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Abstract

A new versatile mammalian vector system for protein production, cell biology analyses, and cell factory engineering was
developed. The vector system applies the ligation-free uracil-excision based technique – USER cloning – to rapidly construct
mammalian expression vectors of multiple DNA fragments and with maximum flexibility, both for choice of vector
backbone and cargo. The vector system includes a set of basic vectors and a toolbox containing a multitude of DNA
building blocks including promoters, terminators, selectable marker- and reporter genes, and sequences encoding an
internal ribosome entry site, cellular localization signals and epitope- and purification tags. Building blocks in the toolbox
can be easily combined as they contain defined and tested Flexible Assembly Sequence Tags, FASTs. USER cloning with
FASTs allows rapid swaps of gene, promoter or selection marker in existing plasmids and simple construction of vectors
encoding proteins, which are fused to fluorescence-, purification-, localization-, or epitope tags. The mammalian expression
vector assembly platform currently allows for the assembly of up to seven fragments in a single cloning step with correct
directionality and with a cloning efficiency above 90%. The functionality of basic vectors for FAST assembly was tested and
validated by transient expression of fluorescent model proteins in CHO, U-2-OS and HEK293 cell lines. In this test, we
included many of the most common vector elements for heterologous gene expression in mammalian cells, in addition the
system is fully extendable by other users. The vector system is designed to facilitate high-throughput genome-scale studies
of mammalian cells, such as the newly sequenced CHO cell lines, through the ability to rapidly generate high-fidelity
assembly of customizable gene expression vectors.
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Introduction

The medical use of therapeutic proteins is in rapid growth and

their full potential in health care is vast. More than 200 approved

biopharmaceuticals are already on the market, with the most

rapidly developing market being monoclonal antibody (mAb)-

based products [1]. Accordingly, the interest in construction and

development of mammalian cell factories for production of

therapeutic proteins is increasing. This interest has been further

stimulated by the recent publication of the first genome drafts of

CHO cell lines [2–3], the primary host for expression of human

proteins in general, and antibodies in particular [1]. These

publications open new avenues of genetic engineering of these

important cell factories [4].

Vector systems for these mammalian cell lines have so far

mainly focused on efficient expression of recombinant proteins.

This has primarily been achieved by relatively simple and

inflexible vector systems containing a strong promoter (often viral)

followed by a multiple cloning site (MCS), a terminator, and a

selectable marker. The vectors are thus typically assembled by

conventional methods based on the use of restriction endonucle-

ases and ligases. Vector construction will therefore often be

hampered by a number of limitations such as few restriction

enzyme cut sites or cloning method incompatibilities between

plasmid and desired DNA inserts. Moreover, it is next to

impossible to assemble more than two DNA fragments in a single

restriction/ligation step. For these reasons, restriction enzyme

and/or ligase-independent techniques, e.g. In-Fusion cloning,

Gibson assembly and USER cloning, are getting increasingly

popular in many other cell systems [5]. These techniques allow

seamless and directed assembly of vector fragments and inserts

that are enabled by single stranded DNA overhangs [6–12]. In the

case of the USER cloning method, the overhangs are generated by

substituting a single deoxy-thymidine nucleotide with a deoxy-

uridine nucleotide in the 59 end of each primer designed to amplify

the desired genetic target. Subsequently, the resulting PCR DNA
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fragment is treated with the USER enzyme-mix (Uracil DNA

glycosidase and DNA glycosylase-lyase endo VIII) resulting in

formation of unique 39 single stranded overhangs [9–12].

Importantly, in vivo fusions of DNA fragments are so efficient that

several fragments can be combined in a single round of cloning.

The method is PCR-based and can therefore easily be used to

introduce modifications, e.g. point mutations and linkers, into a

DNA fragment during the assembly process [10–13]. Further-

more, the method is very suited for high-throughput setups [8,12].

For efficient high-throughput cloning and advanced genetic

engineering, it is also of importance to have a modular vector

system, especially if one wishes to have flexibility of the inserted

components. Possibly the best known system of this type is the

BioBrick standard, developed by the iGEM Foundation (www.

igem.org). It provides a modular assembly standard, and is non-

commercial, but is limited by BioBricks requiring restriction

enzymes for plasmid integration. Biobricks are thus difficult to

apply to mammalian systems where genes are typically very long

genes and contain multiple bacterial restriction enzyme cut sites.

Combining several modules also becomes a multiple step

operation.

In the present study, we have developed and characterized a

non-commercial comprehensive vector expression platform for

mammalian cell engineering based on the DNA ligase-free uracil-

excision based USER cloning method [9]. The platform contains a

basic set of fixed shuttle vectors (pBASE) for high-throughput

cloning of specific genes of interest (GOI). In addition, it contains a

flexible multipurpose DNA fragment toolbox containing sequence

building blocks that are equipped with Flexible Assembly

Sequence Tags, FASTs, allowing them to be easily fused by

USER fusion [11]. Using FASTs, the building blocks can be used

for rapid construction of E. coli shuttle vectors with different

mammalian selection markers where GOIs can be equipped with

a variety of promoters and terminators or combined with sequence

encoding internal ribosome entry sites for bicistronic gene

expression. Moreover, the toolbox contains FAST building blocks

encoding reporter proteins and cellular localization sequences, as

well as purification and epitope tags. To demonstrate the potential

of our toolbox, we have successfully assembled vectors composed

by up to seven building blocks in a single cloning step and

provided proof of functionality in mammalian hosts. For example,

we have made vectors for protein secretion and for bicistronic gene

expression, as well as vectors encoding chimeric fluorescent

proteins, which were successfully used as cytological markers in

U-2-OS cells.

Materials and Methods

Strains, cell cultures and media
All standard cloning and plasmid propagation was performed in

Escherichia coli strain DH5a, which was grown in standard Luria

Broth (LB) medium supplemented with 100 mg/ml ampicillin.

Human U-2-OS osteosarcoma cells and HEK293 cells both

obtained from ATCC were grown in Dulbecco’s modified Eagle’s

medium (Lonza, Vervier, Belgium) supplemented with 10% (v/v)

FBS (Lonza), 100 mg/ml streptomycin and 100 U/ml penicillin

(Lonza). CHO-S suspension cells obtained from Life Technologies

were grown in CD CHO medium (Gibco, Life Technologies)

supplemented with 8 mM L-Glutamine (Gibco, Life Technologies)

and 1:500 Anti-Clumping Agent (Gibco, Life Technologies).

Plasmids and primers
All plasmids used as PCR templates in this study are listed in

Table 1. The pIRES-DHFR plasmid is a modified version of the

IRES domain of the plasmid pIRES (Clontech, Palo Alto, CA,

USA), which was linked to the dihydrofolate reductase (DHFR)

gene in house. Oligonucleotides for PCR are listed in Table S1

and oligonucleotides for DNA hybridization of building blocks are

listed in Table S2. Plasmids generated in this study are found in

Table S3.

Construction of DNA building blocks
DNA building blocks were amplified by PCR using the

proofreading polymerase PfuX7 [15]. All primers for amplification

of the DNA building blocks were designed based on commercially

available vectors (Table 1). Furthermore, each primer was

extended by a specific FAST at the 59-end (Table 2). PCRs were

performed in 35 PCR cycles in a final volume of 50 ml with

addition of 1% MgCl2 (New England Biolabs, Ipwich, MA, USA).

Targeting signals (TSs) of 9–25 bp were added by inclusion of the

Table 1. Plasmids applied as PCR templates in this study.

Plasmid Functional elements Source

pcDNA3.1(+) pCMV, pSV40, SV40 pA, BGH pA, and NeoR Invitrogen

pcDNA3.1/Hygro(+) HygR Invitrogen

pFLAG-CMV hGH pA, FLAG-tag Sigma-Aldrich

pSUPERIOR.puro pPGK Oligoengine

peGFP-1 eGFP Clontech

peYFP-C1 eYFP Clontech

peCFP-C1 eCFP Clontech

pmCherry-N1 mCherry Clontech

pGEM-4Z/PLAP489 SEAP [14]

pU0020 AmpR, pUC19 replication origin [13]

pIRES-DHFR IRES, DHFR This study

AmpR: ampicillin resistance gene; BGH: bovine growth hormone; CMV: cytomegalovirus; DHFR, dihydrofolate reductase; eCFP: enhanced cyan fluorescent protein; eGFP:
enhanced green fluorescent protein; eYFP: enhanced yellow fluorescent protein; hGH: human growth hormone; HygR: hygromycin resistance gene; IRES: internal
ribosomal entry site; mCherry: monomeric Cherry fluorescent protein; NeoR: neomycin resistance gene; pA: polyadenylation signal; PGK: phosphoglycerate kinase-1;
SEAP: secreted alkaline phosphatase; SV40: Simian virus 40.
doi:10.1371/journal.pone.0096693.t001
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appropriate sequence in the primer for the PCR amplification of

the GOI as an extension between the FAST and the annealing

primer. TSs between 25–100 bp were made by DNA hybridiza-

tion of two complementary single stranded oligonucleotides. DNA

hybridization was performed in Milli-Q water in a final volume of

80 ml with a concentration of 50 mM of each complementary oligo.

The mixture was incubated for 5 min at 98uC and left at room

temperature overnight before storage at 220uC. For TSs above

100 bp, Fusion PCR (overlapping PCR) were performed on

synthetic oligos covering the complete length in first 5 cycles with

annealing at 54uC, followed by 30 cycles with annealing at 66uC.

PCR of building blocks encoding vector backbones were

subjected to DpnI (New England Biolabs) digestion (20 U, 37uC,

1 h), heat inactivation (80uC for 20 min) and purified by gel. All

PCR products were isolated by agarose gel separation and purified

using illustra GFXTM PCR DNA and Gel Band Purification Kit

(GE Healthcare, Buckinghamshire, United Kingdom).

Construction of expression vectors
USER cloning and USER fusion was performed as previously

described [9,11] with minor modifications: Vector backbones

holding a PacI/Nt.BbvCI USER cloning compatible cassette were

digested as previously described [13]. 1 ml of USER enzyme mix,

0.5 ml NEB Buffer 4, 0.5 ml BSA x10 (all purchased from New

England Biolabs), and 0.1 pmol digested vector backbone were

mixed in a 0.2 ml PCR tube. If vector backbone was amplified by

PCR, 1 ml purified DNA element was added. Finally, 7 ml of

purified DNA elements were mixed to a total reaction volume of

10 ml. If more than one DNA element was to be inserted, all

elements were added in equal volumes. The reaction mixture was

incubated for 40 min at 37uC, followed by 30 min at 25uC.

Subsequently the 10 ml reaction mixture was used directly to

transform chemically competent E. coli DH5a cells. Transformants

were selected in Luria Broth (LB) medium supplemented with

100 mg/ml ampicillin. Three transformants were picked randomly

for each construct and validated by DNA sequencing (Star SEQ,

Mainz, Germany). For each construct, a validated expression

vector was purified by Plasmid Plus Maxi kit (Qiagen, Hilden,

Germany) following the manufacturer’s instruction and dilution to

a concentration of 1 mg/ml DNA in MilliQ water.

Cell cultivation and transfection
All cells were cultivated in a humidified incubator at 37uC with

5% CO2. CHO-S cells were expanded in Erlenmeyer cell culture

flasks (Corning, Sigma-Aldrich) and experiments were performed

in uncoated 6 well plates (Falcon, BD Biosciences). Adherent cell

lines were passaged by exposure to 0.05% trypsin-EDTA (Lonza),

when fully confluent and were seeded to a confluence of 20% the

day prior to transfection. CHO-S cells were transfected (Day 0) in

a Nucleofector 2b using the Amaxa Cell Line Nucleofector Kit V

(Lonza). A total of 2N106 cells were transfected with 2 mg plasmid.

Plasmid transfections of adherent cells were performed using X-

tremeGENE HP (Roche, Basel, Switzerland) in Gibco Opti-MEM

(Life Technologies, Paisley, United Kingdom) medium.

Fluorescence microscopy
The day after transfection (Day 1) of CHO-S cells, 25,000 cells

from each sample were stained with one drop of NucBlue Live

Cell Stain (Hoechst33342) for 20 min before analysis using a

Celigo Imaging Cell Cytometer (Brooks Automation).

U-2-OS cells were grown on coverslips (VWR BDH Prolabo,

Poole, United Kingdom) in 6-well plates (2 coverslips/well). The

cells on coverslips were fixed in 4% formaldehyde solution (VWR)

for 12 min at room temperature. Subsequently, the coverslips

were washed in 1x PBS (Lonza) twice and stored in PBS at 4uC in

darkness. Prior to microscopy, the coverslips were mounted onto

glass slides with DAPI-containing mounting medium (Vector

Laboratories Inc., Burlingame, CA, USA) and preserved with clear

nail polish. Confocal laser scanning microscopy was performed for

visualization of fluorescent proteins on a Zeiss LSM 780 confocal

with an Axio Observer with 63x/1.40 oil DIC Plan-Apochromat.

Images were acquired through a Zeiss Zen 2010 digital camera.

Measurement of secreted eGFP
Transfected HEK293 cell were grown in p60 dishes (Nunc), and

500 ml of medium extract was sampled in triplicates approximately

72, 96, and 120 hours after transfection. The samples were

centrifuged for 5 min at 12.000 g and the supernatant collected.

100 ml supernatant was used for quantification of fluorescence

intensity determined in flat-bottomed micro-titer plates (Nunc) on

a Synergy 2 Microplate Reader (BioTek Instruments Inc.,

Burlington, VT, USA) for emission of a wavelength of 485 nm

within a range of 20 nm.

SEAP assay
SEAP activity was measured as described by Durocher et al. [16].

Transiently transfected HEK293 cells were cultured in p100 dishes

(Nunc) and culture medium was harvested approximately 48 hours

after transfection. The samples were centrifuged for 5 min at

12.000 g and the supernatant was collected. To inhibit endogenous

phosphatase activities, samples were heat-inactivated at 60uC for 30

minutes. 50 mL samples were transferred to a 96-well microtiter

Table 2. Standardized USER fusion Flexible Assembly Sequence Tags (FASTs).

Name Color codea Nucleotide 59–39 FW primer tail 59–39 RV primer tail 59–39

FAST1 Green ACGTCGCT ACGTCGCU AGCGACGU

FAST2 Light blue AGTGCGAT AGTGCGAU ATCGCACU

FAST3 Dark blue AGCGCTGGT AGCGCTGGU ACCAGCGCU

FAST4 Yellow ACTATGCCT ACTATGCCU AGGCATAGU

FAST5 Purple ACACAGTCT ACACAGTCU AGACTGTGU

FAST6 Pink ACTTGCGT ACTTGCGU ACGCAAGU

FAST7 Red ATTAAGCT ATTAAGCU AGCTTAAU

FW: forward; RV: reverse.
aAll color codes match Figure 3.
doi:10.1371/journal.pone.0096693.t002
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plate and mixed with an equal volume of SEAP assay solution

containing 20 mM para nitrophenyl phosphate (pNPP) (Amresco,

Solon, OH, USA), 1 mM MgCl2 (Sigma-Aldrich, St. Louis, MO,

USA), and 1 M diethanolamine (Sigma-Aldrich), adjusted to pH 9.8.

Absorbance was read at 410 nm in 1-minute intervals using a

Synergy 2 Microplate Reader at 37uC to determine pNPP hydrolysis

rates. The level of SEAP was calculated based on the specific activity

of SEAP being 2000 mU/mg protein where 1 mU corresponds to an

increase in light absorbance at 410 nm of 0.04 units/min.

Results and Discussion

Construction of a basic set of mammalian expression
vectors

We have created a simple, rapid and robust vector system for

inserting a GOI into any of six E. coli based vector backbones,

pBASE1-6. In each case, the GOI is inserted into a PacI/Nt.BvCI

USER cassette [13] flanked by a promoter and terminator by

USER cloning, see Figure 1 and Figure S1. For mammalian gene

expression, the vectors contain combinations of hygromycin

(HygR) and neomycin (NeoR) selectable markers; SV40, PGK,

and CMV promoters; and SV40 and BGH terminators, see Table

S3. The functionality of the vector design was verified by inserting

the gene encoding enhanced green fluorescent protein (eGFP) into

pBASE2 for proof of concept. Similar to our previous experience

using the PacI/Nt.BvCI cassette for cloning [13], E. coli

transformants were readily obtained (.200 colonies) and identical

pBASE2-eGFP vectors were isolated from three of these colonies.

One of the isolated pBASE2-eGFP plasmids was transfected into

CHO-S cells for further analysis. A strong green fluorescent signal

was detected in the cells (Figure 2). In contrast, CHO-S cells

transfected with control plasmid did not show increased fluores-

cence. Thus, the vector system allows integration of a GOI into a

fixed vector in a simple USER fusion reaction.

Design of a flexible multipurpose DNA fragment toolbox
In many cases, it is necessary to combine multiple DNA

elements in a single vector to achieve the desired sequence. This

task can easily be achieved with USER fusion where assembly of

up to four fragments has previously been demonstrated [10–13].

Exploiting this possibility, we have designed a DNA fragment

toolbox where the individual DNA building blocks can be

combined in a flexible manner for the construction of a multitude

of vectors. The individual building blocks in the toolbox have been

made either by PCR or by simple annealing of complementary

oligonucleotides. The vectors are assembled by combining the

individual building blocks by USER fusion via FASTs (Figure 3,

Table 2). The FASTs noted in Table 2 have been tested and

verified for functionality, but can in principle be changed to suit

the needs of the researcher. Each building block is capped with

two defined FASTs at either end to allow for directionally

controlled fusions to other building blocks in the toolbox. Vector

assembly does not require USER cassettes as the vector backbone

is generated by PCR. In the present version of our toolbox we

have designed seven FASTs, which can mediate assembly of up to

Figure 1. Integration of a GOI into the pBASE backbone vector.
(A) PCR amplification of the GOI using uracil-containing primers and a
uracil compatible DNA polymerase (e.g. PfuX7). (B) The PCR fragment of
B and a vector backbone fragment obtained by PacI/Nt.BbvCI digest (see
Figure S1) is mixed. Addition of the USERTM enzyme mix catalyzes uracil-
excision and generates compatible overhangs on the PCR fragment for
directed vector assembly. Subsequently, the cloning mix is directly
transformed into E. coli cells, where the fragments are ligated together.
doi:10.1371/journal.pone.0096693.g001

Figure 2. Imaging Cell Cytometry of live CHO-S cells transfect-
ed with pBASE-vector. Celigo Imaging Cell Cytometry of live CHO-S
cells one day after transfection with (A) pC1_ccdB as negative control,
(B) pFAST1-eGFP as positive control, and (C) pBASE2-eGFP as proof of
concept for eGFP insertion into the PacI/Nt.BvCI USER cassette of the
pBASE2 vector. (A1–C1) cells stained with Hoechst33342. (A2–C2)
cytometry of cells with a filter for eGFP fluorescence.
doi:10.1371/journal.pone.0096693.g002
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seven individual building blocks. Hence, the toolbox supports

vector construction with different levels of complexity, see below.

Firstly, in the simplest scenario, it is possible to swap building

blocks in the constructs that are based on the basic vector set

described above, e.g. if another selectable marker or vector

backbone is desirable (Figure 3A). Secondly, a GOI can be

combined with a new set of building blocks to form vectors with a

configuration similar to those in the basic expression vector set, but

with compositions of promoters, terminators, markers and vector

backbone, which are not included in the set (Figure 3B). The

building blocks harboring the promoter, terminator and marker

have fixed positions in the vector relative to the backbone, and for

that reason they are always equipped with the same FASTs. In this

way there is full flexibility to choose between the three promoters,

two terminators, three mammalian markers and two vector

backbones that are currently in the toolbox. In total this amounts

to 36 vector combinations; a number that will expand as new

promoters and terminators are added to the toolbox. The toolbox

is not limited to these components, as one can freely add more

components to suit specific projects. The only requirement is the

addition of the defined FASTs to PCR amplification primers.

Thirdly, the toolbox contains building blocks that allow for the

construction of expression vectors where the GOI is fused to one

or more sequences encoding relevant sorting signals, reporter

proteins, and purification/epitope tags (Figure 3C). Currently, the

toolbox contain building blocks encoding a ER signal peptide; ER

retention- and Golgi retention signals; mitochondrial-, nuclear-,

peroxisomal-, and plasma membrane localization signals; reporter

proteins including eGFP, eCFP, eYFP, mCherry and secreted

alkaline phosphatase (SEAP); and the His6, FLAG and cMyc tags,

see Table 3. Building blocks coding for protein are fused with

FASTs encoding three amino acid residues, which serve as linkers

between the two protein-based components (Table 2). For each of

these building blocks, variants exist with different FASTs (Figure

S2). As a result, the composition of the FASTs and the relative

positioning of building blocks are flexible. This part of the toolbox

allows any GOI encoded protein to be fused, N- or C- terminally,

with any of the tags for localization, purification and visualization

mentioned above. Lastly, vectors supporting mammalian bicis-

tronic gene expression can be constructed as one of the building

blocks in the toolbox is an internal ribosome entry site, IRES. This

mode of gene expression is desirable if stoichiometric transcription

levels of the individual genes are required.

Efficiency of the versatile FAST vector assembly system
In order to benchmark the assembly efficiency of the FAST

system and the functionality of the assembled vectors, a

comprehensive set of mammalian vectors based on different

numbers of PCR derived building blocks (five, six or seven) were

constructed (Table 4, Table S1). By testing vectors with 5–7

blocks, all FASTs are also validated for functionality. Nine, six,

and eleven vectors were successfully made by fusing five, six and

Figure 3. FAST-mediated vector assembly. Construction of vector types (A–C) requires the same three steps: 1: Preparation of building blocks
with appropriate FASTs by PCR or annealing of complementary oligonucleotides. 2: USER fusion and hybridization: the USER enzyme and all building
blocks are mixed in one reaction. 3: E. coli transformation with the USER cloning reaction mix. (A) Insertion of a promoter-GOI-terminator expression
cassette in an E. coli vector backbone. (B) Assembly illustrated with five elements: the expression cassette as three building blocks, an
interchangeable selection marker, and a vector backbone. (C) Similar to (B), but with seven building blocks including C- and N-terminal tags. The N-
and C-terminal tag can either be a reporter, a fusion protein, a localization sequence or an epitope tag. GOI: gene of interest; N-tag: N-terminal
sequence tag; C-tag: C-terminal sequence tag; P, promoter; and T, terminator.
doi:10.1371/journal.pone.0096693.g003
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seven building blocks, respectively. Importantly, in all these 26

experiments, E. coli transformants were easily obtained. However,

we noted that the number of colonies decreased as the number of

building blocks was increased; hence, the lowest number of

transformants, was obtained for a vector that required fusion of

seven building blocks (Table 4). For all experiments, three

randomly picked colonies were analyzed for the quality of vector

assembly. Like the number of transformants, the fusion fidelity also

decreased as the number of building blocks was increased.

Nevertheless, in the 11 attempts to fuse seven building blocks,

93% of the 33 tested colonies contained a correctly assembled

vector (Table 4). Moreover, sequencing of all correctly assembled

plasmids showed that the building blocks were fused in an error

free manner and that no mutations were introduced during PCR.

Small building blocks in the toolbox, which contain sequences

that are too short to be made by PCR, were formed by annealing

two partly complementary oligonucleotides. In these cases, non-

homologous extensions at the 39-ends of the two oligonucleotides

provide the FAST overhangs. These building blocks include the

localization sequences for endoplasmatic reticulum, mitochondria,

and plasma membrane, as well as signals for retention in the

medial- and trans-Golgi, and trans-Golgi network. To investigate

whether these building blocks could be efficiently incorporated

into vectors using the approach described above, they were mixed

with five other building blocks in a number of vector assembly

experiments. As a result, 18 different vectors were successfully

assembled (Table 4). Compared to vector assembly, which is based

solely on PCR derived building blocks, we note a minor decrease

in the cloning efficiency. Even so, the number of colonies was still

sufficient to achieve correctly assembled vectors in the first trial.

Moreover, among the 54 vectors tested in total, 87% contained

correctly fused building blocks (Table 4).

The vectors constructed above were examined for functionality

in U-2-OS cells. Firstly, we tested vectors based on the HygR

marker. After transfection, small foci of resistant cells appeared

after 4 days of selection pressure. In contrast, no foci formed with

cells transfected with empty vectors, see Figure S3. Secondly, we

validated the functionality of building blocks forming expression

Table 3. Elements included in the pBASE and pFAST vector platforms.

Category Element Template Reference/Source

Promoters CMV pcDNA3.1(+) Invitrogen

PGK pSUPERIOR.puro Oligoengine

SV40 pcDNA3.1(+) Invitrogen

Terminators BGH pA pcDNA3.1(+) Invitrogen

SV40 pA pcDNA3.1(+) Invitrogen

hGH pA pFLAG-CMV Sigma

Marker cassettes HygR pcDNA3.1/Hygro(+) Invitrogen

NeoR pcDNA3.1(+) Invitrogen

DHFR pIRES-DHFR In house/GenBank: BC005796

Targeting signals NLS (nuclear) Synthetic [17]

PTS1 (peroxisomal) Synthetic [18]

c-Ha-ras (plasma membrane) Synthetic [19–20]

COX-VIII (mitochondrial) Synthetic [21]

CRT (ER) Synthetic [22]

KDEL (ER retention signal) Synthetic [23]

GalNacT1 (medial-Golgi) Synthetic [24]

b-1,4 GT (trans-Golgi) Synthetic [25]

a-2,6 ST (TGN) Synthetic [26–27]

Secretion signals hIFN-c Synthetic [28–29]

Proteins eGFP peGFP-1 Clontech

eYFP peYFP-C1 Clontech

eCFP peCFP-C1 Clontech

mCherry pmCherry-N1 Clontech

SEAP pGEM-4Z/PLAP489 [14]

Other elements IRES pIRES-DHFR In house

Vector backbone pU0002 [13]

His-tag Synthetic [30]

FLAG-tag Synthetic Invitrogen

c-Myc-tag Synthetic Invitrogen

a-2,6 ST: N-terminal targeting signal of beta-galactoside alpha-2,6-sialyltransferase; b-1,4 GT: N-terminal targeting signal of beta-1,4-galactosyltransferase; c-Ha-ras: C-
terminal targeting signal of c-Ha-ras p21 protein; COX-VIII: N-terminal targeting signal of cytochrome c oxidase subunit VIII; CRT: N-terminal targeting signal of
calreticulin; ER: endoplasmic reticulum; GalNAcT1: N-terminal targeting signal of N-acetylgalactosaminyltransferase; hIFN-c: human Interferon-gamma; NLS: C-terminal
nuclear localization sequence; PTS1: C-terminal peroxisomal target signal 1; TGN: trans-Golgi network.
doi:10.1371/journal.pone.0096693.t003
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cassettes for production of fluorescent proteins. Accordingly, U-2-

OS cells transfected with plasmids expressing genes or gene fusions

encoding eCFP, eGFP, eYFP, and mCherry were examined by

fluorescent microscopy. In all cases, cells containing an easily

detectable signal in the cytoplasm at the expected wavelengths

were observed, see Figure 4A–E.

The toolbox includes building blocks encoding cell sorting

sequences containing the information to direct a protein contain-

ing no sorting signal to any of eight different locations. To test

whether these building blocks could be functionally fused via

FAST linkers to a GOI we made 18 new vectors, see Table S3,

each encoding a fluorescent protein fused to a specific cell sorting

sequence. These plasmids were transfected into U-2-OS cells and

subsequently examined by fluorescent microscopy (Figure 5). In all

experiments, cells containing a fluorescent signal were detected,

and, as expected for functional fusions, the sorting sequences

dictated the cellular locations of the tagged fluorescent proteins.

For example, cells producing eYFP fused to the SV40 nuclear

localization signal emitted yellow light that co-localized with DAPI

stained nuclei (Figure 5A). The distribution patterns of the

remaining fusion proteins (Figure 5B–H), corresponded to those

already presented in the literature for proteins using these signals

for sorting [17–27]. We therefore conclude that all protein-sorting

sequences in the toolbox are functional when fused to fluorescent

proteins and that the FASTs did not interfere with the localization

of the targeting signal.

Table 4. Efficiency of the versatile FAST vector assembly system.

# Building blocks # Vectors # Colonies min – max Average # colonies Cloning efficiencya [%]

5 9 212–552 339 100

6 6 76–340 144 96

7 11 43–142 101 93

5+1b 18 21–204 52 87

Negative controlc 10 0–10 5 -

aCloning efficiency is based on 3 transformants for each assembled construct and calculated as the number of transformants that contained all inserts in correct
orientation divided by the number of screened transformants.
bAssembly of five double-stranded PCR fragments, and one oligonucleotide-based part;
cReligation of the backbone vector fragment.
doi:10.1371/journal.pone.0096693.t004

Figure 4. Confocal laser microscopy of fixed U-2-OS cells transiently transfected with pFAST-vectors. Confocal laser microscopy of fixed
U-2-OS cells transiently transfected with control and pFAST-vectors 48h after transfection with (A) pC1_ccdB as negative control, (B) pFAST1-eGFP,
(C) pFAST2-eYFP, (D) pFAST3-eCFP, and (E) pFAST4-mCherry. (A1–E1) microscopy with fluorescence filters. (A2–E2) nuclei stained with DAPI (dark
blue). (A3–E3) merged pictures.
doi:10.1371/journal.pone.0096693.g004
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Validation of protein secretion using the FAST system
Similar to intracellular targeting signals, the toolbox also

includes a building block encoding a signal peptide that allows a

protein to enter the secretory pathway. To test the functionality of

this building block, it was fused to the gene encoding eGFP. The

resulting construct and a construct coding for eGFP without the

signal peptide was subsequently transfected into HEK293T cells.

Transfected cells were propagated for four days and the growth

medium examined for the presence of eGFP. Relative fluorescence

intensity (RFI) from medium extracted from cells expressing the

secreted protein was 24% and 50% higher than from medium

extracted from cells expressing the non-secreted eGFP and from

medium that was not inoculated with cells, respectively (Table 5).

We therefore conclude that the signal peptide for secretion is

functional with our FAST linker.

FAST bicistronic protein production
To investigate whether our FAST toolbox could support

bicistronic gene expression, the building block containing an

internal ribosomal entry site (IRES) was tested in two separate

setups. Firstly, IRES was inserted between eGFP and mCherry

and cells expressing this bicistronic construct were examined by

fluorescence microscopy. The resulting cells contained both eGFP

and mCherry in the cytoplasm. An analogous construct where the

order of the two genes was reversed gave a similar result. In both

cases, the dual signal cannot be the result of the formation of a

fusion protein, since the two genes are not in the same reading

frame, in addition, both coding sequences terminate with a stop

codon. The simultaneous presence of the two fluorescent in the

cytoplasm therefore strongly indicates that the ribosome was

loaded at both the cap structure and at the IRES sequence of the

mRNA transcribed from the plasmid. Secondly, IRES was

inserted between the secreted alkaline phosphatase (SEAP) and

either mCherry or eGFP. In these cases, significant extracellular

activity of SEAP was detected in both experiments. Similarly, the

expected fluorescent protein, but not the other, was detected in

each of the two cells (Table 6, Figure S4).

Conclusion

In this work, we have generated and validated a versatile vector

assembly system for rapid generation of mammalian expression

vectors. The system is based on FAST linker sequences and

consists of two parts using this technology: the pBASE vectors

allowing rapid ligation-free insertion and expression of single gene

expression cassettes, and the FAST-directed assembly (pFAST

vector set) allowing assembly of up to seven PCR fragments in a

single cloning step. As proof of concept of the versatility, we have

Figure 5. Confocal laser microscopy of U-2-OS cells expressing localized fluorescent proteins. Confocal laser microscopy of fixed U-2-OS
cells transiently expressing fluorescent proteins localized to major cellular compartments. Shown are representative images of eYFP or eGFP detected
48 hours after transfection: (A1-3) pFAST6-eYFP::NLS, (B1-3) pFAST5-eGFP::PTS1, (C1-3) pFAST37-eGFP::c-Ha-Ras, (D) pFAST57-CRT::eGFP::KDEL, (E)
pFAST58-COXVIII::eGFP, (F) pFAST59-GalNAcT1::eGFP, (G) pFAST61-b1,4GT::eGFP, (H) pFAST56-a-2,6ST-eGFP. (A1–H1) microscopy with fluorescence
filters. (A2–H2) nuclei stained with DAPI (dark blue). (A3–H3) merged pictures.
doi:10.1371/journal.pone.0096693.g005

Table 5. The level of eGFP intensity in extracted media.

Plasmid RFI

PBS 75

Blank medium 112

pFAST1-eGFP 132

pFAST55-hIFNc::eGFP 164

RFI: relative fluorescence intensity; PBS: phosphate buffered saline.
doi:10.1371/journal.pone.0096693.t005

Table 6. Amounts of SEAP in extracted media of HEK293
cells.

Plasmid SEAP [mg/ml]

Negative control* ,0.001

pFAST53-SEAP-IRES-mCherry 0.291

pFAST54-SEAP-IRES-eGFP 0.507

SEAP: secreted alkaline phosphatase.
*Negative control was a plasmid expressing a fluorescent protein, but not SEAP.
doi:10.1371/journal.pone.0096693.t006
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developed a set of constructs encoding fluorescent proteins that

can be used to visualize compartments. The localization signals

encoded by these constructs were 3-62 amino acids long; all were

functionally fused to fluorescent proteins via our FAST linkers in

the cell lines HEK293, U-2-OS, CHO-K1, and CHO-S. We have

in this setup tested assembly of up to seven fragments, but the fact

that these constructs were easily obtained and showed cloning

efficiencies above 90%, indicates that even more complex vectors

consisting of additional fragments can likely be constructed with

this method. Furthermore, the FAST linkers make the system

easily expandable to any components a user might wish to add. In

summary, we provide a non-commercial validated method for

one-step assembly of up to seven DNA fragments. The versatile

vector assembly strategy we present here can therefore be adapted

to a wide range of uses and broadly benefit the mammalian

research community.

Supporting Information

Figure S1 Backbone vector preparation by digestion.
For high-throughput parallel cloning into the vector, plasmids are

treated with the enzymes PacI and Nt.BbvCI to generate a vector

backbone, which can be combined with genes of interest.

(TIF)

Figure S2 Schematic representation of the flexible
combination of building blocks. The FAST-based vector

assembly allows flexible combination of building blocks and

therefore variants of the building block exist with different FAST.

The color indicates the different FASTs.

(TIF)

Figure S3 Characterization of functionality of the
Hygromycin selectable marker in transiently transfect-
ed U-2-OS cells. Light microscopy of U-2-OS cells transfected

with control and pFAST1-eGFP. Representative images of cells

are shown at day 0, 1, 4, and 8 after addition of Hygromycin B. (A)

pC1_ccdB and (B) FAST1-eGFP.

(TIF)

Figure S4 Characterization of IRES expression in
transiently transfected U-2-OS cells by confocal laser
microscopy. Representative images of fluorescent expression of

fixed U-2-OS are shown 48 h after transfection with (A)
pFAST54_SEAP-IRES-eGFP, (B) pFAST53_SEAP-IRES-

mCherry, (C) pFAST72_eGFP-IRES-mCherry, (D)
pFAST73_mCherry-IRES-eGFP. Cells were fixed with parafor-

maldehyde, nuclei stained with DAPI, and visualized under

fluorescence microscope (A, B) or confocal microscopy (C, D).

(TIF)

Table S1 Primer sequences.

(DOCX)

Table S2 Synthetic DNA oligonucleotide.

(DOCX)

Table S3 Plasmids constructed with the FAST assembly
system of this study.

(DOCX)
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