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Abstract: Huntington’s disease (HD) is an autosomal fatal genetic disease in which degeneration of 
neuronal cells occurs in the central nervous system (CNS). Commonly used therapeutics are clude-
monoamine depletors, antipsychotics, antidepressants, and tranquilizers. However, these drugs can-
not prevent the psychotic, cognitive, and behavioral dysfunctions associated with HD. In addition to 
this, their chronic use is limited by their long-term side effects. Herbal drugs offer a plausible alter-
native to this and have shown substantial therapeutic effects against HD. Moreover, their safety 
profile is better in terms of side effects. However, due to limited drug solubility and permeability to 
reach the target site, herbal drugs have not been able to reach the stage of clinical exploration. In 
recent years, the paradigm of research has been shifted towards the development of herbal drugs 
based nanoformulations that can enhance their bioavailability and blood-brain barrier permeability. 
The present review covers the pathophysiology of HD, available biomarkers, phytomedicines ex-
plored against HD, ongoing clinical trials on herbal drugs exclusively for treating HD and their 
nanocarriers, along with their potential neuroprotective effects. 
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1. INTRODUCTION 

 The term HD was coined by Ohio based physician 
George Huntington in 1872, who described this disease for 
the first time [1]. HD is an autosomal fatal genetic disorder 
which is a progressive, genetically programmed ND that 
leads to depletion of psychological, cognitive, and motor 
functions. As per Huntington’s disease Society of America 
(HDSA), HD patients show symptoms similar to those of 
Alzheimer’s disease (AD), Parkinson’s disease (PD), and 
amyotrophic lateral sclerosis (ALS) [2-7]. The symptoms 
associated with HD are “chorea” (abnormal autonomic 
movements), loss of rational abilities, and psychological 
disturbances. This abnormality occurs due to the mutation of 
the Huntingtin genes. Healthy neurons contain 6-35 repeats 
of units of cytosine-adenine-guanine (CAG) trinucleotide, 
while accumulation of mutant Huntingtin (mHTT) genes 
changes the translation process (more than 36 CAG repeats) 
[8, 9]. This process may lead to neuronal cell death and 
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cause degeneration of neurotransmitters within the central 
nervous system (CNS) [10]. After the first appearance of 
symptoms in an affected person, death usually occurs within 
15 to 20 years [11]. Various biochemical alterations such as 
downregulation of γ-aminobutyric acid (GABA) and acetyl-
choline (ACh), along with a decrease in their production 
enzymes, glutamate decarboxylase (GAD) and choline-
acetyl transferase (CAT), respectively are seen in patients 
with HD [11-13]. 

Globally, 5 to 8 people in a population of 0.1 million are 
diagnosed with HD [14, 15]. The disease is reported to be 
more prevalent in Europe as compared to that in the USA, 
China, and India. A number of patients diagnosed with HD 
are extrapolated to increase from 58,176 in 2019 to 60,743 in 
2024 [14]. 

2. ETIOPATHOGENESIS 
2.1. Neuropsychiatric Disturbance 
 There is a broad range of HD neuropsychiatric symp-
toms, involving irritation, obsessive- compulsive behavior, 
depression, psychosis, and apathy. Prior to the knowledge of 
HD, this disease was categorized under psychiatric disorder 
because its symptoms were similar to psychiatric diseases. 
Later on, based on mechanistic studies, it was understood 
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that the pathology of HD is associated with neurodegenera-
tion in the brain [16, 17]. Irritation, depression, and apathy 
are neuropsychiatric symptoms that continuously manifest 
and get advanced with the progress of the disease [18]. 

2.2. Neurodegeneration 

 NDs can be classified by extrapyramidal and pyramidal 
motor disturbances that can lead to cognitive or behavioral 
changes in the body [19]. Neurodegeneration is a process 
that involves the degeneration of neurons due to aging of the 
brain or the influence of pathological factors that can damage 
the neurons. It has been seen that the loss of neurons in the 
brain is one of the significant health hazards. Cerebral mal-
functioning occurs due to various NDs like AD, PD, HD, 
ALS, and multiple sclerosis [20-22]. Moreover, activation of 
excitatory neurotransmitters receptors such as N-methyl-D-
aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) is also a leading cause of 
excitotoxicity and apoptosis of the neurons. These excitatory 
receptors can lead to excitotoxicity as observed in chronic 
NDs such as PD and HD. AMPA and NMDA receptors limit 
the neuronal entry of calcium ions by regulating calcium 
ions-permeability in the brain and CNS [23]. The factors that 
can cause degeneration of neurons are shown in Fig. (1). 

2.3. Genetic Factors 

 mHTT genes work at the molecular level of cells. They 
are located in chromosome 4p16.3, 67 exons, and 3144 amino 
acids. Healthy human genes contain 5 to 35 CAG triplet 

genes in rRNA exons. mHTTs protein causes a genetic muta-
tion in cells and changes the translation process. Hence, 
CAG repeat increases from 36 to 121. A number of repeats 
of CAG depend on the age of onset of the disease [24-26]. 

2.4. Mitochondrial Dysfunction 

 Mitochondria play a crucial role in storing maximal bio-
energy, adenosine triphosphate (ATP) in the body (eukary-
otic cells). They regulate intracellular calcium homeostasis, 
which can lead to diminishment in the production of free 
radicals in the endoplasmic reticulum and reduces the apop-
tosis process. Indeed, mitochondrial dysfunction has been 
affected by an earlier pathological manifestation of HD. In 
HD, an increase in the level of polyglutamate occurs in the 
striatum and cerebral cortex parts of the brain. The mHTT 
protein is known to cause mitochondrial dysfunction in 
Huntington’s patients. This mHTT protein binds with mito-
chondrial transporter II receptors and causes oxidative dam-
age as well as mitochondrial dysfunction. The dysfunction of 
mitochondria results in lower intake of glucose metabolism 
and mitochondrial oxidation in cerebrospinal fluid (CSF), 
which has been clearly seen in post-mortem reports of brains 
of HD’s patients [27-30]. It also increases lactate levels in 
both the CSF and cerebral cortical tissue [31, 32]. Deregula-
tion of mitochondrial function by 3-nitropropionic acid (3-
NP) mitochondrial toxin has been observed in various stud-
ies in which metabolic impairment occurred due to defi-
ciency of energy, excitotoxicity, and oxidative stress (OS) 
[33-36]. 

 
Fig. (1). Factors that cause degeneration of neurons in HD. (A higher resolution / colour version of this figure is available in the electronic 
copy of the article). 
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2.5. Oxidative Stress (OS) 

 The mechanism of OS in HD is still not clear. Some mo-
lecular hypotheses state that increase in the level of ROS, 
lipid peroxidation, and chromosomal mutation can be major 
factors for disease manifestation [37, 38]. Impairment in the 
electron transport chain, oxidative damage, and mitochon-
drial dysfunction can increase OS. 8-Hydroxy-2-deoxygonosine 
(OH8dG) is a biomarker of oxidative damage in DNA. As 
reported by Bogdanovet et al. (2001), the enhanced concen-
tration of OH8dG may increase oxidative damage [39]. Ac-
cumulation of mHTT protein has been observed in HD’s 
patients; hence, it may be implicated in the increase of OS 
[40, 41]. Increased concentrations of free radicals can pre-
dispose to excitotoxicity that can cause impairment of the 
mitochondrial functions, energy production, and metabolic 
inhibition [42, 43]. These mechanisms of OS are presented 
in Fig. (2). 

3. BIOMARKERS INVOLVED IN THE PATHO- 
GENESIS 

 Biomarkers play an important role in evaluating and 
measuring pathogenic as well as biological processes and 

pharmacological responses against HD. The ideal biomarker 
must be reliable, accurate, and specific. For understanding new 
clinical strategies, understanding the biomarkers of a disease 
is very important. In order to assess the treatment response 
and monitor the progression of the disease, the Unified 
Huntington's Disease Rating Scale is currently in use [11]. 

 Based on the method of identification, biomarkers of HD 
are divided into three categories. These include clinical, bio-
fluid, and imaging biomarkers. Clinical biomarkers are used 
to measure the motor, cognitive and psychotic abnormalities 
related to HD. Neurotransmitters, microglial toxins, and 
mHTT protein are listed under the category of bio-fluid bio-
markers. Various techniques that are used to quantify their 
levels in blood and CSF include high-performance liquid 
chromatography (HPLC), mass spectrometry(MS), time-
resolved fluorescence energy transfer (TR-FRET), homoge-
neous time-resolved fluorescence (HTRF), and enzyme-
linked immune sorbent assay (ELISA) [45]. Imaging bio-
markers are used for the detection of structural changes in 
brain with the help of imaging techniques such as MRI and 
[18F] MNI-659 PET [46, 47]. Various applications of these 
biomarkers are listed in Table 1. 

 
Fig. (2). Pathophysiological mediators that are responsible for OS and HD. Mitochondrial dysfunction: Mitochondria are widely 
known as the powerhouse of cells as they generate energy in the form of adenosine triphosphate (ATP). mHTT genes bind with transporter II 
in mitochondria and cause mDNA damage and bioenergy failure. mHTT proteins increase the influx of Ca2+ in cytoplasm in mitochondria 
which leads to excitotoxicity and bioenergy failure, and ATP formation reduces. As a result of this, mitochondrial dysfunction and the gen-
eration of ROS take place. Neuro-inflammation: Microglia and astrocytes in the presence of ATP chemokines activate Toll-like receptor 
(TLR) and m1 receptor protein inflammation cytokines, which, in turn, increase the intracellular Ca2+ entry and ROS levels. M1 receptor 
protein inflammation cytokines also increase inflammatory mediators (IL6, TNFα) and OS, which give rise to neuroinflammation and degen-
eration of the neuronal cell. Accumulation of mHTT genes: The normal base DNA pair contains 5-35 repeated units of CAG chain in exon 
1 cytoplasm. When alteration in base DNA pair occurs, mHTT genes bind with exon 1 and increase the CAG units from 36 to 121, which is 
responsible for OS. This leads to the misfolding of mHtt and the formation of their aggregates in neuronal nuclei and neuropils in the brains 
of HD patients. This misfolded mHtt exerts its neurotoxicity by disturbing a wide range of cellular functions due to its interaction with a 
variety of proteins, thus interrupting their function [44]. Increase ROS: Due to mHTT gene, the intracellular influx of Ca2+ increases. This 
process can enhance excitotoxicity and cause oxidative damage and OS. OS: The factors like accumulation of mHTT genes, neuroinflamma-
tion, high lipid concentration, and mitochondrial dysfunction can increase OS, and that is responsible for the progression of the disease. (A 
higher resolution / colour version of this figure is available in the electronic copy of the article). 
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4. TREATMENT STRATEGIES 

 Till now, none of the available drugs has been able to 
show complete relief in symptoms of the disease. Tetra-
benazine, however, has been reported to show the most sig-
nificant response in terms of reducing symptoms of motor 
abnormality (chorea) [59]. A combination of antipsychotic, 
anti-depressant, and anti-AD medicines is reported to reduce 

cognitive, psychotic, and motor abnormalities [60-62]. 
Tetrabenazine is a monoamine enzyme inhibitor that pre-
vents the loss of adrenergic neurotransmitters in the synapse. 
It has been found to be useful in the treatment of hyperki-
netic movement disorder. The major side effects of this drug 
are depression, exacerbation of depression, akathisia, rest-
lessness, and psychotic problems [59]. Haloperidol is an an-

Table 1. Biomarker of HD. 

S. No. Biomarkers Mediator Molecule Sample Methods Comments Refs. 

1. Clinical Motor -- -- 
Anti-saccade error 

rate 
Understanding genetic and environmental 

factor for disease 
[48] 

 - - -- -- Digitomotography 
Assessment of quantitative motor by finger 

tapping. 
[46, 49] 

  Cognitive - - SDMT - [46] 

2. Bio-fluid Immune system IL-6,IL-8, IL-1β 
CSF, 
Blood 

MSD immunoassay, 
ELISA 

Leukotriene inflammatory mediator activate 
NFκB and cause neuroinflammation 

[50] 

 - - TNF-α CSF 
MSD antibody-

based tetraplex array 

Tumour necrosis factor α inflammatory 
mediator activate NFκB and cause neuroin-

flammation 
[51] 

 - 
Genetic HTT 

mutation 
HTT Protein Blood 

TR-FRET,  
HTRF, ELISA 

- [45] 

 - - mHTT protein 
CSF, 
Blood 

IP-FCM,  
ELISA, HTRF 

mHTT protein can increase OS. [52] 

 - Microglial markers 
YKL-40, MCP1, Chi-

totriosidase 
CSF ELISA - [53] 

 - Microglial toxins 3-HK, QUIN, ROS - - - - 

 - Neurodegeneration neurofilament light (NfL) 
CSF, 
Blood 

ELISA 
Analyse premanifest and manifest 

Huntington's pateints 
[54] 

 - - GABA CSF 
Radioreceptor  

assay, Ion-exchange 
fluorometry 

Diminution of inhibitory neurotransmitter 
GABA 

 - - - Blood 

Ion-exchange  
chromatography, 
High resolution 

proton NMR 
spectroscopy and 

HPLC 

- 

[55] 

 - - Choline CSF 
Radiochemical 
micro-method 

- [56] 

 - - Dopamine CSF - - - 

 - Transglutaminase 
Nε-(γ-l-glutamyl)-l-lysine 

(GGEL) 
CSF MS - [57] 

 - - 
γ-glutamylspermidine,  
γ-glutamylputrescine, bis-
γ glutamylputrescine 

CSF HPLC - [58] 

3. Imaging Structural loss -- -- MRI Neurodegeneration seen in the brain [46] 

 - PDE10 uptake -- -- [18F]MNI-659 PET - [47] 
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tipsychotic drug that causes inhibition of dopamine in the 
limbic system of the brain and reduces psychotic symptoms 
of Huntington patients [63]. The side effects of this drug are 
suppression of movement, mood changes, breast enlarge-
ment, irregular menstrual periods, and loss of interest in sex. 
Acetylcholinesterase (AChE) enzyme inhibitors such as ri-
vastigmine and galantamine can enhance the ACh levels in 
the brain and improve cognitive function [62]. These drugs are 
reported to show side effects such as dizziness, drowsiness, 
loss of appetite, and weight loss. The drugs that have been 
explored to treat HD in animal studies are listed in Table 2. 
Apart from the pharmacological approach, some non-
pharmacological approaches such as psychotherapy, speech 
therapy, physical therapy and occupational therapy have also 
shown beneficial effects for the treatment of the disease. A 
combination of pharmacological and non-pharmacological 
therapy has been reported to work in a better way as com-
pared to the use of a single modality [64]. Some in vitro cell 
line studies showed that the use of stem cells is able to re-
duce the degeneration of neurons by reducing CAG sequenc-

ing in genetic bases. The list of such studies is given in Table 3. 
To date, a number of clinical and preclinical studies have 
been conducted on different drugs, but none of them has 
shown complete treatment of HD. Herbal drugs offer the 
third treatment strategy for HD. These have been reported to 
possess a better safety profile and are easily available as 
compared to synthetic drugs [65]. The use of herbal drugs in 
traditional medicines has shown neuroprotective effects in 
NDs [66]. Their antioxidant, anti-inflammatory, anti-apoptosis, 
and AChE enzyme inhibition have been reported to be re-
sponsible forthe treatment of cognitive, psychotic, and motor 
dysfunctions associated with HD [11]. 

5. NEUROPROTECTIVE HERBS 

 Herbal medicines contain complex mixtures of phytocon-
stituents and organic chemicals, including alkaloids, fatty 
acids, sterols, flavonoids, glycosides, saponins, terpenes, etc. 
Phytoconstituents present in some of the herbal drugs have 
shown pharmacological efficacy in reducing the symptoms 

Table 2. Preclinical studies of synthetic drugs are reported for the treatment of HD. 

S. No. Drugs Animal 
Dose 

(mg/kg) 
Duration 
of Study 

Side effect 
Mechanism of 

Action 
Results Refs. 

1. Tetramethylpyrazine 
Male 

Wistar rats 
40 and 80 21 days - 

Reduce 3-NP 
neurotoxin  

Effective against 3-NP induce 
HD model 

[67] 

2. Rivastigmine 
Male 

Wistar rats 
0.5, 1,2 15 days 

Drowsiness, loss of appe-
tite/weight loss, diarrhea, 

weakness, dizziness 
AChE inhibitor Improved cognitive function [61] 

3. Galantamine 
Female 

Wistar rats 
3.75, 7.5 21 days 

Drowsiness, dizziness, loss of 
appetite, and weight loss 

AChE inhibitor 

Reduction in oxidative stress, 
Neuroprotective effect 

against 3-NP induced neuro-
toxicity. 

[62] 

4. 
 

Amantadine 
Male 

Wistar rats 
10, 40 

 
-- 

Blurred vision, nausea, and 
loss of appetite, dry mouth, 

constipation, or trouble sleep-
ing, leg swelling and skin 

discoloration 

NMDA gluta-
mate antagonist 

Amantadine binds with 
NMDA receptor and in-

creases dopamine in postsyn-
aptic receptors and helps to 
improve neurological and 
psychological conditions 

associated in NDs. 

[68] 

5. Haloperidol 

Male 
Lister 

Hooded 
rats 

1.5 112 day 

dry mouth, constipation, 
sedation, tardive dyskinesia, 
parkinsonism, depression, 
extrapyramidal symptoms, 
neuroleptic malignant syn-

drome 

decrease dopa-
mine 

Used in the treatment of 
chronic neuroleptics and 

reduce locomotors activity in 
the brain 

[63] 

6. Leveteracetam Human 
3,000 

mg/day 
-- 

Infection, asthenia, neurosis, 
drowsiness, headache, naso-

pharyngitis, nervousness, 
abnormal behavior, agitation, 

anxiety, apathy. 

Neuroprotective 
effect 

Dose of 3,000 mg/day for 48 
hour reduced the symptoms 

of chorea in HD 
[69] 

7. Terabenzine Human 
50 

mg/day 
-- 

Drowsiness, sedated state, 
muscle rigidity, depersonal-
ization depression, exacerba-
tion of depression, akathisia, 

and restlessness. 

Inhibition of 
MAO enzyme 

Dose of 50 mg/day useful in 
treatment of hyperkinetic 

movement disorder 
[59] 
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of HD. In India, traditional herbal plants have been used for 
a number of diseases afflicting the nervous system. VataVy-
adh is a Sanskrit word that means disease related to the 
nervous system. Vata represents energy around the body, and 
disturbance of this process is called as VataVyadh. It ulti-
mately leads to weakness, hypersensitivity, dementia, and 
chorea [77]. Certain herbal drugs possess phytoconstituents 
that enhance ACh levels in post synaptic neurons by inhibit-
ing AChE in synapse and enhancing cognitive function [78, 
79]. The in vivo studies have shown that certain herbal drugs 
and their phytochemicals exhibit a significant response 
against 3‐NP neurotoxin. Several other pathways are also 
crucial in HD. Based on the concept of multi targets, net-
work pharmacology-based analysis is employed to find out 
related proteins in disease networks. The network targeting 
method aims to find out the related mechanism of efficacious 
substances in a rational design way. Traditional Chinese 
medicine (TCM) prescriptions would be used for research 
and development against HD [80]. Virtual screening is per-
formed to obtain drug molecules with high binding capacity 
from TCM. Mechanism of action and beneficial effects of 
herbal drugs are shown in Fig. (3). 

5.1. Acorus Calamus (AC) 

 AC, also known as the Sweet flag, belongs to Araceae 
family. It acts as a brain and nervous system rejuvenator 
with beneficial memory-enhancing properties. It also im-
proves learning efficiency, and reduces behavioral alteration. 
The major constituents of the plant are α-and β-asarone. β-
Asarone has the ability to suppress beta-amyloid-induced 
neuronal apoptosis in the hippocampus through reversal 
down-regulation of Bcl-2, Bcl-w, caspase-3 activation, and 
phosphorylation of c-Jun terminal kinase (JNK) [81]. It has 
the potential to enhance dopaminergic nerve function. There-
fore, it can play a key role in PD by increasing the amount of 
striatal extracellular dopamine and the expression of tyrosine 
hydroxylase in substantia nigra. It also improves the expres-
sion of DJ-1 genes in the striatum and thus acts as PD neuro-

protective [82]. The treatment of PD using AC indicates its 
neuroprotective action; hence, it could be used for the treat-
ment of HD. 

5.2. Allium Sativum (AS) 

 AS is one of the most widely researched herbs found in 
the ancient medical literature [83, 84]. AS belongs to the 
family Amaryllidaceae. The main bioactive compounds of 
AS are allicin (allyl2-propene thiosulfinate or diallyl-
thiosulfinate) and alliin. S-allyl cysteine (SAC) is the major 
component of the extensively studied aged garlic extract 
(AGE) [85, 86]. SAC exerts antioxidant activity, both di-
rectly and indirectly. It also decreases protein oxidation and 
nitration. In addition to this, it is reported to reduce lipid 
peroxidation and DNA fragmentation. Dopamine levels, oxi-
dative damage, and lipid peroxidation in 1-methyl-4-phenyl 
pyridinium and 6-hydroxydopamine (6-OHDA) models of 
PD were found to be downregulated by SAC. It decreased 
lipid peroxidation and mitochondrial dysfunction in 3-nitro 
propionic acid and quinolinic acid animal models of HD. It 
also increased the dismutase activity of manganese and su-
peroxide copper/zinc and prevented changes in behavior. 
AGE activates the expression of significant genes required 
for neuronal survival, both directly and indirectly [87, 88]. 

5.3. Bacopa Monnieri (BM) 

 BM or Herpestis monniera, commonly referred to as 
Brahmi, belongs to the family scrophulariaceae. It is found 
throughout the Indian subcontinent and is categorized in 
Ayurveda as Medhya Rasayana [89-92]. It is used to treat 
epilepsy, insomnia, anxiety and is a memory enhancer [93, 
94]. The significant chemical components present in the 
plant are tri-terpenoid saponins like dammarane, bacosides A 
and B [90, 95]. In addition to these significant components, 
it also contains other saponins, including bacopa saponin 
A‐G [96-98], along with pseudo-jujubogenin, jujubogenin 
[99], bacopaside I‐V, X, and N1 and N2 [100-102]. Brah-
mine, herpestine, and monnierin are also present in the plant 

Table 3. Cell line studies of HD. 

Disease Cell line Test Results Refs. 

HD 
LUMCi007-A, LUMCi007-B, 

LUMCi008-A, LUMCi008-B, LUMCi008C 
-- Reducing CAG repeats  [70] 

 ICGi018-A (iHD38Q-3) 
DNA fragment analysis of 

PCR-product 
In vitro cell line studies reduce CAG18 and  

38 repeats by PBMCs and iPSC line 
[71] 

 CSSi006-A (3681) Sequencing Reducing CAG repeats in fibroblasts (17  ±  2 and 46  ±  3 CAG repeats) [72] 

 CSSi004-A (2962) Sequencing Reducing CAG repeats in fibroblasts (17  ±  1 and 43  ±  2 CAG repeats) [73] 

 Genea090 human embryonic stem cell line Sterility 
The cell line is tested and found negative for Mycoplasma and any 

visible contamination 
[74] 

 Genea017 human embryonic stem cell line Sterility 
The cell line is tested and found negative for Mycoplasma and any 
visible contamination. Mycoplasma and any visible contamination 

 

 Herbal formula B401 -- Neuroprotective and angiogenesis effects in R6/2 mouse model of HD [75] 

 
CurcuminSolid lipid nanoparticles (SLNs) 

(C-SLNs) 
SDH Staining, Mitochondrial 
Oxidative Stress Parameters 

Reduce ROS, mitochondrial dysfunction and lipid preroxidation.  [76] 
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[103, 104]. The potential of this plant in improving memory 
has been well reported [94, 105-107]. Bacoside A has been 
shown to be the main constituent to enhance memory [90, 
108]. In clinical trials, BM showed significant dose- depend-
ent memory enhancement activity [109]. BM also acts as a 
metal ion chelator [110], scavenges free radicals, and shows 
the antioxidant property in the body [111, 112]. The neuro-
protective and memory improving potential of BM’s extracts 
have also been reported. It exhibits antioxidant [112], anti-
stress [113], antidepressant [114], anxiolytic [115], free radi-
cal scavenging [111], hepatoprotective [116] and antiulcero-
genic activity [117]. 3‐NP inactivates the succinate dehy-
drogenase cell enzyme (SDH) and the electron transport 
chain complex II‐III [118, 119]. It also reduces ROS, 
malondialdehyde (MDA), and free fatty acid levels [120]. 

The oral intake of BM’s leaf powder is reported to reduce 
basal concentrations of several oxidative markers and im-
prove thiol-related antioxidant molecules, and antioxidant 
enzyme activity suggesting its significant antioxidant poten-
tial. Dietary BM’s supplements were reported to lead to sub-
stantial protection against oxidative damage caused by neu-
rotoxins in the brain [93]. BM has been found to be helpful 
in HD’s therapy owing to its protective impact against stress-
mediated neuronal dysfunctions also [112]. 

5.4. Centella Asiatica (CA) 

 CA, also known as Hydrocotyle asiatica, Gotu kola, In-
dian Pennywort, and Jal brahmi belongs to the family Um-
belliferae. CA has exhibited many neuropharmacological 
effects that include memory enhancement [121, 122], in-

 
Fig. (3). Phytoconstituents and their target of HD. Note: Green boxes indicate the herbal drugs used to inhibit various molecular pathways 
and blue indicate the molecular targets (biomarkers). (A higher resolution / colour version of this figure is available in the electronic copy of 
the article). 
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creased neurite elongation, and nerve regeneration accelera-
tion [123]. It has also been reported for its anti-oxidant prop-
erties [124, 125]. Triterpenoid saponins, including asiatico-
side, Asian acid, madecassoside, and madecassic acid, are 
the most significant chemical constituents of CA [126, 127]. 
Other minor saponins present in CA are brahmoside and 
brahminoside [126, 128]. Various acids that are present in 
the plant are triterpene acids, betullic acid, brahmic acid, and 
isobrahmic acid [126, 128]. The essential oils that are pre-
sent in plant leaves include monoterpenes such as bornyl 
acetate, α-pinene, β-pinene, and π-pinene [129]. In addition 
to these constituents, CA is also reported to contain flavones, 
sterols, and lipids. Attenuation of 3-NP-induced depletion of 
GSH, total thiols, and endogenous antioxidants level by CA 
has been reported in the striatum and other brain regions 
[130]. It also displayed protection against 3-NP-induced mi-
tochondrial dysfunctions, viz., reduced SDH activity, en-
zymes in the electron transport chain, and reduced mito-
chondrial viability [130]. 

5.5. Coriandrum Sativum (CS) 

 CS, commonly known as coriander, belongs to Apiaceae 
family. It contains a number of flavonoids. The major phyto-
constituents include glucoronides such as quercetin and 
polyphenols such as caffeic acid, protocatechinic acid, and 
glycitin. The flavonoid content of the plants is reported to be 
equivalent to 12.6 quercetin equivalents per gram, while 
polyphenolic content is equivalent to 12.2 gallic acid equiva-
lents per gram [131, 132]. A study showed that the CS’s ex-
tract enhanced concentrations of superoxide dismutase 
(SOD), glutathione, CAT, and total protein in the animal 
model. It also reduced the levels of cerebral infarction, lipid 
peroxidation (LPO), and calcium in the rats [133]. Scopola-
mine and diazepam-induced memory deficits were found to 
be reversed by leaf extracts of CS. It reduced reactive modi-
fications in brain histology such as gliosis, lymphocytic infil-
tration, and cellular edema. It showed protective function in 
the states of cerebrovascular insufficiency. The leaves also 
demonstrated antioxidant properties in terms of free radical 
scavenging activity by 2, 2-diphenyl-1-picrylhydrazyl and 
lipoxygenase inhibition [134-136]. 

5.6. Curcuma Longa (CL) 

 The common name used for the CL is turmeric. It is a 
perennial herb and belongs to the family Zingiberaceae. It is 
used throughout the world, mainly in China, Japan, and In-
dia, as a pharmacotherapeutic [137]. It has a long history of 
use as a spice and household remedy to treat inflammation, 
skin diseases, wounds, as well as antibacterial and antiseptic 
agent [138]. CL contains different curcuminoids, sesquiter-
penes, essential oil, and starch. Most of the curcuminoids are 
diarylheptanoid, curcumin being the most prevalent. Des-
methoxycurcumin and bis-desmethoxycurcumin are the 
other two curcuminoids [138, 139]. CL shows a number of 
pharmacological actions such as antioxidant [140], anti-
inflammatory [141], choleretic, hepatoprotective, analgesic, 
antifungal, free radical scavenging, antiparasitic, antiviral, 
antibacterial [138, 142], and anti-mutagenic [143]. The anti-
oxidant properties of turmeric are attributed to its direct 
scavenging of superoxide radicals, chelating action [140, 

144, 145], and by induction of antioxidant enzymes such as 
glutathione‐S‐transferase, glutathione peroxidase, catalase, 
superoxide dismutase, and hemeoxygenase [145]. It shows 
anti-inflammatory action by restricting cyclooxygenase-2 
pathway (COX-2).In various neurological disorders, it is 
reported to show neuroprotective action [146]. Curcumin 
alone or along with manganese complex provides protective 
action against vascular dementia due to its antioxidant activ-
ity [147-149], and it is also helpful in treating aging and 
memory dysfunction [150]. In one of the studies, it has been 
reported that chronic administration of curcumin enhanced 
body weight continuously and increased SDH activity in rats 
treated with 3‐NP [150]. The reversed 3‐NP‐induced motor 
and cognitive impairment, along with a powerful antioxidant 
property, indicate that curcumin may be helpful in treating 
HD [150]. 

5.7. Galanthus Nivalis (GN) 

 GN, commonly known as snowdrop, belongs to the fam-
ily Amaryllidacea. Galantamine, a tertiary isoquinoline alka-
loid, is the main ingredient found in bulbs and flowers of 
GN. The neuroprotective activity of galantamine is due to 
this alkaloid. It is a reversible carbamates AChE inhibitor. 
Galantamine is an FDA approved drug that is used to treat 
AD. It can stimulate nicotinic receptors that further improve 
memory and cognition [151]. The drug allosterically modu-
lates nicotinic receptors of ACh, particularly subtypes α7 and 
α3β4, to increase the release of ACh on cholinergic cells 
[152]. 

5.8. Ginkgo Biloba (GB) 

 GB is an ancient Chinese herbal plant having neuropro-
tective properties [153]. The active phytoconstituents are 
mainly obtained from the leaves and flowers of the plant. 
These include flavonoids (quercetin, isorhamnetins and 
kaempferol), bioflavonoids (bilobetin, sciadopitysin,  
5-methoxybilobetol, isoginkgetin, ginkgetin and aimoflavone), 
proanthocyanidins, Trilactonic diterpenes (A-C ginkgolide 
and J-M ginkgolide), and sesquiterpenes (bilobalide) [154-156]. 

 This plant’s leaf extract has been reported to be effective 
against dementia, cardiovascular diseases, stress, tumor and 
led to increased peripheral and central blood flow [157]. It 
also showed numerous pharmacotherapeutic activities due to 
its antioxidant effect [158], anti-platelet activating factor 
activity, and inhibition of amyloid-beta (Aβ) peptide aggre-
gation [159, 160]. In one of the studies, the extract of GB 
(100 mg / kg, i.p. for 15 days) reversed neurobehavioral 
deficits induced by 3‐NP and also reduced striatal MDA 
[161]. The standardized extract of Ginkgo Biloba (EGb 761) 
also caused up and downregulation of the expression of Bcl-
xl and striatal glyceraldehyde-3-phosphate dehydrogenase 
concentrations, respectively. These biochemical findings 
suggested the neuroprotective function of EGb 761 in HD 
[161]. The extracts of GB have been reported to commonly 
induce biphasic dose responses in a range of cell types and 
endpoints (e.g., cochlea neural stem cells, cell viability, cell 
proliferation) [162]. The magnitude and width of the low 
dose stimulation of these biphasic dose responses are similar 
to those reported for hormetic dose responses. These hor-
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metic dose responses occur within direct stimulatory re-
sponses as well as in preconditioning experimental protocols, 
displaying acquired resistance within an adaptive homeody-
namic and temporal framework and repeated measurement 
protocols. The demonstrated GB’s dose responses further 
reflect the general occurrence of hormetic dose responses 
that consistently appear to be independent of the biological 
model, endpoint, inducing agent, and/or mechanism. These 
findings have important implications for consideration(s) of 
study designs involving dose selection, dose spacing, sample 
size, and statistical power [163]. 

5.9. Glycyrrhiza Glabra (G. glabra) 

 G. glabra, commonly referred to as Yashti-madhuh, be-
longs to the family Leguminosae. G. galabra contains an 
isoflavane glabridin. It has been reported to exert various 
pharmacological activities such as antiviral, anticancer, anti-
ulcer, anti-diabetic, antioxidant, immunomodulatory, anti-
inflammatory, and anticonvulsant effects. Glabridin reduces 
the amount of MDA and glutathione, and increases the 
amount of SOD in the brain [164, 165]. G. glabra lowers the 
brain concentrations of neurotransmitters such as glutamate 
and dopamine and reduces the activity of AChE [166]. 

5.10. Lycopodium Serratum (LS) 

 LS belongs to the family lycopodiaceae. Alkaloid hu-
perzine is obtained from LS extract [167]. As per the litera-
ture, this alkaloid shows AChE inhibition activity. Therefore, 
it increases the level of ACh in post synaptic receptors in the 
brain. LS elicits the same kind of effects as AChE inhibitor 
drugs [168]. The component huperzine is also used for the 
treatment of AD because it inhibits the ACh enzyme, acts as 
an antioxidant, and possesses anti-inflammatory properties 
[169]. Huperzine has been reported to have several neuropro-
tective effects such as apoptosis, the rectification of mito-
chondrial dysfunction, and anti-inflammatory effects [170]. 

5.11. Olea Europaea (OE) 

 It is commonly known as olive oil and belongs to the 
family Oleaceae [171]. Fruits’ oils contain many nutritious 
chemical constituents such as triacylglycerols, glycerol, free 
fatty acid, pigments, phosphatides, and flavor compounds 
[172]. Olive oil is very nutritious to the health and is also 
used as cooking oil. Some of the pharmacological studies 
have reported the potential effects of olive oil and extrava-
gant olive oil against cardiovascular diseases [173], AD 
[174, 175], PD [176, 177], MS, and cancer [178, 179]. In 
studies conducted by Visioli et al. (1998) and Tasset et al. 
(2011), potential effects of extravagant olive oil have been 
reported against HD due to its antioxidant property [180] and 
neuroprotective effects [181]. In pharmaceutical formula-
tions such as emulsions, olive oil acts as a solubilizer. In one 
of the studies, Guo el al., have used olive oil as a solubilizer 
for lycopene. The lycopene loaded microemulsions (LME) 
were prepared in which lycopene has been dissolved in olive 
oil. The potentials of microemulsion in improving bioavail-
ability and brain-targeting efficiency following oral admini-
stration were investigated [182]. The pharmacokinetics and 
tissue distributions of optimized LME were evaluated in rats 

and mice, respectively. The pharmacokinetic study revealed 
a dramatic 2.10-folds enhancement of relative bioavailability 
with LME against the control lycopene dissolved in olive oil 
(LOO) dosage form in rats. Moreover, LME showed a pref-
erential targeting distribution of lycopene toward the brain in 
mice, with the value of drug targeting index (DTI) up to 3.45 
[182]. 
5.12. Plants Containing Trehalose 

 Trehalose was subsequently found in mosses, ferns, 
green algae, and liverworts [183]. It is found in many plants 
that grow in low and high altitudes, as well as in many or-
ganisms like bacteria, yeast, fungi, insects, invertebrates 
[184, 185]. It has been found in the literature that trehalose 
inhibits the formation of amyloid [186, 187]. Besides these, 
it also helps in inhibiting polyglutamine (polyQ) 3-mediated 
protein aggregation and reduced toxicity caused by 
Huntington's aggregates. Tanaka et al. (2004) and Sarkar et 
al. (2007) conducted a study on HD using HD R6/2 mouse 
model. It was found that trehalose helped in the inhibition of 
polyQ-induced pathology by stabilizing the partly unfolded 
mutant proteins [188, 189]. It has also been reported that, by 
offering neuroprotective activity against HD, trehalose in-
creases autophagic activity against multiple aggregations of 
proteins such as mHTT [188]. 

5.13. Panax Ginseng (PG) 

 PG root is a well-known herb used in China, Japan, and 
Korea as a tonic to revitalize and restore adequate body me-
tabolism for over more than 2,000 years [190]. The most 
prevalent species of PG are Asian ginseng and American 
ginseng (Panax1 quinquefolium L.) from the Araliaceae 
family. PG is a neuroprotective herb, and its neuroprotective 
potential can be used to prevent and treat neurodegenerative 
diseases such as AD, PD, HD, depression symptoms, and 
strokes [163, 191]. The major constituent that is responsible 
for the neuroprotective action of PG is ginsenoside. In recent 
years a number of studies have been reported on the role of 
ginsenosides in the prevention of NDs [192]. Moreover, the 
results of some of the clinical trials conducted on PG and its 
constituents, ginsenosides, and gintonin, revealed that they 
are safe [192]. PG contains tetracyclic dammarane, triterpe-
noids, saponin glycosides, and ginsenosides as their active 
constituents [193, 194]. Different studies (in vitro and in 
vivo) have shown positive results of ginseng in various 
pathological conditions such as cardiovascular diseases, 
CNS disorders, cancer, immune deficiency, and hepatotoxic-
ity [194, 195]. It also has antioxidant [196], anti-apoptotic 
[196], anti-inflammatory [197], and immune-stimulating 
functions [195]. It helps in decreasing lipid peroxidation by 
inhibiting excitotoxicity and over-influx of Ca2+ into neu-
rons. It retains concentrations of cellular ATP, preserves 
neuronal structural integrity, which helps in increasing cog-
nitive performance [195]. Ginsenoside Rb1 and Rg3 are re-
ported to exhibit protective effects by preventing Ca2 + influx 
through glutamate receptors on cortical neurons against glu-
tamate-induced cell death [198]. Ginseng contains saponins 
that are NMDA glutamate antagonists. They reduce intracel-
lular Ca2+ influx in the hippocampus; hence glutamate type 
NMDA receptors get inhibited, and this results in reduction 
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of the symptoms of HD [199]. Ginsenosides Rb1, Rb3, and 
Rd showed a neuroprotective impact on striatal neuronal 
harm caused by 3‐NP [200-202]. 

5.14. Sesamum Indicum (SI) 

 Sesamol is obtained from the plant SI, frequently referred 
to as sesame, belonging to family Pedaliaceae. It is used in 
India and other East Asian nations as a healthy food [203]. 
The oil obtained from sesame is responsible for its pharma-
cological activities. Its active component, sesamol, is ac-
countable for its antioxidant activity [204]. It helps in reduc-
ing hyperlipidemia, blood pressure, and lipid peroxidation by 
diminishing enzymatic and non-enzymatic oxidants stress. It 
also has tumour suppressant action [205]. Sesamol has been 
reported to have its protective effect against HD through 
suppression of the expression of nitric oxide (NOS) [206]. It 
is also reported to attenuate behavioral, biochemical, and 
cellular changes in 3‐NP‐induced animals [207]. It has been 
reported to protect the brain against memory impairment 
caused by 3‐NP, OS, neuroinflammation in the neurons of 
the hippocampus, and thus increases synaptic plasticity and 
neurotransmission [208]. 

5.15. Solanum Lycopersicum (SL) 

 SL is commonly referred to as tomato and belongs to the 
family Solanaceae. Lycopene is a well-known carotenoid 
found in tomatoes and tomato-based goods in considerable 
quantities [209]. It has been reported to possess powerful 
neuroprotective [210], antioxidant [211, 212], antiprolifera-
tive, anticancer [213], anti-inflammatory [214], memory 
enhancing [215], and hypocholesterolemic properties [216]. 
It is a stronger singlet oxygen carotenoid quencher for vita-
min E and glutathione [216]. Treatment with lycopene con-
siderably helps in the reduction of multiple behavioral and 
biochemical changes induced by 3‐NP, indicating its thera-
peutic potential against HD’s symptoms [217]. 

5.16. Tinospora Cordifolia (TC) 

 TC belongs to the family Menispermaceae and is fre-
quently known as Giloy. Phytochemical constituents such as 
alkaloids, steroids, diterpenoid lactones, aliphatics, and gly-
cosides are present in giloy extract [218]. TC has been re-
ported for memory enhancing property, immunostimulation, 
and enhancement of ACh synthesis [219]. It has powerful 
free radical scavenging characteristics and also reduces ROS 
and reactive nitrogen species as studied by paramagnetic 
resonance electron spectroscopy [220]. It also reduces the 
level of glutathione, gamma-glutamyl-cysteine ligase expres-
sion, copper-zinc superoxide dismutase genes, owing to 
which it can be used for the treatment of hypoxia, ischemia, 
and neuronal injury [220]. Additionally, TC is helpful in 
enhancing dopamine levels in the brain and improving cog-
nitive and psychotic function [219]. 

5.17. Tripterygium Wilfordii (TW) 

 The root extract of TW has been extensively used as tra-
ditional Chinese medicine for the treatment of inflammation 
and autoimmune diseases such as rheumatic arthritis [221]. 
TW’s root extract also showed neurotropic and neuroprotec-

tive effects [222]. Celastrol and Triptolide are the two major 
neuroprotective phytoconstituents that are isolated from the 
root extract of TW. It has many therapeutic potentials such 
as antioxidant [223], anti-inflammatory [221], anticancer 
[224], and insecticidal activity [225]. A pro-inflammatory 
study conducted on animals using 1‐methyl‐4‐phenyl‐1, 2, 
3, 6-tetrahydropyridine (MTPT) indicated that celastrol 
helped in improving the functions of dopaminergic cells, 
increasing the dopaminergic level [222]. By controlling the 
expression of the thermal shock protein gene in dopaminer-
gic cells, it has also provided protection against 3-NP-
induced striatal damage [222, 226]. 

5.18. Withania Somnifera (WS) 

 WS is also known by the common name Ashwagandha. 
It belongs to the family Solanaceae. For centuries, it has 
been used in Ayurvedic medicine [227]. Ashwagandha’s root 
extract has been reported to possess antioxidant [228, 229], 
memory enhancing [230], anti-inflammatory [231], immu-
nomodulatory [232], anti-stress [233], and anti-convulsant 
characteristics [234]. As an antioxidant, WS and its active 
ingredients (sitoindosides VII‐X and withaferin A) increase 
catalase, ascorbic acid, endogenous superoxide dismutase, 
and reduce lipid peroxidation [235-237]. It functions as an 
anti-inflammatory agent through complement inhibition, the 
proliferation of lymphocytes, and delayed hypersensitivity. 
Different trials have shown that WS increases cortisol circu-
lation, decreases tiredness, increases physical performance, 
and decreases refractory stress depression [238]. It also 
modulates different receptor systems for neurotransmitters in 
the CNS. Major active constituents of WS include steroidal 
lactones and alkaloids (collectively referred to as witha-
nolides). Withaferin A, withanolide A, withanolide D‐P, 
withanone, sitoindoside VII‐X are the major isolated witha-
nolides from WS. WS inhibits AChE and increases the level 
of ACh in the brain. The beneficial effects of herbal drugs 
against HD are listed in Table 4. 

6. CURRENT ONGOING CLINICAL TRIALS 

 A limited number of clinical trials have been reported for 
the treatment of HD. This could be attributed to a lack of 
complete understanding of the underlying mechanism of the 
disease as the drugs used so far have been unable to provide 
complete relief to patients. Some of the trials that have been 
completed or are ongoing, are listed in Table 5. 

7. HORMESIS AND REDOX ASPECTS OF HERBAL 
DRUGS AND THEIR POTENTIAL CHEMICAL 
CONSTITUENTS 

 Hormesis is a biological process that has found its appli-
cation in drug development, drug designing, and toxicologi-
cal studies. It helps to rationalize the dose-response relation-
ships [80, 256]. Hormetins are the chemical inducers of 
hormesis and possess a range of therapeutic applications, 
including protection against stress, toxin, and aging-related 
diseases [257, 258]. They have a protective effect at a low 
level and show deleterious effects at higher levels due to the 
narrow therapeutic window [259, 260]. Hormesis describes 
the phenomenon of pharmacological conditioning of the 
heart and brain where a low dose of pharmacological agents 
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Table 4. Effect of herbal drugs and phytoconstituents. 

Name of Herbal 

Medicine 
Synonyms Source 

Bioactive 

Component 
Structure Animal Models Effects Refs. 

AC Sweet flag  
α-and  

β-Asarone 
 -- 

Antioxidant, anti-

inflammatory 
[239] 

AG Ginseng 
Whose 

root 
Ginsenosides 

O

OH

OH

OH

O

OH

H
OH

O

HH

OH

O
OH

OH

OH

HO

H

H

 

-- 

Antioxidant, anti-

apoptotic, anti-

inflammatory, and 

immune-stimulating 

functions 

[195-

197] 

WS 

Withania root, 

asgandh, 

winter cherry. 

Dried 

Roots 
Withaferin A 

O O

OH
CH3

H3C

CH3

CH3
O

CH3
O

 

3-nitropropionic 

acid model 

Reduce oxida-

tive/nitrosative 

stress, 

inhibits complex II 

of the mitochondrial 

electron transport  

chain 

[240] 

BM 

Kapotvadka, 

somvalli and 

saraswati 

Aerial 

parts 

Bacoside A, 

 

O OH

O O

O

H3C

CH3

CH3

OH

OH

OH

CH2OH

HO

CH3

CH3

OH

OH

OH

 

3-nitropropionic 

acid induce 

model 

Memory enhancer [241] 

   
Bacoside B, 

 

O OH

O O

O

HO

CH3

CH3

OH

OH

OH

CH2OH

HO

CH3

CH3

CH3

OH

OH

 

3-nitropropionic 

acid induce 

model 

Facilitates an-

terograde memory 
 

CR 
Celastrol 

(tripterine) 
-- Celastrol 

O

OH CH3

CH3

HO

CH3

O

OH

 

-- 

Anti-inflammatory, 

anti-oxidant, and 

inhibition of Pro-

inflammatory 

cytokines. 

[221] 

CL 

Indian 

saffron, 

curcuma, 

Turmeric, 

Haldi 

Fresh 

rhizomes 
Curcumin 

O O

R2

OH

R1

HO  

3-nitropropionic 

acid-induced 

HD rat model 

and inhibitory 

response against 

AMPA receptor 

Anti-oxidant, Anti-

inflammatory and 

reduce excitotoxic-

ity  

[242] 

(Table 4) contd…. 
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Name of Herbal 

Medicine 
Synonyms Source 

Bioactive 

Component 
Structure Animal Models Effects Refs. 

   
Demethoxy 

curcumin 
-- 

Rotenone-induced 

PD in rats 

Anti-oxidant and 

Anti-inflammatory 
 

CS 

 
Coriander Leaves 

Coriandrum 

sativum 

extract 

 
Ischemic reperfusion 

insult in brain 

Neuroprotective 

effects 
[133] 

GN Snowdrop 
Bulbs and 

flowers 

Galantamine 

0.1 mg/kg, s.c. 

O

N

HO

O
H

 

Scopolamine-

induced amnesia 

model in mice 

Reduce AChE 

enzyme and 

increase ACh in 

postsynaptic 

receptor 

[243] 

Ginkgo (GB) 

Ginnan, 

maidenhair 

tree. 

Leaf 
Gingkolides 

A,B,C,J and M 
-- 

3-nitropropionic 

acid model 

Memory enhancer 

property and Anti-

Platelet Activating 

Factor (Anti-PAF) 

[161] 

GG 

Yashti-

madhuh or 

liquorice 

Stems Glabridin -- - Antioxidant [244] 

CA 

Spade leaf, 

Indian Pen-

nywort, 

Mandukaparni 

 Asiatic Acid HO

HO

CH3

OH

CH3 CH3

H3C

CH3

OR

O
CH3

 

-- 

Neuroprotective 

effect against harm 

caused by OS and 

Mitochondrial 

dysfunction 

[245] 

LS 

Ground pines 

or creeping 

cedar, Qian 

Ceng Ta. 

Leaves Huperzine A 

HN

H2N

O

 

-- 

Antioxidant and 

anti-inflammatory 

and reduce mito-

chondrial dysfunc-

tion 

[170] 

Persea  

Americana 

 

Avocado 

 

Peel, seed 

coat and 

seeds 

Persea major 

methanolic extract 

(0.5 mg/ml) 

-- 
Cellular viability 

assay, Glutamate 

uptake assay 

Antioxidant capac-

ity, increased 

glutamate uptake 

[246] 

OE 
Olive-

growing 
Oil 

Olive oil, Extravir-

gin olive oil 

(20 mg/kg ip) 

O

O O
O

O R2

O R3

R1

 

3-nitropropionic 

acid-induced HD-

like rat model 

Reduces oxidative 

damage 

 

[181] 

Sesamum  

indicum 

 

Sesame, 

benne 

 

Oil Sesamol 

O

O

OH

 

-- 
Neuroprotective 

effect 
[247] 

TC 

 
Giloe Stem 

Tinospora cordifo-

lia-stem methano-

lic extract 

-- 

6-hydroxy dopamine 

(6-OHDA) lesion rat 

model, Cadmium-

induced OS in 

Wistar rats 

Anti-OS, Memory 

enhance and 

Increase dopamine 

level in to brain. 

[248] 

(Table 4) contd…. 
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Name of Herbal 

Medicine 
Synonyms Source 

Bioactive 

Component 
Structure Animal Models Effects Refs. 

TW 
Thunder 

god vine 

Root 

extracts 

Celastrol, 

Triptolide 

H

O OH

HO

O

 

-- Antioxidant effects [249] 

Fruits,  

vegetables, tea, 

cocoa and wine 

-- -- Flavonoids 
O

O

 

-- 

Effects against OS 

and Inflammation 

 

[250] 

Mosses ferns, 

green algae, and 

liverworts 

-- -- Trehalose 

O

OH
O

O

OH

OHHO

OH

OH
HO

OH  

induced damage in 

bovine spermatozoa 

 

Antioxidant effects 
[183, 

251] 

SL Tomato 
Hole 

fruits 
Lycopene 

H3C

CH3

H3C CH3

CH3 CH3
CH3

CH3

CH3
CH3

 

3-nitropropionic acid-

induced HD rat model 

Inhibition of cogni-

tive dysfunction and 

motor abnormality 

and antioxidant 

effects 

[252, 

253] 

Saccharomyces 

cerevisiae and 

Corynebacterium 

glutamicum 

Rasberry Fruit  Salidroside 

O

OH

O
HO

HO OH

OH

 

Inhibit the SOD1 and 

HTT genes and also 

show anti-

inflammatory effects. 

Reduce the symp-

toms of HD by acting 

oxidative stress and 

inflammation, and 

HTT genes. 

[254] 

 

Table 5. Ongoing clinical trial of HD. 

Disease Drug Sample Size Purpose Phase Status Design Study State Study end 

HD THC, CBD 21 Treatment Phase 2 Completed DB, R, CO December 30, 2011 February 1, 2013 

 EGCG 54 Treatment Phase 1 Completed R May 23, 2011 June 16, 2015 

 PBT2 109 Treatment Phase 2 Completed DB, R  May 3, 2012 July 18, 2016 

 DM/Q  22 Treatment  Phase 3 Recruiting R February 26, 2019 April 19, 2019 

 Triheptanoin 10 Treatment Phase 2  Completed   June 20, 2013 March 24, 2016 

 SD-809 90 Treatment  Phase 3 Completed  R, DB January 2, 2006 September 20, 2017 

 Digoxin, Dimebon  12 Treatment Phase 1 Completed R January 29, 2009 June 12, 2009 

Chorea SD-809 90 Treatment  Phase 3 Completed  R, DB February 21, 2013 August 11, 2017 

 Amantadine sulphate 30 Treatment Phase 4 Completed  NR July 31, 2009 June 28, 2011 

HMD Tetrabenazine -- -- -- Available -- March 24, 2008 February 26, 2020 

Abbreviations: CO; Cross Over, CBC, Cannabidiol, DB; Double Blind, DM/Q; Dextromethorphan/quinidine, EGCG; (2)-epigallocatechin-3-gallate, NR, Non-Randomized , R; 
Randomized, THC; Delta-9-tetrahydrocannabinol, HMD; Hyperkinetic Movement Disorders Based on search of clinicaltrial.gov (https://clinicaltrials.gov/ct2/ 
results?cond=huntington+disease&term=&cntry=&state=&city=&dist=) [255] [Accessed May 26, 2020]. 
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activate various downstream cascades that have cardio and 
neuroprotective potential, but at high doses, their protective 
effect gets attenuated [261-263]. The spectrum of hormetic 
results, such as increased development, reproduction, sur-
vival, and a decreased disease occurrence, indicates the pres-
ence of thousands of genes, thereby influencing basic bio-
logical processes through hormetic mechanisms. In one of 
the recently published studies, Moghaddam et al (2019) 
[264] mentioned hormesis effects of curcumin. It is one of 
the types of hormetic agents because, at a low dose, curcu-
min shows stimulatory effects, while at high doses, it shows 
inhibitory effects. For example, at a low dose, curcumin 
shows antioxidant and anti-inflammatory effects but in high 
dose curcumin is reported to cause autophagy and apoptosis 
or cell death [264, 265]. In another study, it is reported that 
quercetin showed antioxidant, anti-inflammatory, and neuro-
protective effects at its low dose whereas, at higher doses, it 
caused toxicity into the body such as mitochondrial oxidative 
stress [261, 266]. Another herbal drug, celastrol that is ex-
tracted from TW, has proven its neuroprotective effects in 
preclinical studies. It is also called “Thunder of God Vine”. 
This phytomedicine decreases the striatal lesion volume, 
which is induced by 3-NP at its low dose. At low doses, it 
showed antioxidant effects and reduced neuroinflammation 
induced by NFκB and TNFα signaling pathways. But at a 
high dose, celastrol increased the blood pressure and caused 
hypertension [261]. BM’s extract has many potential effects 
against neuronal diseases such as anxiety, depression, and 
various NDs. Whereas, its overdose causes dry mouth, stom-
ach cramps, fatigue and bowel movement, etc. [94, 267]. 
Hence, hormetic processes should be considered because 
plant derivatives at low dose may provide pro-oxidants that 
are able to upregulate the expression of enzymes of innate 
detox pathways or, alternatively regulate the expression of 
vitagenes [259]. Various drugs shown in Fig. (3) have neuro-
protective effects however, they also show hormesis effects. 

 Products such as wine extract, green tea, grape seed, PA, 
CL, OE, and TC extracts are all known to contain a large 
variety of potent antioxidants in the form of polyphenols like 
phenolic acids, gallic acid, stilbenes, tannins, flavanols, res-
veratrol, and anthocyanins, etc. [179, 268] Polyphenolic 
compounds act as iron chelators, radical scavengers, and 
modulators of pro-survival genes. These polyphenols acti-
vate the endogenous enzymes like glutathione peroxidase, 
catalase, or superoxide dismutase that directly modulate the 
level of free radicals [269]. In NDs, neuronal stress response 
activates pro-survival pathways, which control the activation 
or modulation of protective genes called vitagenes. These 
vitagenes produce endogenous enzymes, heat shock proteins, 
heat shock protein 72 (Hsp72), heme oxygenase-1, sirtuins, 
and the thioredoxin/thioredoxin reductase system [260]. All 
these have potent anti-oxidant and anti-apoptotic activities 
against NDs. Polyphenols activate the vitagene system by 
upregulating the levels of antioxidant enzymes and sirtuin 
system, along with activation of heat shock transcription 
factors and Kelch-like erythroid cell-derived proteins with 
CNC homology [ECH]-associated protein 1)/antioxidant 
response element Keap1/Nrf2/ARE pathway that results in 
counteraction of pro-oxidant conditions in neuronal tissue 
[259]. In neuronal cells, mitochondria are the principal 

source of energy for their survival. In stressful conditions, 
neuronal cells compensate the energy demands of cells by 
changing the rate of mitochondrial fission and fusion. This 
process leads to excessive production of superoxide anions at 
the inner mitochondrial membrane that promotes the produc-
tion of physiological or endogenous ROS. These mitochon-
dria-derived ROS are involved in the aging process. The 
ROS directly modulates signal transduction pathways that 
enhance cellular proliferation [270]. These changes in mito-
chondrial activity interrupt the functionality of the mito-
chondrial network and promote the molecular abnormalities 
influencing mitochondrial dynamics. Since mitochondria 
play a critical role in neuronal physiology, impaired mito-
chondrial dynamics promote the NDs such as PD [176], AD 
[271, 272], and HD. Polyphenols like flavanols are known to 
have brain-permeability potential that directly benefits neu-
ronal health. Several studies show that polyphenols have a 
neuroprotective role in NDs, for example, epigallocatechin 
gallate has neuroprotective potential in amyloid-beta-
mediated neurotoxicity. Resveratrol acts by decreasing nu-
clear factor kappa-light-chain-enhancer of activated B cells 
(NFκB) level and microglia-induced neuroinflammation, 
thereby it protects the brain from the deleterious effect of 
ischemic injury. Polyphenols directly or indirectly modulate 
the levels of pro-and anti-inflammatory microRNAs in NDs 
[273-275]. Polyphenols have shown the potential to activate 
the mitochondrial biogenesis, in aged mice. They attenuated 
the deleterious effect of oxidative stress mediated damage 
and increased the physical endurance that resulted in pro-
longed survival of the animals [257, 276, 277]. 

8. NEED FOR NOVEL DRUG DELIVERY SYSTEMS 

 Herbal drugs have been reported to show very good neu-
roprotective effects; however, they have some limitations 
such as poor bioavailability, poor aqueous solubility, and 
lack of blood-brain barrier (BBB) permeability. Novel drug 
delivery systems have been reported to enhance the bioavail-
ability, therapeutic efficacy [278], stability, and brain perme-
ability [279] of the herbal drugs and reduce their side effects, 
which, on the other hand, is hard to be achieved through 
conventional drug delivery systems [280-283]. Herbal drug-
based nanoparticles are reported to reduce first pass metabo-
lism and improve their bioavailability because their small 
particle size (less than 200 nm) enables them to cross endo-
thelial cells of BBB by transcytosis [284]. Glucose trans-
porter 1 (GLUT1) or albumin transporters, lactoferrin recep-
tors, transferrin receptors ligands can enhance receptor-
mediated transcytosis [285]. The mechanisms of targeting of 
BBB of drug-loaded nanoparticles are shown in Fig. (4). 
There are a number of studies in which the plant extracts or 
their active constituents have been reported to enhance the 
pharmacokinetic properties such as Cmax and AUC, thereby 
increasing their oral bioavailability. Hence, they have been 
able to treat various types of NDs such as PD, AD. Some of 
the studies entailing about enhancement of oral bioavailabil-
ity are listed in Table 6. It is important to note that there is 
very limited information available regarding the formulation 
of nanoparticles to treat HD, and they are limited to pre-
clinical studies. However, based on the success rate of 
NDDS in treating other neurodegenerative diseases apart 
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Table 6. Pharmacokinetics parameters for the herbal drugs and their nanoparticles. 

S. No. Plant Used Phytoconstituent NDDS Outcomes Refs. 

01 

Malus  
domestica, 

Allium cepa, 
etc 

Fisetin (FS) 

Self-
nanoemulsifying 
drug delivery sys-
tem (SNEDDS) 

• Cmax of FS SNEDDS increased by 3.7 folds as compared to naïve FS 

• AUC0-∞ of FS SNEDDS increased by 1.5 folds as compared to naïve FS 

• Increase in bioavailability (151.58%) 

[286] 

02 Nigella sativa Thymoquinone  SLNs 

• Cmax of thymoquinone SLNs increased by 4.3 folds as compared to thymoquinone 
suspension 

• AUC0-∞ of thymoquinone SLNs increased by 6.19 folds as compared to thymoqui-
none suspension 

• Increase in bioavailability (619.3%) 

[287] 

03 Nigella sativa Thymoquinone SLNs 

• Cmax of thymoquinone SLNs increased by 4.8 folds as compared to thymoquinone 

• AUC0-∞ of thymoquinone SLNs increased by 5.53 folds as compared to thymoqui-
none 

• Increase in bioavailability (553%) 

[288] 

04 CL Curcumin  SNEDDS 

• Cmax of curcumin SNEDDS increased by 9.1 folds compared with naïve curcumin 

• AUC0-∞ of curcumin SNEDDS increased by 7.5 folds as compared to naïve curcu-
min 

• Increase in bioavailability (754%) 

[289] 

05 CL Curcumin Nanosuspensions 

• Cmax of curcumin nanoparticles increased by 4.8 folds compared to naïve curcu-
min. 

• AUC0-∞ of Curcumin nanoparticles increased by 5.5 folds compared with naïve 
curcumin. 

• Increase in bioavailability (558%) 

[290] 

06 CL Curcumin SLNs 

• Cmax of curcumin nanoparticles increased by 49.27 folds compared to naïve cur-
cumin. 

• AUC0-∞ of Curcumin SLNs increased by 39.06 folds as compared to naïve curcu-
min. 

• Increase in bioavailability (3906%) 

[291] 

07 CL Curcumin 
Phospholipid com-

plex  

• Cmax of curcumin phospholipid complex increased by 2.4 folds as compared to 
naïve curcumin 

• AUC0-∞ of Curcumin phospholipid complex increased by 5.19 folds as compared to 
naïve curcumin 

• Increase in bioavailability (519%) 

[292] 

08 

GB, Allium 
cepa, Brassica 
oleracea var. 

italic etc 

Quercetin Zein nanoparticles 

• Cmax of quercetin nanoparticles increased by 8.5 folds as compared to naïve quer-
cetin 

• AUC0-120 of quercetin SLNs increased by 13.9 folds as compared to naïve quercetin 

• Increase in bioavailability (1396%) 

[293] 

09 

GB, Allium 
cepa, Brassica 
oleracea var. 

italic etc 

Quercetin SLNs 

• Cmax of quercetin SLNs increased by 2.07 folds as compared to naïve curcumin 

• AUC0-48 of quercetin nanoparticles increased by 5.7 folds as compared with naïve 
curcumin 

• Increase in bioavailability (571.4%) 

[294] 

10 
Camellia 
sinensis 

Epigallocatechin-
3-Gallate 
(EGCG) 

Nanolipidic parti-
cles 

• Cmax of EGCG nanoparticles increased by 6.04 folds as compared to EGCG 10% 
ethanolic extract 

• AUC0-∞ of EGCG nanoparticles increased by 2.49 folds as compared to EGCG 
10% ethanolic extract 

• Increase in bioavailability (249%) 

[295] 

(Table 6) contd…. 
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S. No. Plant Used Phytoconstituent NDDS Outcomes Refs. 

11 SL Lycopene Microemulsion 

• Cmax of lycopene-loaded microemulsion increased by 1.8 folds as compared to 
lycopene devolved in olive oil 

• AUC0-∞ of lycopene-loaded microemulsion increased by 2.1 folds as compared to 
lycopene devolved in olive oil 

• Increase in bioavailability (210%) 

[182] 

12 TW Celastrol  
Silk Fibroin 

Nanoparticles 
(SFNPs) 

• Initial concentration of celastrol SFNPs increased by 4.36 folds as compared to 
celastrol in PEG 300 

• AUC0-∞ of celastrol SFNPs increased by 2.61 folds as compared to celastrol in PEG 
300 

• Increase in bioavailability (261%) 

[296] 

13 TW Celastrol  Phytosomes 

• Initial concentration of celastrol phytosomes increased by 5 folds as compared to 
celastrol 

• AUC0-∞ of celastrol phytosomes increased by 4.1 folds as compared to celastrol 

• Increase in bioavailability (410%) 

[297] 

14 

Phaseolus 
vulgaris,  

Glycine max, 
etc 

Genistein 
Eudragit nanoparti-

cles 

• Cmax of genistein nanoparticles increased by 2.4 folds as compared to genistein 
suspension 

• AUC0-∞ of genistein nanoparticles increased by 2.4 folds compared to genistein 
suspension 

• Increase in bioavailability (241%) 

[298] 

15 GN Galantamine SLNs 

• Volume of distribution of galantamine SLNs increased by 1.15 folds as compared 
to galantamine 

• AUC0-∞ of galantamine SLNs increased by 2.14 folds as compared to galantamine 

• Increase in bioavailability (261%) 

[299] 

16 
Silybum  

marianum 
Silymarin 

Nanostructured 
Lipid Carrier 

(NLCs) 

• Cmax of silymarin NLCs increased by 3.4 folds as compared to silymarin pellets 

• AUC0-∞ of silymarin NLCs increased by 2.2 folds as compared to silymarin pellets 

• Increase in bioavailability (224%) 

[300] 

17 
Medagascar 
periwinkle 

Vinpocetine  SLNs 

• Cmax of vinpocetine SLNs increased by 3.2 folds as compared to vinpocetine 

• AUC0-∞ of vinpocetine SLNs increased by 4.16 folds as compared to vinpocetine 

• Increase in bioavailability (416%) 

[301] 

18 
Trifolium 
pratense 

Biochanin A NLCs 

• Cmax of biochanin PEG-NLCs increased by 15.74 folds as compared to biochanin 

• AUC0-∞ of biochanin PEG-NLCs increased by 2.89 folds as compared to biochanin 

• Increase in bioavailability (289%) 

[302] 

19 Glycine max Genistein 
Micellar emulsions 

(ME) 

• AUC0-∞ of genistein MEs increased by 2.36 folds compared to genistein 

• Increase in bioavailability (236%) 
[303] 

 

from HD, it is anticipated that they may provide success in 
treating HD also. Hence, there is a dire need to explore those 
delivery systems loaded with aforementioned phytoconstitu-
ents/extracts to treat HD. Nevertheless, in this review some 
studies that have been reported to treat HD are discussed in 
the subsequent sections. 

8.1. Nanoliposomes 
 The herbal drugs loaded in nanoliposomes have the po-
tential to cross the physiological membrane barriers of the 
body owing to the submicron size of vesicles. The drugs 
loaded in the vesicles can bypass first pass metabolism and 

enhance oral bioavailability. Ligand (such as GLUT1, lac-
toferrin, transferrin) based nanoliposomes prepared through 
surface modification methods have been able to deliver sev-
eral proteins, antibodies, and peptides [304]. Ligands help 
the liposomes to permeate BBB by transcytosis. 
Nanoliposomes can also enter the brain by passive diffusion, 
where they release entrapped drugs by energy dependent 
mechanism or passive efflux [304]. The limitation of 
liposomes is their short half-life, due to which the drug gets 
easily metabolized by hydrolysis and oxidation [305]. Fran-
cesca et al. studied the effect of curcumin-loaded apoprotein 
E (Apo-E) derived peptide nanoliposomes on HD. The 
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liposomes were prepared by loading Apo-E in the dispersion 
of bovine brain sphingomyelin (Sm), cholesterol (Chol), and 
1,2-stearoyl-sn-glycero-3-phosphoethanolamine-N-[maleimide 
(poly(ethylene glycol)-2000)] (mal-PEG-PhoEth) using thin 
film hydration method (Fig. 5A). The prepared liposomes 
showed particle size, PDI, and zeta potential of 132 ± 10 nm, 
0.187, and −19.41 ± 0.09 mV, respectively. The ratio of 
Apo-E to Chol and Sm was kept constant. However, compo-
sition of Apo-E and mal-PEG-PhoEth were varied in the 
ratio of 1.2:1 and 1:5. During ApoE-liposome coupling, it 
was observed that when the ratio of peptide and mal-PEG-
PhoEth was changed from 1:5 to 1.2:1, it resulted in in-
creased density of ApoE on the surface of the liposome (Fig. 
5B). It was observed that around 70,000 molecules of lipids 
were on the surface of the liposome, having a particle size of 
140 nm and consisted of reactive mol-PEG-PhoEth (2.5 
mol). Coupling efficiency was found to be 70%. The molar 
ratio of peptide and mol-PEG- PhoEth (1:5 to 1:2:1) after the 
incubation period showed a high density of 1200 and low 
density of 400 peptide molecules per single nanoliposomes 
particle (Fig. 5C). The in vitro cell line study was done on 
rat’s brain endothelial cells. The curcumin-nanoliposomes 
did not show any cytotoxicity as confirmed by 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide 
(MTT) assay. The liposomes were labeled by using a fluo-
rescent dye and cellular uptake of the fluorescence labeled 
liposome was detected by using confocal laser scanning mi-

croscopy (CLSM). It was found that liposomes in the ab-
sence of surface functionalization did not show any mem-
brane accretion and cellular uptake of fluorescence. The Rat 
Brain Endothelial cells (RBE4) showed very less fluores-
cence at high and low density of peptides. It was observed 
that the green fluorescence of cells got increased with an 
increase in the high density of peptides. The green spots 
were near the nucleus below the plasma membrane. The 
liposomes coupled with peptide mApoE displayed effective 
uptake (Fig. 5D). The curcumin-nanoliposomes helped in 
treating HD by their interaction with low-density lipoprotein 
receptors via special Apo-E sequence amino acid and pene-
trated curcumin across the BBB through transcytosis without 
getting affected by lysosomal degradation. Hence, the ob-
tained results revealed that ligand-based nanoliposomes suc-
cessfully targeted BBB and protected the drug from degrada-
tion [306]. 

8.2. Solid Lipid Nanoparticles (SLNs) 
 SLNs contain a solid lipid matrix stabilized by lipid 
molecules and physiological emulsifiers. Homogenization is 
used for the preparation of SLNs, where high temperature 
and high pressure provided by thermodynamic and mechani-
cal stress causes size reduction of drug particles [307, 308]. 
SLNs are excellent nanocarriers to enhance the bioavailability 
of drugs and are highly biocompatible. SLNs of size ranging 
from 0 to 1000nm can be prepare during high pressure 

 
Fig. (4). Mechanism of BBB permeability of the nanoparticles. (A higher resolution / colour version of this figure is available in the elec-
tronic copy of the article). 
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Fig. (5). (A) The Curcumin liposomes were prepared by thin film hydration method. (B) Fluorescence estimation of the amount of mApoE 
(dark bars) and dApoE peptide coupled to liposomes at different peptide-to-lipid molar ratios. (C) Cell-associated fluorescence was evaluated 
using FACS analysis. (D) The localization and distribution of ApoE-NLs within RBE4 cells [306] Copyright © 2011 Elsevier. (A higher 
resolution / colour version of this figure is available in the electronic copy of the article). 

 
Fig. (6). (A) C-SLNs prepared by halogenation method (B) Neuroprotective effects of C-SLNs reported against 3-NP in rat brain. (C) Effect 
of C-SLN on mitochondrial cytochrome levels in the striatum of 3-NP-induced HD rats. (D) Effect of C-SLN on spontaneous locomotor ac-
tivity in terms of total photo beam counts of 3-NP-induced HD rats [76] Copyright © 2013, Springer Nature. (A higher resolution / colour 
version of this figure is available in the electronic copy of the article). 
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Fig. (7). (A) Formulation of TQ-SLN prepared by homosimeation method. (B) TQ-SLN has been showed dose dependent significant effects 
against the inflammatory mediator such as TNF-α, IL-1β, IL-6, iNOS, and COX2 (C) TQ-SLNs and TQ-S treatment attenuates the overex-
pression of GFAP in the striatal slices of 3-NP intoxicated animals. (D) TQ-SLNs and TQ-S treatment improve the expression of TH in the 
striatal slices upon 3-NP toxicity [312] Copyright © 2018, Springer Nature. (A higher resolution / colour version of this figure is available in 
the electronic copy of the article). 
 

homogenization. Those in size range of 120-200 nm can eas-
ily cross endothelial cells of BBB by endocytosis [309]. 
Brain permeability of SLNs can be enhanced by their at-
tachment with ligand (e.g., apolipoprotein E) [310]. Limita-
tions of SLNs are their low drug loading capacity and poor 
entrapment efficiency. In one of the studies carried by 
Sandhir et al. (2014), C-SLNs reported positive results 
against 3-NP induced HD rats. In this study, 20 mg/kg and 
40 mg/kg drug was administered for 7days through oral 
route. C-SLNs were prepared by the homogenization method. 
In this formulation steric acid, lecithin taurocholate and cur-
cumin were used. The formulation exhibited significantly 
dose dependent neuroprotective effects against neurotoxin 
(3-NP) (Fig. 6B). It also produced significant positive effect 
on mitochondrial cytochrome levels in striatum and 
spontaneous locomotor activity in total photobeam counts of 
3-NP-induced HD rats [76] (Fig. 6C, D). 

 In another study, the authors have mentioned the 
pharmacological action of the thymoquinone (TQ). It is a 
strong antioxidant and also inhibits neuroinflammation. The 
drug still could not show the desired action in the in-vivo 
study [311] due to low solubility, leading to decrease drug 
absorption and bioavailability. Thereby, a drug cannot reach 
a desired concentration in the targeted side (the brain). 
Ramachandran et al. (2018) [312] prepared TQ-SLNs to 
enhance the bioavailability and brain permeability of the 
drug. TQ-SLNs were prepared by the homogenization 
method. (Fig. 7A) The inflammatory response was checked 
by polymerase chain reaction (PCR), and TQ-SLNs showed 
anti-inflammatory effects. TQ-SLNs and Thymoquinone 
suspension (TQ-S) were found to inhibit inflammatory 
mediators including TNF-α, IL-1β, IL-6, iNOS, and COX2 
(Fig. 7B). The anti-inflammatory effects of TQ-SLNs and 
TQ-S reported in the glial fibrillary acid protein (GFAP) 
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Fig. (8). (A) Zwitterionic poly(trehalose) can easily permeate BBB and inhibit polyglutamate aggregation in CNS. (B) a) Immunoblot  
analysis data of soluble huntingtin aggregates using (green fluorescent protein) GFP antibody. b) Quantification of band intensities of soluble 
huntingtin (tNhtt) shown in (a) using NIH image analysis software. Data are normalized against beta-actin. c) Dot blot analysis data of  
insoluble huntingtin aggregates using GFP antibody. d) Dot blot analysis using ubiquitin antibody [314] Copyright © 2017 American Chemical 
Society. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 

Table 7. Herbal Nanoformulations reported for the treatment of HD in animal models. 

S. No. Phytoconstituents Formulation Compassion 
Animal 

Model 

No. of 

Animal 
Dose (mg/kg) 

Duration 

of Study 
Applications  Results 

Biochemical 

Evaluation 
Refs. 

1. Curcumin SLNs 

Steric acid, 

lecithin taurocho-

late, Curcumin 

Female 

wistar rats 
20 40mg/kg p.o. 7 days 

SLNs improved 

oral bioavailability 

of curcumin  

Assessed its 

neuroprotective 

efficacy against 3-
NP-induced 

HD 

Reduced GSH 

levels and SOD 

activity, reduc-
tion in mito-

chondrial 

swelling, lipid 
peroxidation, 

protein  

carbonyls  
and ROS 

[76] 

2 poly(trehalose) 
Polymeric 

nanoparticle  

Sulfo-acrylate (to 

introduce SO3-), 
amino-acrylate  

(to introduce 

NH2),  
PEG-acrylate  

(to introduce 

PEG). 

The 

transgenic 
mice for HD 

[strain 

B6CBA-Tg 
(HDexon1) 

62Gpb/3J] 

-- 

 0.4 mg/mL 

corresponding to 
50 µM 

Trehalose, i.p. 

56 days and 

84 days 

Polymeric nanopar-

ticles enhanced 
BBB permeability 

of the trehalose 

 Neuroprotective 

effects  

Immuno- 

histochemical 
staining,  

[314] 

3.  Thymoquinone SLNs 

Steric acid, 

lecithin taurocho-

late, 

Thymoquinone 

Albino male 

rats 
48 

TQ-SLNs (10, 

20mg/kg), 

TQ-SLNs 

(40,80mg/kg) p.o. 

14 days 

SLNs increased the 

solubility, bioavail-

ability and absorp-

tion of the thymo-
quinone. It also 

enhanced drug 

payload and 
sustained drug 

release ability 

Due to this SLNs 

thymoquinone acts 

as halting 3- 

NP induced 
inflammation and 

degeneration. 

-- [312] 

(Table 7) contd…. 
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S. No. Phytoconstituents Formulation Compassion 
Animal 

Model 

No. of 

Animal 
Dose (mg/kg) 

Duration 

of Study 
Applications  Results 

Biochemical 

Evaluation 
Refs. 

4. Cholesterol Nanaolipos omes -- Mice 3 

Chol-D6-loaded 

liposomes (200 

µg/mouse) 

2 days 

Nanoliposomes 

enhanced brain 

delivery of 
cholesterol 

Brain cholesterol 

(Chol) synthesis, 

which is essential 
for optimalsynap-

tic transmission 

-- [315] 

5. Selenium Nanoliposomes -- Worms -- -- -- 

Selenium Nanopar-

ticles enhanced 

bioavailability and 

therapeutic efficacy 
with low toxicity  

-- 

20µM, Nano-Se 

played a dosage-

dependent 

protective effect 
on the viability 

after the 

exposure to both 
stress stimuli 

[316] 

6. Lithium 
Microemulsion 

(NP03) 
-- 

YAC128 

mouse 
 

20 µg Li/kg 

or 40 µg Li/kg 

body weigh i.e. 

0.03 and 0.06 
mEq/kg) 

2 months 

Microemulsion of 

lithium (NP03) 

reduced the toxicity 

of lithium and 
increased the 

absorptions at 

targeted site 

NP03 improves 

motor function 

and rescues striatal 

pathology and 
testicular atrophy 

in YAC128 mice. 

-- [317] 

7. 
Coenzyme Q10 

(CoQ10) 
 

Coenzyme Q10 
-- 

R6/2 
transgenic 

mouse 
110 

(CoQ10) 
1000, 5000, 

10000, or 20000 

mg/kg/day and 
(HydroQ-sorb) 

400, 1000, and 

2000 mg/ 
kg/day 

150 days -- 
Showed neuropro-

tective effects 
-- [318] 

 

and tyrosine hydroxylase (TH) against 3-NP induced animals 
model [312] are shown in Fig. 7C and D. 

8.3. Polymeric Nanoparticles 

 The particle size of polymeric nanoparticles is approxi-
mately in the range of 10 nm to 1000 nm. These can be for-
mulated in the form of nanospheres and nanocapsules. Nano-
spheres are made up of a matrix system. In nanocapsules, the 
drug is loaded into the cavity, which is made up of a polym-
eric membrane [313]. Debnath et al. (2017) reported the suc-
cessful delivery of trehalose by enhancing its BBB perme-
ability through poly(trehalose) nanoparticles. Poly(trehalose) 
nanoparticles were reported to be more potent as compared 
to trehalose molecules. They were found to inhibit polyglu-
tamine aggregation in HD150Q cell in in vitro study. (Fig. 
8A) Immunoblot analysis and Dot blot analysis of 
poly(trehalose) nanoparticles reduced polyglutamine levels 
and amyloid aggregation and also suppressed mHTT genes 
[314]. (Fig. 8B) Herbal drug nanoparticle formulation, ani-
mal models, and beneficial results are enlisted in Table 7. 

CONCLUSION 

 The prevention of NDs is essential for the aged popula-
tion globally. Phytoconstituents serve as novel medicinal 
therapies in the present scenario. Herbal drugs are reported 
to have multiple actions such as antioxidant, anti-
inflammatory, anti-proliferative and anti-apoptotic. Many of 
them are also reported to reduce AChE levels in synapses. 

Hence, they could offer a pragmatic alternative to the current 
synthetic drugs that are being used to treat HD. Various pre-
clinical and clinical studies have been highlighted in the 
manuscript indicating a significant positive response against 
symptoms of HD. Despite having such therapeutic potential, 
the efficacy of herbal drugs has not been widely explored 
due to their poor solubility and pharmacokinetic properties. 
Herbal drugs incorporated in various nanocarriers such as 
nanoliposomes, microemulsions, SLNs, and polymeric 
nanoparticles have shown very good efficacy to treat HD due 
to the enhancement in their bioavailability ordirect targeting 
to specific cells. This has further helped in the reduction of 
their dose as well as toxicity. The major challenges associ-
ated with the formulation of herbal drug-loaded nanoparti-
cles include the poor loading of drugs in the formulation, 
low stability of herbal drugs during their processing, diffi-
culty during scale-up of the process, and low stability of 
nanoformulations. Hence, it is important to look at these 
issues prior to the start of pre-clinical studies. Upon getting 
successful pre-clinical reports, a thorough clinical study is 
required for their positioning into the market. 

LIST OF ABBREVIATIONS 

3-NP = Nitropropionic acid 

6-OHDA = 6-hydroxydopamine 

AC = Acorus calamus 

ACh = Acetylcholine 
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AChE = Acetylcholinesterase 

AD = Alzheimer Disease 

ALS = Amyotrophic Lateral Sclerosis 

Anti-PAF = Anti-Platelet Activating Factor 

AS = Allium sativum 

ATP = Adenosine Triphosphate 

Aβ = Amyloid beta 

BBB = Blood Brain Barrier 

BM = Bacopa monnieri 

CA = Centella Asiatica 

CAG = Cytisine-Adenine-Guanine 

CAT = Choline-Acetyl Transferase 

CL = Curcuma Longa 

CNS = Central Nerves System 

COX-2 = Cyclooxygenase-2 

CS = Coriandrum sativum 

CSF = Cerebrospinal Fluid 

DTI = Drug Targeting Index 

EGCG = Epigallocatechin gallate 

ELISA = Enzyme-Linked Immune Sorbent Assay 

G. glabra = Glycyrrhiza glabra 

GABA = γ-aminobutyric acid 

GAD = Glutamate Decarboxylase 

GB = Ginkgo biloba 

GFAP = Glial Fibrillary Acid Protein 

GLUT1 = Glucose Transporter1 

GN = Galanthus nivalis 

HD = Huntington's Disease 

HDSA = Huntington’s Disease Society of America 

HPLC = High-Performance Liquid Chromatography 

HTRF = Homogeneous Time Resolved Fluorescenc 

JNK = c-Jun terminal kinase 

LDL = Low Density Lipoprotein 

LME = Lycopene loaded microemulsions 

LOO = Lycopene dissolved in Olive Oil 

LS = Lycopodium Serratum 

MDA = Malondialdehyde 

ME = Microemulsion 

mHTT = Mutant Huntingtin 

MS = Mass Spectrometry 

NE = Nanoemulsions 

NFκB = Nuclear Factor kappa-light-chain-
enhancer of activated B cells 

NLCs = Nanostructured Lipid Carrier 

OH8dG = 8-hydroxy-2-deoxygonosine 

PD = Parkinson Disease 

PG = Panax Ginseng 

RNS = Reactive Nitrogen Species 

ROS = Reactive Oxygen Species 

SDH = Succinate dehydrogenase cell enzyme 

SI = Sedamim Indicum 

SLNs = Solid Lipid Nanoparticles 

TC = Tinospora cordifolia 

TH = Tyrosine Hydroxylase 

TLR = Toll-Like Receptor 

TQ = Thymoquinone 

TQM = Triterpenoid Quinone Methide 

TQ-S = Thymoquinone Suspension 

TR-FRET = Time-resolved Fluorescence Energy 
Transfer 

WS = Withania Somnifera 
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