBB permeability (log BB) −0.278 −1.391 −1.793 −0.214 −1.054
CNS permeability (log PS) −2.741 −3.746 −4.972 −2.804 −3.298

Metabolism

CYP2D6 substrate No No No No No
CYP3A4 substrate No No No No No
CYP1A2 inhibitior Yes No No No No
CYP2C19 inhibitior No No No No No
CYP2C9 inhibitior No No No No No
CYP2D6 inhibitior No No No No No
CYP3A4 inhibitior No No No No No

Excretion

Total Clearance (log ml/min/kg) 0.706 0.547 −0.054 0.326 0.183
Renal OCT2 substrate No No No No No

Toxicity

AMES toxicity No No No No No
Max. tolerated dose (human) (log mg/kg/day) 0.689 0.515 0.446 0.838 0.438
hERG I inhibitor No No No No No
hERG II inhibitor No No Yes No No
Oral rat acute toxicity (LD50) (mol/kg) 2.047 2.595 2.49 1.654 2.428
Oral rat chronic toxicity (LOAEL) (log
mg/kg_bw/day) 1.751 4.359 4.574 0.254 2.5

Hepatotoxicity Yes No No No No
Skin sensitization No No No Yes No
T.Pyriformis toxicity (log ug/L) 0.546 0.285 0.285 −0.057 0.347
Minnow toxicity (log mM) 1.714 5.507 3.835 2.97 3.585

BBB: blood–brain barrier, BB: brain:blood drug concentration ratio, CNS: central nervous system, PS: permeability–surface area.

4. Discussion

Oxidative stress is one of the major causes of neurodegenerative disease, including
AD [46,47]. It promotes the formation of neurofibrillary tangles, resulting in the progression
of the disease [48–50]. Various studies showed that high glutamate content in the brain
encourages ROS generation and leads to neuronal cell death, which is a pathophysiology of
AD [10,51,52]. Some studies revealed that prolonged oxidative stress is associated with the
mitophagy and autophagy processes, contributing to autophagic cell death in the neuronal
system [19,53]. This process is also a significant regulator of other types of cell death, such
as apoptosis and necrosis. Hence, the inhibition of glutamate-induced oxidative stress and
neuronal cell death through mitophagy and autophagy processes may have the potential to
provide a beneficial therapeutic approach for the treatment of neurodegenerative diseases.
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In this study, we identified the phytochemical constituents of TLE, which was an-
alyzed by LC–MS. The mass spectrum of LC–MS showed that TLE contains five major
bioactive compounds (epicatechin, apigenin-7-O-glucoside, 7-hydroxycoumarin, apiin and
betaine). Our data show that epicatechin is the most abundant bioactive compound in
TLE, which could directly inhibit ROS and increase the gene expression of antioxidant
enzymes [54,55]. From previous reports, it can be identified that epicatechin exhibits neu-
roprotection from traumatic brain injury and NMDAR-induced excitotoxicity through the
Nrf-2-dependent antioxidant mechanism in animal models [56,57]. In addition, epicatechin
ameliorates glutamate-induced oxidative and endoplasmic reticulum stress, and disrupts
mitochondrial membrane potential by methamphetamine in HT-22 cells through the MAPK
pathway [58]. Moreover, epicatechin was reported to have anti-inflammation, anticancer
and neuroprotective properties [59,60]. Secondly, the water-soluble apigenin-7-O-glucoside
(apigetrin) also has reported neuroprotective, antioxidant, anticancer, and antifungal prop-
erties [61–64]. Furthermore, 7-hydroxycoumarin (umbelliferone), a coumarin derivative,
was also found in TLE. It has been reported to possess antioxidant activity by increasing
the gene expression of antioxidant enzymes (SOD and CAT) [65], as well as antimicrobial
and anticancer effects [66,67]. Umbelliferone also showed protection against glutamate
toxicity due to its antioxidant potential [68]. Apiin (a glycoside of apigenin) and betaine
were reported to have antioxidant potential [69–71]. Betaine exhibited neuroprotective
activity against glutamate in primary cultured brain cells, which could be due to the sta-
bilization of cell membranes from toxic insults or through the antioxidant potential [72].
For the neuroprotective approach, the effects of TLE against glutamate-induced oxidative
toxicity in HT-22 cells and its underlying mitophagy mechanisms were investigated. In
our present study, we found that TLE was able to increase cell viability and reduce ROS
accumulation. Normally, ROS can be neutralized and scavenged through the antioxidant
mechanisms of antioxidant enzymes such as SOD, GPx and CAT. Therefore, we analyzed
the gene expression level of SOD1, SOD2, GPx and CAT. The results show that TLE can
upregulate the expression of antioxidant enzymes. Interestingly, SOD2 regulation was
higher when compared to other enzymes. SOD2 is located in the mitochondrial matrix
and plays a significant role in the antioxidant process of mitochondria. Previous reports
suggest that SOD2 enzyme reduces amyloid beta accumulation in Alzheimer’s mice [73,74].
Moreover, a decrease in SOD2 levels can cause the accumulation of Aβ protein [75]. Our
study shows that TLE has potent antioxidant activity, and LC–MS analysis found that
TLE had a high content of apigenin-7-O-glucoside (apigetrin), which is a well-known
apigenin derivative [61]. Interestingly, Lim et al. (2016) reported that apigetrin enhances
the expression of Nrf2 in HT-22 cells [63]. The presence of apigetrin in TLE could be
responsible for promoting the antioxidant activity through Nrf2/ARE pathway. Thus, the
increase in antioxidant enzyme genes links to the Nrf2/ARE-dependent signaling. Numer-
ous lines of evidence indicate that Nrf2/ARE signaling can increase the gene expression
level of various antioxidant enzyme genes in neurons [76–79]. Additionally, in order to
predict the association between bioactive compounds of TLE and Nrf2 signaling, we also
analyzed the in silico virtual screening of affinity between major bioactive compounds of
TLE and KEAP1. It is a negative regulator of Nrf2. Interestingly, apigenin-7-O-glucoside
possibly inhibited KEAP1, with a binding energy lower than that found in the reference
ligand (GX8).

Neuronal cells normally require the function of mitochondria as the main energy
source. In order to study the effect of glutamate on mitochondrial status, TMRE (a fluores-
cent dye) was used to stain the active mitochondria. We found that glutamate can cause the
loss of mitochondrial membrane potential, and TLE can restore the mitochondrial mem-
brane potential status. This effect also involved the elevation of the endogenous antioxidant
enzymes, namely, SOD1 and SOD2, CAT and GPx. Our study showed that glutamate treat-
ment can produce the intracellular ROS and disrupt the mitochondrial membrane potential
status in HT-22 cell model and can be reversed by TLE treatment. The findings indicate
that TLE shows neuroprotective properties against glutamate-induced oxidative stress
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by directly suppressing the intracellular ROS generation, upregulating the antioxidant
enzyme gene expression, and improving the mitochondrial membrane potential.

Mitophagy is a selective autophagy type, which is the most important process to
eliminate the damaged mitochondria by recognizing the specific receptor, including PTEN-
induced kinase1 (PINK1) and parkin. The mitophagy process is related to the oxidative
stress conditions and central neurodegenerative diseases such as AD, PD, and ALS, etc.
Especially in Parkinson’s patients, abnormality of PINK1 and parkin proteins leads to the
disruption and accumulation of damaged mitochondria, and promotes oxidative stress
in the nervous system [45,80]. However, the continuous stimulation of the mitophagy
process results in autophagy-mediated cell death or stimulates cell death through another
pathway. Interestingly, glutamate was found to induce neuronal cell death via the au-
tophagy process, which occurs during prolonged oxidative stress, leading to excessive
autophagy in neurons [36]. Moreover, the oxidative stress from starvation was also found
to stimulate the autophagy-mediated cell death, along with ROS accumulation [81,82].
A recent study suggested that autophagy-mediated mitochondrial homeostasis plays an
essential role in oxidative stress-linked neuronal damage and repair. Consequently, we
investigated the specific protein markers (LC3B-I, LC3B –II, and TOM20) of the autophagy
and mitophagy signaling pathway in response to glutamate treatment. Our results show
that the treated cells with glutamate alone significantly activated the autophagy process
by inducing the LC3B conversion ratio. However, the pre-treatment of the cell with TLE
decreased the LC3-autophagic protein and restored the autophagy status. According to
Kim et al., (2009), glutamate induced autophagy and caused neuronal cell death, which
was further rescued by 3-methyladinine (3-MA) treatment [83]. The study suggests that
autophagy activation is a key driver of neuronal cell death in response to glutamate in
HT-22 mouse hippocampal cells. Our results indicate that TLE could inhibit glutamate-
induced autophagy, resulting in the alleviation of neuronal cell death. Glutamate induces
ROS accumulation, leading to mitochondrial disruption and a change in the morphology
(fragmented) of mitochondria [34], which is in line with our study (Figure 7c,d). Thus,
the damaged mitochondria are often the target of the autophagosome. A recent study
showed that the high glutamate levels within neuronal cells result in increased expression
of PINK1 and parkin proteins [84], which further play a significant role in the mitophagy
signal. In addition, our molecular docking prediction of TLE showed the inhibitory effect
on PINK1 and parkin. These results demonstrate that apigenin-7-O-glucoside exhibited
better binding affinities against parkin than mavoglurant (the reference ligand) (Table 4 and
Figure 9) and showed the lowest binding affinity against PINK1 at −5.1 kcal/mol, which
was closer to the affinity of curcumin as the reference ligand (Table 3 and Figure 8). Thus,
TLE may have the potential to inhibit mitophagy activation through PINK1 and parkin
interaction. Mitophagy can be tracked by the measurement of LC3 protein expression
in combination with mitochondrial-specific proteins, such as TOM20 and TIM23 [41,85].
Therefore, to investigate the association between ROS and mitophagy, we measured the
protein expression of TOM20. Our results show that glutamate can cause the decrease in
TOM20 protein expression level, which may be the result of the mitophagy process by the
action of PINK1 protein, which plays an important role in the selective removal of damaged
mitochondria. The damaged mitochondria can elevate PINK1 protein expression and re-
cruit the parkin protein. These complexes trigger the initiation of mitophagy. Subsequently,
mitochondrial proteins such as mitofusin, TOM20 and voltage-dependent anion channel
(VDAC) are tagged with ubiquitin and become the target of p62 and LC3-II to enter the
lysosome degradation process [48]. On the other hand, we revealed that TLE can increase
the expression of TOM20 protein and inhibit autophagy activation. This may be due to
the combination of increased mitochondrial biogenesis and the reduced mitochondrial
damage through the cellular antioxidant Nrf2/ARE pathway. Nrf2 not only increases the
expression of antioxidant enzymes, but is also involved in mitochondrial formation. It can
activate nuclear respiratory factor 1 (NRF1), which regulates genes involved in mitochon-
dria biogenesis, including mitochondrial transcription factor A (TFAM), mitochondrial
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transcription factor B1 (TFB1M) and mitochondrial transcription factor B2 (TFB2M) [86,87].
Furthermore, mitophagy can also be observed under confocal microscopy by tracking the
co-localization of proteins in the autophagy process with mitochondrial-specific proteins.
For example, the study on transgenic mice with abnormal cytochrome-c-oxidase (COX)
resulted in the loss of energy production and promoted ROS accumulation along with
co-localization of LC3 protein with mitochondria [88]. Similar results were also observed
upon glutamate treatment. Interestingly, TLE was able to reduce the occurrence of LC3
puncta and co-localization in HT-22 cells, which is consistent with the results of LC3B and
TOM20 protein expression.

Furthermore, to elucidate and understand the pharmacokinetics properties, the AD-
MET analysis showed that all TLE-identified compounds can be absorbed, distributed,
metabolized and excreted in the human body, along with low toxicity. Thus, TLE and
its constituents with high BBB permeability may be appropriate for the study of neuro-
protection. However, further studies to clarify the state of in vivo factors such as oral
bioavailability rate and toxicity are required.

5. Conclusions

Excessive glutamate can increase the intracellular ROS accumulation in HT-22 cells
and promotes neuronal cell death by inducing the loss of mitochondrial membrane po-
tential, leading to excessive mitophagy-mediated cell death. Remarkably, TLE can reduce
intracellular ROS accumulation by upregulating the expression of endogenous antioxidant
enzyme genes in HT-22 cells. Consequently, a reduction in ROS accumulation maintains the
mitochondrial membrane potential status and inhibits the excessive mitophagy-mediated
neuronal cell death. Our findings provide the neuroprotective effect and mechanism of
TLE in HT-22 cells through cellular antioxidants and mitophagy signaling. A summarized
diagram of our findings is presented in Figure 10. Further studies are needed to clarify the
underlying mechanism of TLE on Nrf2 signaling and mitophagy/autophagy. The data
obtained from this study might potentially aid the development of alternative drugs to
prevent or recover neurodegenerative disorders.
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