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shape Dynamics of Bouncing 
Droplets
David V. svintradze  

oscillating shape motion of a freely falling and bouncing water droplet has long fascinated and inspired 
scientists. We propose dynamic non-linear equations for closed, two-dimensional surfaces in gravity 
and apply it to analyze shape dynamics of freely falling and bouncing drops. the analytic and numerical 
solutions qualitatively well explain why drops oscillate among prolate/oblate morphology and display 
a number of features consistent with experiments. In addition, numerical solutions for simplified 
equations indicate nonlinear effects of nonperiodic/asymmetric motion and the growing amplitude in 
the surface density oscillations and well agree to previous experimental data.

Droplets are very peculiar systems mostly due to their shape dynamic properties1. They conserve the shape at the 
rest due to a surface tension, but are very deformable. Small perturbation of an equilibrium shape may induce 
large deformations in surface morphologies. One can trigger droplet inertial motion as well as morphological 
dynamics by inducing substrate surface oscillation2. Gradient of free substrate surface energy or angle difference 
between droplets leading and trailing edges provokes self-propulsion3,4. Droplets dynamical properties and their 
vibration modes may control their motion over substrate surface5,6 and transiently defy gravity7. The contact with 
the substrate can be minimized by the development of super hydrophobic surfaces8, allowing droplets to bounce 
on the surface like elastic balls9.

Recent experiments demonstrate that an oscillating surface can launch wobbly water drop into the air at 
higher speed than it would launch a hard ball of the same mass2. Therefore, a synchronization between the inter-
nal vibration of a drop projectile and the frequency of the rising and falling surface can more than double kinetic 
energy of the droplets2.

The behavior of bubbles differs from drops in gas-liquid systems. They display much broad range of shape 
deformations including turbulence10, thickness variations11–13, the Marangoni effect14, draining15, and ejection of 
droplets16, rupture17, self-adaptation18, and chaotic behavior19. From this broad range of effects, numerical solu-
tions of dynamic nonlinear equations for free thin fluid films explained thickness variations20.

Despite of numerous experimental data1–9, description of droplets shape dynamics remain analytically largely 
unsolved. Some dynamic effects in linear regimes have led to the classical wave equations21,22. Numerical simula-
tions of Navier-Stokes proved to be effective tool in the path of describing shape motions of drops and bubbles23–25.  
Furthermore, numerical solution of one-dimensional Navier-Stokes equations showed that simulated shape 
dynamics agrees with experiment qualitatively26. In addition, combination of experiments and numerical simula-
tions explained the shapes of singularities around the neck for a drop falling from a faucet27.

In the letter, we apply closed, two-dimensional surface dynamics equations28,29 and analytically address 
dynamic morphological patterns of droplets observed in experiments1–9. Our theoretical model explains why 
droplets can transiently defy gravity. Even though the results well agree with previous ones, the formalism we 
apply is new and different from previous theories. The purpose of the paper is to show the effectiveness of the 
differential variational surface (DVS) formalism in handling the shape dynamic problems and pinpoint existence 
of relatively simple dynamic solutions. We discuss shape dynamics of droplets, though due to generality of our 
dynamic solutions the analyses can be extended to wobbly dynamics of bubbles too.

theory
To address shape dynamics properties of droplets, instead of using classically well-defined fluid dynamics (or we 
shall call it Navier-Stokes dynamics) we examine the surface dynamics of droplets. As far as the surface is closed 
and two-dimensional it has to follow to our generic equations of surface motions29. In this section, we briefly 
review fundamental principles of the equations. We base on the extension of differential geometry for moving 
surfaces. Because of the surface is moving, all parameters: base vectors Si (Vectors are designated by bold letters 
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throughout the paper), the surface area S, the surface topology, the enclosed volume Ω are all time dependent 
functions.

Procedures for defining base vectors, metric tensor, and contravariant/covariant derivatives follow fun-
damentals of differential geometry. The base vectors are defined as partial derivative of the position vector 
Si = ∂iR = ∂R/∂Si, i = 1, 2, where Si, R are the surface coordinate for an arbitrary chosen point and the position 
vector.

The α = 1, 2, 3 component of the surface velocity V is defined as Vα = ∂Xα/∂t (Xα is a space coordinate for the 
point on the surface). The surface velocity has the normal C and tangential Vi velocities, so that

= +V N SC V (1)i
i

where ViSi = V1S1 + V2S2 implies Einstein summation convention throughout the text: repeated indexes in upper 
and down indexes is shortly written summation by the index.

Definitions of the surface velocity and the base vectors form fundamentals for defining Christoffel symbols 
Γ = ⋅ ∂S Si
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where the symbol Γ a
b is defined for the moving surfaces as Γ = ∇ − V CBa

b
a

b
a
b and Bab = N∇aSb is the curvature 

tensor. Definitions (1–3) along with the time derivatives of integrals form basics of calculus for moving surfaces 
and are necessary tools for derivation of dynamic equations29.

As far as we have published exact derivation few times already28,29, to avoid repetition but keep self-consistence, 
we provide generic equations for two-dimensional surface dynamics here and give only introduction to the deri-
vation. The derivation follows from the minimal action principal of the Lagrangian:

∫ ∫
ρ

= − Ω
Ω

L
V

dS ud
2 (4)S

S
2

where u is a potential energy density of a field defined on the volume Ω and ρS is the surface mass density. Details 
about the surface mass density is given below in the results section. If there are n ‘micro’ fields lived on the vol-
ume, then due to additivity of potential energies

∑=
=

u u
i

n

i
1

One may represent the potential energy density as a negative internal pressure applied on the surface, then 
= − = ∑u p p p,i i i and the Lagrangian can be rewritten as:

∫ ∫
ρ

= + Ω
Ω

L
V

dS pd
2 (5)S

S
2

Trivial boundary condition dictates that in the absence of the shape dynamics the surface mass must be con-
served, therefore the first boundary condition leads to:

ρ ρ ρ∇ + ∇ = V CB( ) (6)S i S
i

S i
i

(6) is continuity equation rewritten for curved surfaces, for derivations see refs28,29.
According to the time derivative of the space integral theorem, a variation of the potential energy term is 

∫ ∫ ∫δ Ω = ∂ ∂ Ω +
Ω Ω

pd p td pCdS/
S

28,29. The normal term of the variation of the kinetic energy ∫δ ρV dS/2
S

2  
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Here we used C = NαVα, where Nα is the α component of the surface normal, and applied the Gauss theorem to 
the left hand side of the integral equation, converting the surface integral to the space integral. The tangential 
term of the kinetic energy variation is ∫ ρ ∇ + ∇ − ∇ −V V V V C C CV B dS( )

S S i
i j

j
i i j

j
i  and it must be equal to the 

term coming from the tangential gradient of the surface pressure, which can be modeled as VN p dS
S i

i∫ − ∇α
α

 
(here pα = pNα)28,29 and hence

ρ ∇ + ∇ − ∇ − = − ∇α
αV V V C C CV B N p( ) (8)S

i j
j

i i j
j
i i

The combination of equations (6–8) gives the set for closed, two-dimensional surface dynamics. The equation (6)  
displays how the surface mass density may change when the surface moves and (7 and 8) show the motion in the 
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normal and the tangent directions. The equations are complete set for the surface dynamics, as far as have four 
ρS, C, V1, V2 unknowns and four differential equations. All information about how internal processes may effect 
on the surface dynamics is stored in the surface pressure term, which can be subject of modeling dependently on 
the nature of the problem. Because the Lagrangian (5) is invariant and the variation is taken by tensor calculus 
the equations are fully covariant.

Results
Before we start formal derivations, we should give a formulation of the problem. We assume following scenario: 
a freely falling droplet in a gravity is bouncing vertically from a super-hydrophobic substrate, where the substrate 
itself is freely rising and falling surface. Find a shape dynamics of the droplet if the tangential velocities compared 
to the normal velocity, interaction between the droplet and the substrate, internal friction and path instabilities 
are all negligibly smalls. Note that according to experiments internal friction has insignificant effect on shape 
dynamics of droplets2. To tackle the problem one may numerically solve the Navier-Stokes equations23–25 that 
has already proven to be difficult (not to mention that the Navier-Stokes equations follow from simplifications 
of our surface dynamics equations)28. Instead, we use dynamic nonlinear equations for moving two-dimensional 
surfaces28–30 (referred as DVS equations throughout the text) and solve it analytically, therefore producing very 
short solution.

For the surface modeling we assume following characterization: the droplet is continuum medium of mole-
cules and has a surface boundary. The surface boundary is continuum medium too, but is made from fast diffus-
ing layer. Formally, molecules from the droplet also diffuse with an environment, though the diffusion of surface 
molecules is quicker because they are in direct chemical contact with the environment. Technically, it means 
that the surface is transient layer phase separated from the internal droplet and the environment. Given this, we 
assign ρS to the surface mass density, while the droplet mass density is designated by ρ. Because the surface is 
continuum medium the surface mass density directly implies the thickness of the ‘diffusive’ layer. For simplicity, 
we assume that a friction between the surface and the droplet is negligibly small, so that the surface does not slip 
on the droplet. In other words, we assume single surface formalism, though generalization for many surfaces is 
not conceptually difficult and can explain buckling of the surface when the droplet evaporates. Though buckling is 
entirely different phenomena and we do not address it in this paper. Note that invoking many surfaces formalism 
would also provoke concept of internal friction directly linked to a visco-elastic effect. Here, we ignore viscosity of 
the droplet because for water, according to experiments, viscosity has low or no effect on shape dynamics of water 
drops2. Therefore limitations by single surface should be sufficient, though it might not be enough for description 
of more viscous drops.

Dynamic system: a surface. The formalism leading to the derivation of the differential variation of the 
surface (DVS) equations28,29, for freely falling droplets, generalizes Eulerian representation of fluid dynamics and 
in contrast to Navier-Stokes, as it is demonstrated in this paper, is analytically solvable. The formalism is fully 
covariant and its analytic as well as numerical solutions qualitatively exactly reproduces the surface motion.

As far as the body falls freely in the gravity, we need to add gravitation to the equations of the two-dimensional 
surface motion and therefore, the DVS equations28–30 should be rewritten accordingly. The Lagrangian of the 
motion reads:

∫ ∫
ρ

ρ= + − Ω
Ω
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dS p gh d
2

( ) (9)S
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2

where ρS is the surface mass density, V is the surface velocity, p is an internal pressure across the surface, ρgh is a 
hydrodynamic pressure applied by the gravity and ρ is the drop mass density. Note that the hydrodynamic pres-
sure is added by negative sign because it is external one.

The variation of the Lagrangian (9) modifies the DVS equations so that the gravitation is taken into account. 
As far as DVS equations are already derived28,29, instead of taking brute mathematical steps, we just mention how 
gravitational term ρgh modifies final equations that reads:
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where pα = (p − ρgh)Nα, α = 1, 2, 3. As we have already mentioned above the first equation is a generalization of 
the conservation of mass, the second and the third equations display a motion in the normal and the tangent 
directions of the closed surface, and all satisfy conservation of mass and energy. ∇ = ∂ ∂ − ∇ = t V i/ , 1, 2i

i  is 
the curvilinear, invariant time derivative; ∇i is the curvilinear derivative; C is the surface normal velocity; Vi is the 
component of the surface tangent velocity; Vα stands for ambient component for the surface velocity; Nα is the 
component of the unit surface normal; Bij is the curvature tensor and Bi

i is the mean curvature. The surface veloc-
ities are illustrated on Fig. 1. Repeated indexes indicate the Einstein summation convention. The equations (10) 
are covariant and are valid not only for capillary surfaces, but for moving surfaces of molecules too28.

Note that the equations (10) contradict Newton laws. According to Newton laws if there is no potential energy 
acting on the surface (no force), then the surface is in the rest or has constant surface velocities in the inertial 
reference frame. In contrast, what we find is that if one removes potential fields, i.e. sets ρgh and p naught in 
the equations, then one should expect that a solution to the equations must be constant normal C and con-
stant tangent Vi velocities. It is easy to check that the constant surface velocity indeed satisfies the equations of 
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motions (10) for freely floating droplets, but they are not the only solutions. Therefore, the DVS equations (10) 
predict that freely floating water drops will continue shape dynamics (if they were moving a priori) with retaining 
non-linearity even in the case when no potential field (no force) acts on them.

Simplifications. (10) remains numerically unsolved. We give simplifications in this subsection and solve 
simplified equations numerically and analytically. We assume that the tangent components of the surface velocity 
is infinitesimally small compared to normal velocity and hence the tangential gradient of the surface pressure can 
be modeled as negligibly small:

− ∇ =α
αN p 0 (11)

i

This approximation is acceptable because in the most cases the surface pressure acts in the normal direction so 
that the pressure gradient in the tangent directions is zero. As we have already shown in our previous works28,29, 
the second equation significantly simplifies if the surface is homogeneous and can be described with time invar-
iable surface tension σ, then

ρ σ∇ + ∇ + = C V C V V B B( 2 ) (12)S
i

i
i j

ij i
i

The equation (12) is commonly known as the dynamic fluid film equation for the surface normal motion and 
has been reported before20,31. Using (12) in (10), we end up with

σ ρ ρ∂ + − = − ∂ −α
α α

αV B p gh V p gh[ ( )] ( ) (13)i
i

The equation (13) is a solution for the second equation indicating the surface motion in the normal direction. 
We now assume that deformations along tangent directions compared to normal ones are negligibly small, then 
equations (10) with condition (11) simplify as:
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α α
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∂

=
C
t

B (16)S i
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where (16) comes from (12) with assumption that tangent velocities are infinitesimally small. Note that, in this 
case, the (15) is the solution of (14, 16).

When the droplet touches the ground (the substrate surface), for very short interval of time, the gravity 
becomes compensated by a substrate surface reaction forces, so that, the drop instantaneously comes in equilib-
rium with the substrate and passes instantaneous equilibrium shape. The equilibrium shape satisfies conditions: 
C = 0, ∂αVα = 0 and ∂(p − ρgh)/∂t = 0, then solutions to (14, 15) are:

ρ ρ= = const (17)S 0

ρ
σ

= −
−B p gh

(18)i
i

Figure 1. (a) Schematic drawing of the z = sinR/R surface and the illustration of the surface velocity with the 
normal and tangential components. The surface velocities C, V1, V2 for the point at the top are shown by arrows. 
The surface z = sinR/R is taken because it is reminiscent of the liquid substrate dynamics when the falling drop 
jumps. (b) Graphical illustration of a droplet sitting on a super hydrophobic substrate. Equilibrium shape of a 
droplet in a rest is a sphere.
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The equation (17) dictates that water molecules are homogeneously distributed on the surface, and (18) shows 
that the shape adopts constant mean curvature. Water droplets are closed and compact surfaces, therefore by 
the Alexandrov theorem32 the shape with constant mean curvature must be a sphere. Therefore, instantaneous 
equilibrium shape of the droplet as well as the droplet sitting on a super hydrophobic substrate is indeed perfect 
sphere1.

Infinitesimal linear models. Before we proceed further, note that (14–17) are consistent with existing 
infinitesimal models21,22. Indeed, let ρ0 be equilibrium surface density and assume that both C and Bi

i are infini-
tesimally small, so that linearized conservation of mass (14) reads ∂ρS/∂t = 0 with the solution ρS = ρ0. This indi-
cates that for small enough C, the density of the diffusive layer remains constant and infinitesimal models, in the 
limit of small oscillations and small mean curvature, are consistent with our framework.

Furthermore, if the mean curvature Bi
i is the time dependent function, then according to calculus of moving 

surfaces

∂
∂

= Δ +
B
t

C CB B (19)
i
i

ij
ij

where Δ = ∇i∇i is the surface Laplacian31. For surfaces with vanishing mean curvature, BijBij becomes negative 
twice the Gaussian curvature K 20. Therefore, by differentiating (16) linearized acceleration becomes

γ∂
∂

= Δ −
C
t

C KC( 2 )
2

2

where γ = σ/ρ0. In the limit of planar cut off, i.e for flat equilibrium configurations, the Gaussian curvature is zero 
K = 0, and infinitesimal deformations are governed by the wave equation:

γ∂
∂

= Δ
C
t

C
(20)

2

2

With the sign convention, the equation (20) is exactly a case for linear models and is consistent with previous 
results21,22.

Dynamic solutions. Now we proceed with extracting approximate analytic solutions for (14–16) equations 
and give numerical solution for (14, 16) equation set.

After the droplet spends some energy on the surface deformation, taking into account that it found instant 
equilibrium shape it jumps again, but since it has already found equilibrium, which is a sphere, it will start fluctu-
ations around the equilibrium shape. Since, the shape oscillates near to equilibrium; we can suggest that according 
to (18) the term σ ρ+ −B p ghi

i  becomes infinitesimally small constant, therefore (15) can be modified as
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Since σBi
i cannot be zero and its combination with the surface and hydrodynamic pressure is quasi infinitesi-

mally small constant, then the solution to (21) is

∂ =α
αV 0 (22)

This is the continuity condition in the Navier-Stokes equations for incompressible fluids33. However, setting 
σ ρ+ −B p ghi

i  as infinitesimally small constant is an approximation and therefore, (22) is not an exact solution. 
(22) shows that zero divergence of the surface velocity is the near equilibrium solution of the DVS for water drops 
under the gravity. (22) can be trivially handled by the V = kR/R3 function (where k is some constant and R is the 
position vector), which corresponds to the sphere in equilibrium stationary case. Therefore, in the (0 ≤ θ ≤ 2π, 
0 ≤ φ ≤ π) spherical coordinates, assuming designation S = (sinφ sinθ, sinφ cosθ, cosθ) the solution reads:

ω∂
∂

= ξ
ξ ξ

R S
t

R (23)

where ωξ, ξ = x, y, z are some frequency like functions and for the sake of simplicity we consider them as con-
stants. Sξ is the base vector of S and Rξ is the projection of the position vector in the ξ direction (for example 
Sx = (sinφ sinθ, 0, 0), Sy = (0, sinφ cosθ, 0), Sz = (0, 0, cosθ) and RξSξ = RxSx + RySy + RzSz). Trivially, (22, 23) leads 
to the solutions: for some Rξ constants with initial condition Rt = 0 = R0 = R0S and Rξ = Rξ (t) time variable func-
tion, reading respectively:

ω= + ξ
ξ ξR R SR t (24)0

= ξ
ω ξ

ξR R e (25)
St

0
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where ω ξ
ξe St  is defined as the vector components of which are exponents of frequency times time and the spherical 

coordinate: =ω ω φ θ ω φ θ ω θξ
ξe e e e( , , )St t t tsin sin sin cos cosx y z . (Figure 2a–e) are a graphical representation of (24, 25) 

solutions. In addition to (24, 25), according to the vector calculus the analytic solution to (22) is

∇= − ×V (26)

where  vector has the same dimension as angular velocity. Suggesting that  should behave same way as R, with 
conserving full generality, the solution (26) can be rewritten as





R

R

t

v t
1

(27)0
2

∇

∇

∂
∂

= − ×

∂
∂

= ×

where v0 is some constant wave propagation velocity. After taking the curl of (27) and using the curl of the curl 
(∇ × ∇) identity one ends up with a wave equation for the position vector:

∂
∂

− ∇ =
R R

v t
1 0

(28)0
2

2

2
2

According to curl of curl identity ∇ × (∇ × ⋅) = ∇(∇⋅)−∇2⋅, applying this to (27) one obtains 
∇ ∇ − ∇ =R R( ) 2  − ∂ ∂Rv t1/ /0

2 2 2. Taking into account (22) ∇R = const, therefore first term vanishes and one ends 
up with (28).

Taking into account that as the time evolves all spatial directions become linearly independent Rξ = ψξ (ξ, t) 
(where ξ = x, y, z and ψ is some function), then (28) transforms as one dimensional wave equation ψ∂ ∂ =ξv t1/ /0

2 2 2  
ψ ξ∂ ∂ξ/2 2. Applying boundary ψ(0, t) = 0, ψ(L, 0) = 0 and initial conditions ψ(ξ, 0) = f(ξ), ∂ψ/∂t(ξ, 0) = g(ξ) one 

obtains a solution

Figure 2. Illustration of analytically solved shapes. From left to right: (a) sphere with unit radius R0 = 1 (initial 
condition of (24) solution), (b) prolate shape drop R = (sinφ sinθ, 0.86sinφ cosθ, 1.75cosθ) (solution (24) at 
some given time), (c) oblate shape R = (sinφ sinθ, 1.72sinφ cosθ, 0.75cosθ) (solution (24) at other moment), 
(d) non-prolate/oblate shape R = (esinφ sinθ, esinφcosθ, ecosθ) (solution (25) at some given time), (e) summation of 
(a–d) shapes indicate development of continues singularities (left hand side of the droplet). Panel (f) displays 
plot of analytic solution and indicates how spacial coordinates (x, y, z) non-periodically, asymmetrically and 
with growing amplitudes fluctuate in time. The graph also indicates that (z) direction (black graph) diverges 
from (x, y) rapidly while (x) (blue graph) separates from (y) slowly, meaning: the drop will more rapidly develop 
singularities in (z) direction while will keep stability in (x, y) directions for relatively long time.
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Taking into account that at the initial condition R(t = 0) = R0 the water drop is a sphere with the radius R0, 
then the solution can be written as

ψ= + ξ
ξR R S (29)0

The solution (29) precisely explains oblate-prolate oscillation of the drop observed in experiments. (Figure 2f) 
shows dependence of the position vector components (x, y, z) on the parametric time and is plotted based on 
the linear combination of the (24, 25, 29) solutions. The graph is plotted for L = 1, f(ξ) = ξ parameters on the 
φ = θ = π/4 spherical coordinate and is designated to show phenomenological dependence of the point spacial 
coordinates (x, y, z) on the parametric time. The solution clearly indicates non-periodic and asymmetric behavior 
in all directions. z direction diverges from x, y rapidly while x, y diverges slowly from each other. Consequently, 
the drop more rapidly develops singularities in one direction while keeps stability in others for relatively long 
time. After long enough time, there is no overlap in amplitudes resulting in drop division.

We have also solved (14, 16) equations numerically by the 4th generation Runge-Kutta method for 0.0001 time 
lapse and interval of 30 nominal parametric time. The numerical solution in (ρS, C) phase space (Fig. 3) displays 
nonlinear thickening with growing amplitudes of diffusive layer, once again indicates nonlinear effects of nonpe-
riodic/asymmetric motion and the growing amplitude in the surface density oscillations, and qualitatively well 
agrees to experimental data1–19.

In addition, to indicate how different values of surface tensions may effect on the surface density oscillations, 
we have plotted (ρS, C) phase space for three different surface tensions (see Fig. 3). The initial value of the surface 
tension (Fig. 3a) σ = 0.073N/m is set to be the standard value for water drops. (Fig. 3b) is plotted for the surface 
tension of the inkjetprinted picoliter droplet σ = 0.063N/m and (Fig. 3c) displays oscillations for the microliter 
droplet with tension σ = 0.035N/m. The different values for the surface tensions is taken from the ref.34. (Fig. 3) 
shows that decrease in the surface tension decreases oscillation amplitudes and increases frequency.

Since (24, 25, 29) are particular solutions, then their linear combination is a general solution. Therefore, it 
predicts non-linear oscillations among spherical, oblate/prolate and non-oblate/prolate shapes, tendency towards 
increasing the radius, and inducing shape instabilities by forming singularities, and with combination of the 
numerical solution to (14, 16) indicates the growing amplitude in the oscillations of the surface mass density, 
meaning increasing the mass instabilities in the diffusive layer of the surface (Figs 2f and 3). Mass instabilities in 
the diffusive layer and linear combination of the (24, 25, 29) solutions ultimately lead to a development of singu-
larities in the drop, which may induce drop division.

Relevance to experiments. To explain shape dynamics of axisymmetrically deformed drop Rayleigh35 
proposed expansion of absolute value of radius vector R in Legendre polynomials Ln so that θ = ∑R t a t L t( , ) ( ) ( )n n  
where θ is the polar angle, an is the time dependent amplitude coefficients and n is so called the mode number. 

Figure 3. The numerical solution in (ρS, C) phase space of (13, 15) equations reminiscent to the analytic 
solutions of the (14) equation. Black, blue and red lines are plotted for different amplitude values of C = fsin(πt): 
f = 0.5 black, f = 1 blue and f = 2 red. The initial condition for the interface velocity C is set to be zero C(0) = 0 
and the initial value for the surface mass density for initially flat configurations is fixed ρS = 0.5. The mean 
curvature Bi

i is set to be one corresponding to the sphere with unit radius. (a–c) Panels display simulations for 
three different tensions.
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Later on Lamb36 suggested that for a freely oscillating drop with small amplitude of oscillation the coefficients can 
be estimated as

ω φ+ +β−~a t e t b( ) sin( )n
t

n n n
n

where ωn = 2π/T is an oscillation eigenfrequency with decaying period T, φn is the phase angle, bn is the eccen-
tricity of the drop, which may arise from oblation of the droplets due to hydrodynamic effects, βn is the dumping 
rate of the n mode. We refer to this model as Rayleigh’s exponentially decaying model. The model was successfully 
used to describe recent experiments34,37–40.

The eigenfrequency ωn depends on the liquid density ρ and the surface tension σ, therefore an = an(ρS) and 
hence in the first approximation ρ~an S. On other hand, in the first approximation an is proportional to the sur-
face interface velocity C, therefore (ρS, C) phase space has to mimic the Rayleigh’s exponentially decaying model.

Indeed, for comparison to previous experimental works we mention that in our numerical calculations for 
interface velocity amplitudes we used f = asin(πt). However, instead of harmonic f if one uses Rayleigh’s decay-
ing amplitude model, which can be expressed as fn(t) = fn(0)exp(−t/T) sin(2πt/T + φ) + bn

35,36, then one should 
expect that (ρS, t) would mimic overall morphology of experimentally obtained decaying amplitude oscilla-
tion of droplets mean radius. Indeed, as the (Fig. 4) shows plotted graphs for different fn: fn(t) = 0.5exp(−t/5) 
sin(πt + π/4) red, fn(t) = exp(−t/5) sin(πt/2 + π/4) green and fn(t) = 2exp(−t/2) sin(πt/2 + π/4) blue curves indi-
cate similarity of overall morphology of numerically calculated (Fig. 4a) and experimentally observed (Fig. 4b)34 
graphs. Note that in the (Fig. 4a) the surface mass density is modeled as ρs = kan(t)/R0, where k is a coupling 
constant and is set as unit in the numerical solution, an is the oscillation amplitude of mode n and R0 is the initial 
radius of the spherical droplet. The numerical solution for the (an(t)/R0, t) space were obtained by ode45 numeri-
cal solver. These calculations do imply that if one carefully picks and fits parameters in theoretical (24, 25, 29) and 
numerical calculations of (14, 16), then one will reproduce experimentally observed dependence of oscillation 
amplitude on the time. For clarifications that are more rigorous it is necessary to be made theoretical calculations, 
experimental observations and parameter fitting simultaneously, which is not possible now but is left out as a 
source for future collaborations for experimental suggestions and clarifications.

Discussion
Despite neglecting uniform translational motion of the drop (one may argue that for sufficiently small periods of 
time the inertial effects on drop shape motion is negligibly small), we might still speculate why oscillating surfaces 
can lunch water drop at higher speed, than hard sphere2. Due to the generality of the DVS equations, an oscillat-
ing surface undergoes the same shape motion at the interface of substrate/droplet as water drops. If frequencies of 
the substrate surface and water drop matched, within an order of magnitude, then a resonance effect takes place 
and the drop will be launched by higher speed. We should also note that according to (12–18) and (21) equations 
gravitational term ρgh has no effect on governing shape equations. Gravity has no role therefore surface motion 
would be the same if one would remove gravity. This explains why water drops can move against gravity7 on oscil-
lating super hydrophobic substrate.

To conclude we have proposed a system of nonlinear equations to describe the nonlinear features of the 
dynamics of two-dimensional surfaces, with large deformations and large variations in density, both spatial and 
temporal28–30. Analytic solutions to simplified version of two-dimensional surface equations in gravity describe 
freely falling water drop’s shape dynamics and precisely explain why the shape non-linearly oscillates among 

Figure 4. (a) The numerical simulation of the dependence of amplitudes on time. (a) Red, green and blue 
curves correspond to different fn(0) interface velocity amplitudes and produce remarkable morphological 
similarities with (b) experimentally observed decaying oscillation amplitudes of water drops. The panel (c) 
provides photographs of micro sized droplets shape oscillations at different microseconds. Experimentally 
observed shapes well agree to our analytic and numerically solved shapes. (b,c) Experimental data is obtained 
from the ref.34.
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prolate/oblate and non-prolate/oblate forms and display a wide range of shape instabilities. Surprisingly, despite 
the fact that the proposed system purposefully disregards the tangential components of surface velocities, the 
solution qualitatively explains experimentally observed shape dynamics1–9. By this analytic solution, we have 
reproduced numerically solved Navier-Stokes equations results24, but avoided intensive modeling for the surface 
pressure, which would be necessary for numerically solving Navier-Stokes. We have shown that the continuity 
equation is an approximate solution of the DVS equations, which, in contrast to Navier-Stokes, can be trivially 
handled in this particular case. In addition, we have shown that linear models leading to wave equations21,22 are 
generally correct for near to equilibrium approximations.

The numerical solutions of (14, 16) combined with analytical ones (24, 25, 29) directly imply that: the surface 
mass density is non-linearly increasing while the shape adopts diverse forms. Impact of this statement in biology 
is that: if one starts formation of cell from a mixture of organic molecules in a droplet and lets evolution of the 
shape dynamics by applying some potential field (like hydrophobic-hydrophilic interactions for instance), then 
the droplet will ultimately develop some membrane like structure (because surface mass density is nonlinearly 
increasing) and will adopt rich divers shapes. Such active dynamics may explain why cells got membranes41 and 
is in contradiction with generally thought idea that membranes were formed first.

Data Availability
All derivations and numerical calculations are included in the text.
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