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Molecular analysis of clinical isolates
previously diagnosed as Mycobacterium
intracellulare reveals incidental findings of
“Mycobacterium indicus pranii” genotypes in
human lung infection
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Abstract

Background: Mycobacterium intracellulare is a major cause of Mycobacterium avium complex lung disease in many
countries. Molecular studies have revealed several new Mycobacteria species that are closely related to M. intracellulare.
The aim of this study was to re-identify and characterize clinical isolates from patients previously diagnosed with M.
intracellulare lung disease at the molecular level.

Methods: Mycobacterial isolates from 77 patients, initially diagnosed with M. intracellulare lung disease were
re-analyzed by multi-locus sequencing and pattern of insertion sequences.

Results: Among the 77 isolates, 74 (96 %) isolates were designated as M. intracellulare based on multigene
sequence-based analysis. Interestingly, the three remaining strains (4 %) were re-identified as “Mycobacterium
indicus pranii” according to distinct molecular phylogenetic positions in rpoB and hsp65 sequence-based
typing. In hsp65 sequevar analysis, code 13 was found in the majority of cases and three unreported codes
were identified. In 16S–23S rRNA internal transcribed spacer (ITS) sequevar analysis, all isolates of both species
were classified within the Min-A ITS sequevar. Interestingly, four of the M. intracellulare isolates harbored
IS1311, a M. avium-specific element. Two of three patients infected with “M. indicus pranii” had persistent
positive sputum cultures after antibiotic therapy, indicating the clinical relevance of this study.

Conclusions: This analysis highlights the importance of precise identification of clinical isolates genetically
close to Mycobacterium species, and suggests that greater attention should be paid to nontuberculous
mycobacteria lung disease caused by “M. indicus pranii”.
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Background
Mycobacterium avium complex (MAC) lung disease is
the most common lung disease caused by nontubercu-
lous mycobacteria (NTM) and its prevalence has been
increasing worldwide [1–10]. MAC was originally com-
posed of two species, M. avium and Mycobacterium
intracellulare [11]. Many laboratories and studies
reported these species as MAC because they are highly
similar, and the clinical features of patients who are
infected with these two species are considered indistin-
guishable [11, 12]. However, some studies have sug-
gested that differentiation between M. avium and M.
intracellulare may have epidemiologic and clinical rele-
vance [13, 14].
M. intracellulare is a major cause of MAC lung disease

in many countries [2]. Molecular studies have revealed
the presence of additional taxonomic groups or
sequence variants (sequevars) that are closely related to
M. intracellulare. Several new species were recently
identified including Mycobacterium chimaera, Mycobacter-
ium colombiense, Mycobacterium arosiense, Mycobacterium
vulneris, Mycobacterium marseillense, Mycobacterium
timonense, Mycobacterium bouchedurhonense, Mycobacter-
ium mantenii, and Mycobacterium yongonense [15–20].
However, data regarding the proportion of these new spe-
cies that are etiologic organisms in patients with previously
diagnosedM. intracellulare lung disease are very limited.
The methods of correct identification for mycobacterial

species in clinical laboratories have changed dramatically
over the past two decades. Molecular methods have now
surpassed biochemical tests and high-performance liquid
chromatography as the method of choice for identifying
NTM [21]. Polymerase chain reaction (PCR) restriction
fragment length polymorphism analysis (PRA) based on
restriction digestion products of specific genes such as
hsp65, 16S rRNA, rpoB, and 16S–23S rRNA internal tran-
scribed spacer (ITS) has been reported as a rapid, feasible,
and inexpensive diagnostic method [22–25]. The gold
standard identification method of 16S rRNA gene
sequencing and sequencing of each loci as a single
identification target has failed to discriminate closely
related Mycobacterium species such as MAC, Myco-
bacterium abscessus-Mycobacterium chelonae, Myco-
bacterium farcinogenes-Mycobacterium senegalense,
Mycobacterium kansasii-Mycobacterium gastri, and
Mycobacterium marinum-Mycobacterium ulcerans
[26, 27]. Recently, multigene sequence-based typing has
been suggested as the new standard method for identify-
ing Mycobacterium species that are not well discriminated
by 16S rRNA gene sequences alone [8, 28–30].
In our institution, the rpoB-PRA method had been used

for species identification and diagnosis of MAC lung dis-
ease [14]. Recently published papers have emphasized the
importance of taxonomy in distinguishing the many species

and subspecies of MAC. Nonsequencing methods or 16S
rRNA sequencing might fail to distinguish closely related
species [31, 32], indicating that nonsequencing-based
approaches or analysis of a single target are not suitable for
the accurate identification of (sub-)species belonging to
MAC.
Thus, the aim of this study was to re-identify clinical

isolates from patients previously diagnosed with M.
intracellulare lung disease and to characterize their
molecular pattern. For this purpose, the following
methods were used: (1) multigene sequence-based typ-
ing of 16S rRNA, rpoB, hsp65 and ITS genes, (2) hsp65
and ITS sequevar-based classification, and (3) insertion
element analysis. Finally, three “Mycobacterium indicus
pranii” strains that were previously identified as M. intra-
cellulare were re-identified. The clinical characterization
of lung disease caused by these three “M. indicus pra-
nii” infections was described. “M. indicus pranii” is of
specific interest due to its evolutionary significance
and therapeutic potential in various disease processes.
This study raises the possibility of “M. indicus pranii”
as a pathogenic organism in the appropriate host and
clinical situation, a notion not previously suggested in
prior publications.

Methods
Study subjects
Clinical isolates from 77 consecutive patients who were
newly diagnosed with M. intracellulare lung disease from
Jan. 2008 to Dec. 2009 at Samsung Medical Center (a
1,961-bed referral hospital in Seoul, Korea) were collected
and stored. This study was approved by the Institutional
Review Board of Samsung Medical Center (File No. 2008-
09-016). All patients' record and information was anon-
ymized and de-identified prior to analysis. All patients
met the diagnostic criteria for NTM lung disease [11]. All
patients were immunocompetent and none of the patients
tested positive for human immunodeficiency virus. Base-
line patient characteristics are summarized in Table 1.
The isolates were collected before initiating antibiotic

treatment for M. intracellulare lung disease. NTM spe-
cies were identified as M. intracellulare by PRA based
on the rpoB gene at time of diagnosis [14].

Identification of patient isolates by multigene
sequence-based typing
NTM were propagated in Middlebrook 7H9 broth
(Difco Laboratories, Detroit, MI, USA) supplemented
with 10 % (vol/vol) oleic acid-albumin-dextrose-catalase
(OADC; BD Diagnostics). Mycobacterial DNA was ex-
tracted using a DNeasy Blood and Tissue Kit according
to the manufacturer’s instructions (Qiagen, Valencia,
CA). Multigene sequence-based typing including hsp65,
rpoB, ITS and 16S rRNA fragments was carried out
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using PCR primer sets as described previously (Table 2).
The PCR products of target genes were subjected to se-
quence analysis. hsp65 and ITS sequevar analysis were
performed as previously described [33, 34]. The nucleo-
tide sequences of these genes were compared with data
reported by BLAST analysis (http://www.ncbi.nlm.nih.gov/)
against sequences from M. intracellulare ATCC13950T, M.
intracellulare ATCC15985, M. intracellulare MOTT-64, M.
intracellulare MOTT-02, M. intracellulare MOTT36Y, and
“M. indicus pranii” MTCC9506. For phylogenetic analysis,
sequences were trimmed using the CLUSTAL-W multiple
sequence alignment program [35]. Phylogenetic trees
were obtained from DNA sequences utilizing the
neighbor-joining method and Kimura’s two parameter

distance correction model with 1000 bootstrap repli-
cations supported by MEGA 6.0 software [36].

Insertion element analysis
Multiplex PCR was performed to detect four target
genes, IS900, IS901, IS1311 and DT1, using previously
described methods [37, 38]. PCR product sizes of
398 bp, 754 bp, 608 bp, and 296 bp corresponded to
amplification of IS900, IS901, IS1311, and DT1 targets,
respectively (data not shown). Amplification of only the
DT1 gene indicated M. intracellulare. PCR products of
insertion elements were sequenced and the existence of
a specific insertion element in each strain was confirmed.
DNA isolated from Mycobacterium abscessus ATCC19977,
Mycobacterium tuberculosis H37Rv ATCC27294, and
Mycobacterium gastri ATCC15754 were used as negative
controls for each primer set in each PCR run.

Results
Re-identification of clinical isolates by multigene
sequence-based typing
Isolates from 77 patients diagnosed with M. intracellulare
lung disease were re-identified. Clinical isolates from 74
(96 %) patients were identified as M. intracellulare and
those from three (4 %) patients were identified as “M.
indicus pranii” using multiple gene sequencing analysis
(Table 3). The 16S rRNA and ITS sequences of “M. indi-
cus pranii” isolates were identical to those of the “M. indi-
cus pranii” type strain (GenBank accession no. CP002275)
and the M. intracellulare type strain (GenBank accession
nos. GQ153276 and CP003322, respectively). However,
the rpoB and nearly complete hsp65 sequences (PCR with
hsp65-sequevar primer sets) of “M. indicus pranii” isolates
(isolate 01, 46 and 70) were only identical to those of the
“M. indicus pranii” type strain (GenBank accession no.
CP002275). They were 99.6 % (708/711) and 99.8 %
(1413/1416) similar to the rpoB and hsp65 sequences of
the M. intracellulare type strain (GenBank accession nos.
JQ411539 and DQ284774, respectively). The phylogenetic
tree of all isolates with M. intracellulare and “M. indicus
pranii” type strains is shown in Figs. 1, 2 and 3.
In all, the 77 isolates were classified to seven different

hsp65 sequevars according to the method described by
Turenne et al. [33]. Four of these sequevars were well
recognized as M. intracellulare type and related strains,
and 3 were newly identified in this study. The new
sequevars were coded N4, N5 and N6 [followed by the
code name given in the previous paper [39]. Ten single
nucleotide polymorphisms (SNPs) excluding SNPs
reported in the previous study were identified in this
study (Table 4). The distribution of hsp65 sequevars in
the 77 isolates is shown in Tables 3 and 4. In all, 74M.
intracellulare and three “M. indicus pranii” isolates were
classified as the Min-A ITS sequevar.

Table 2 Primers used in this study

Target Sequence (5′ to 3′) of paired primers Reference

16S rRNA AGA GTT TGA TCC TGG CTC AG [54]

GTA TTA CCG CGG CTG CTG

ITS TTG TAC ACA CCG CCC GTC [34]

TCT CGA TGC CAA GGC ATC

hsp65 AAC GTC GTC CTG GAG AAG AA [55]

GCC TTC TCC GGC TTG TC

rpoB GGC AAG GTC ACC CCG AAG GG [27]

AGC GGC TGC TGG GTG ATC ATC

IS900 TGG ACA ATG ACG GTT ACG GAG GTG G [37]

CGC AGA GGC TGC AAG TCG TGG

IS901 CGA CGA CAG GAG TAG CGG TAT GGC [38]

CCG TGC TGC GAG TTG CTT GAT GAG

IS1311 GCG TGA GGC TCT GTG GTG AA [37]

ATG ACG ACC GCT TGG GAG AC

DT1 CGT TGG CTG GCC ATT CAC GAA GGA GT [37]

GCT AGT TGG ATC GCG CCG AAC ACC GG

Table 1 Clinical characteristics of 77 patients with previously
diagnosed M. intracellulare lung disease

No. (%) or median (IQR)

Age, years 64 (55–72)

Female 40 (52)

Body mass index (kg/m2) 20.0 (17.7–21.5)

Non-smoker 55 (71)

Previous history of TB treatment 43 (56)

Positive sputum AFB smear 39 (51)

Type

Nodular bronchiectatic form 47 (61)

Fibrocavitary form 22 (29)

Unclassifiable form 8 (10)

IQR interquartile ranges, TB tuberculosis, AFB acid-fast bacilli
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Distribution of insertion elements between M.
intracellulare and M. indicus pranii strains
All isolates were negative for IS900 (considered diagnos-
tic for M. avium subsp. paratuberculosis) as well as
IS901 (considered diagnostic for M. avium subsp.
avium), and positive for DT1 (considered diagnostic for
M. intracellulare and M. avium subsp. avium). Interest-
ingly, four (5 %) isolates identified as M. intracellulare
were positive for IS1311 (considered diagnostic for all
members of M. avium subspecies). The IS1311 se-
quences of four M. intracellulare isolates were identical
to those of the M. avium insertion sequence IS1311

transposase gene (GenBank accession no. U16276), indi-
cating that IS1311 might truly exist in some M. intracel-
lulare strains.

Clinical characteristics of three patients with M. indicus
pranii lung disease
Three patients were re-diagnosed as having “M. indicus
pranii” lung disease (Table 5 and Fig. 4). Two patients
received combination antibiotic therapy including clari-
thromycin, ethambutol, rifampin, and streptomycin.
Three isolates from each patient were identified as “M.
indicus pranii” using multigene sequence-based typing
and had no mutations in rrl (23S rRNA gene) according
to sequencing analysis, which is known as main mechan-
ism of acquired macrolide resistance in MAC [40].
Patient 1 died of an accident after five months of anti-
biotic therapy, and patient 2 showed persistent positive
sputum cultures after 24 months of antibiotic therapy.
Patient 3 was followed up without antibiotic treatment
for 5.5 years because of mild symptoms.

Discussion and conclusions
In this study, clinical isolates from 77 patients that were
previously diagnosed with M. intracellulare lung disease
over a two-year period were re-identified. Species identi-
fication was initially performed by a non-sequencing
method and then species were re-identified using a
sequencing method. Among the 77 isolates identified as
M. intracellulare by PRA at the time of diagnosis, 74
isolates were repeatedly identified as M. intracellulare.
The remaining three were re-identified as “M. indicus
pranii” by multigene sequence-based typing. However,
hsp65 and ITS sequevar analyses were not precise
enough to discriminate between M. intracellulare and
“M. indicus pranii” in this study. To our knowledge, this
is the first study to report documented cases of “M. indi-
cus pranii” lung disease in humans.
M. intracellulare isolate 64 with code N4 and isolate

53 with code N5 were negative for IS900, IS901, and
IS1311, and positive for DT1. Since classification among
MAC subsets based on the hsp65 sequevar has been
proposed [33], there have been several studies published
on M. avium hsp65 sequevars, but none on M. intracel-
lulare hsp65 sequevars. The distribution of M. intracel-
lulare hsp65 sequevars in other countries is unknown.
However, two-thirds of the strains from this Korean-
based study were code 13 type, indicating that further
studies to characterize this species are needed.
In general, IS1311 is present in all members of the M.

avium subspecies and is not present in M. intracellulare.
Four M. intracellulare isolates possessed identical
IS1311 to that of the M. avium in this study, which is a
novel observation. Since a number of different IS ele-
ments have been described in various NTM species, the

Table 3 Re-identification using multigene sequence-based
typing, distribution of hsp65, ITS sequevar analysis, and insertion
elements

M.
intracellulare
(MI)

“M. indicus
pranii” (MIP)

Comparison between
MI and MIP

Identification and
diagnosis by

Non-sequencing
method (PRA)

77 0 Identical

Multigene
sequence-based
typing

74 3 Different

16S rRNA Identical

ITS Identical

rpoB Different

hsp65 Different

Molecular
characterization

Distribution of
hsp65 sequevar

Differenta

Code 10 9 0

Code 11 13 0

Code 13 48 0

Code 14 2 0

Code N4 1 0

Code N5 1 0

Code N6 0 3

ITS sequevar Min-A Min-A Identical

Insertion
elementsb

Identical

IS900 - -

IS901 - -

IS1311 −/+c -

DT1 + +

PRA, PCR restriction fragment length polymorphism analysis, ITS internal
transcribed spacer
aTwo species were not distinguished by previously published hsp65 code, but
code N6 identified in this study was different between the two species
bPCR results of insertion element are indicated as positive(+) or negative(−)
cFour isolates identified as M. intracellulare were positive for IS1311
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Fig. 1 A hsp65 sequence-based phylogenetic tree of 77 isolates including the M. intracellulare type, M. intracellulare clinical strains, “M. indicus pranii”, and
other MAC species using the neighbor-joining method with Kimura’s two parameter distance correction model. Bootstrap analyses determined from 1000
replicates are indicated at the nodes. Bar, 0. 5 % difference in nucleotide sequence. GenBank accession numbers are given in parentheses
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Fig. 2 The rpoB sequence-based phylogenetic tree of 77 isolates including the M. intracellulare type, M. intracellulare clinical strains, “M. indicus pranii”, and
other MAC (sub-)species using the neighbor-joining method with Kimura’s two parameter distance correction model. Bootstrap analyses determined from
1000 replicates are indicated at the nodes. Bar, 0.5 % difference in nucleotide sequence. GenBank accession numbers are given in parentheses
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Fig. 3 The phylogenetic tree based on concatenated hsp65 and rpoB sequences of 77 isolates including M. intracellulare type, M. intracellulare clinical strains,
“M. indicus pranii”, and other MAC (sub-)species using the neighbor-joining method with Kimura’s two-parameter distance correction model. Bootstrap analyses
determined from 1000 replicates are indicated at the nodes. Bar, 0.5 % difference in nucleotide sequence. GenBank accession numbers are shown in Figs. 1 and 2
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species-specific IS elements have been revisited for
MAC identification [37, 41, 42]. IS elements are mobile
by nature, so there is a risk that similar elements are
found in unrelated bacteria because of mobility to or
from MAC organisms. Therefore, IS-based PCR differ-
entiation of MAC must be performed in combination
with other genetic analyses. Based on this study, DT1 is
the optimal candidate marker gene for identification of
M. intracellulare and “M. indicus pranii”. Sequences
analysis of hsp65 and rpoB provides phylogenetic place-
ment, allowing discrimination between the two species.
“M. indicus pranii” is initially named “Mycobacterium

w (Mw)” and used as a potential leprosy vaccine [43].
The use of the name “Mycobacterium w” gives an im-
pression that Mw is related to the hypervirulent M. tu-
berculosis-W (Beijing strain) strain. To avoid confusion,
Talwar et al. suggested using the nomenclature “Myco-
bacterium indicus pranii” [44]. However, neither of its
name is found on the List of Prokaryotic Names with
Standing in Nomenclature, and the designation “Myco-
bacterium indicus pranii” does not conform to the bino-
mial naming convention used for bacterial species [45].
In a recent publication, Alexander et al. suggested that
“M. indicus pranii” is a strain of M. intracellulare [46].
“M. indicus pranii” is considered to be a non-pathogenic
microorganism and no human infections have been re-
ported to date [47]. Use of the “M. indicus pranii” vaccine
is based on the assumption that antigens shared between
M. tuberculosis and this saprophytic mycobacterium is rele-
vant for protective immunity and that “M. indicus pranii”
lacks many of the harmful components present in M.

tuberculosis [48]. “M. indicus pranii” immunotherapy did
demonstrate protective efficacy against tuberculosis [49].
However, patients with pericardial tuberculosis who re-
ceived “M. indicus pranii” injections demonstrated no sig-
nificant benefit with respect to any reported outcomes in
recent papers [50, 51]. The efficacy of “M. indicus pranii” in
severe sepsis has recently been reported [52].
On the basis of our findings, “M. indicus pranii”

should be considered a cause of pulmonary disease in
humans with pre-existing lung disease, such as tubercu-
losis and bronchiectasis. In addition, the virulence of

Table 4 Identification of novel hsp65 sequevar codes and hsp65 SNPs among “M. indicus pranii” and M. intracellulare clinical strains
compared to the M. intracellulare type strain

hsp65
codea

Species or strain Nucleotide at the indicated base pair position (hsp65)b No. of
isolates192 198 249 279 285 459 477 555 633 726 804 921 933 1011 1191 1371 1423 1467

Code
10

M. intracellulare
ATCC13950

G G C G T C C C G C C C T G G G C C 9

Code
11

M. intracellulare
FCC1804

• • • • • • • • • • • • • • • • • T 13

Code
12

M. intracellulare 96006 • • • • • T • • • • • • • • • • • • 0

Code
13

M. chimaera MI-JC T • T T C • • • • • • • • • • • T • 48

Code
14

M. intracellulare 90331 • • • • • • • • • • • • • • • A • T 2

Code
N4c

M. intracellulare clinical
isolate 64

T A T T C • • • • • • • • • • • T T 1

Code
N5c

M. intracellulare
MOTT36Y

• A • • • • G G C T • G C C C • • • 1

Code
N6c

“M. indicus pranii”
MTCC9506

• • • • • • • • • • G • • C C • • • 3

aClassification according to Turenne et al. [33]
b • indicates the same base pair as in code 10; New base pair position found in this study are indicated by bold font
cNew code types found in this study are designated by code N4, N5, and N6

Table 5 Clinical characteristics of three patients with “M. indicus
pranii” lung disease

Patient 1 Patient 2 Patient 3

Sex/Age M/27 F/72 M/42

Previous TB
treatment

Yes No No

Sputum AFB
smear

Positive Positive Negative

Radiographic
type

Fibrocavitary Nodular
bronchiectatic

Nodular
bronchiectatic

Cavitary lesion Bilateral Unilateral None

Clarithromycin
MIC (μg/mL)

1.0 1.0 ≤0.5

Antibiotic
treatment

Yes Yes No

Treatment
outcomes

Death after
5 months of
treatment

Persistent positive
sputum culture after
24 months of treatment

Follow-up
without
treatment

TB tuberculosis, AFB acid-fast bacilli, MIC minimum inhibitory concentration
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“M. indicus pranii” may vary according to geographical
location. “M. indicus pranii” could be detected more fre-
quently in the future as a consequence of increased gen-
etic sequencing. Therefore, careful attention should be
given to accurately identifying this Mycobacterium spe-
cies. Further studies regarding the pathogenesis of “M.
indicus pranii”, including comparison with M. intracel-
lulare, are needed.
Unlike M. tuberculosis, which has no environmental

reservoir, NTM are ubiquitous microorganisms readily
isolated from environmental sources, including soil and
water. Despite the reportedly low virulence of NTM in

immunocompetent human hosts, an increase in their
isolation frequency has been seen in the last decade.
Genetic analyses have greatly improved our understand-
ing of the phylogeny and evolutionary diversity of NTM.
Our study suggests that precise differentiation of M.
intracellulare isolates may provide clinically relevant
data including ecology, epidemiology, virulence, and
treatment outcomes [32, 53].
The precise re-identification of clinical isolates initially

identified as M. intracellulare by a non-sequencing
method in patients with M. intracellulare lung disease re-
vealed that most cases were caused by M. intracellulare.
However, some were caused by “M. indicus pranii”. Our
study indicates the role of “M. indicus pranii” as an agent
of severe and chronic lung disease in immunocompetent
patients, suggesting that further study is needed to investi-
gate its pathogenicity.
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