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Many neuroanatomical alterations have been detected in patients with tinnitus in previous
studies. However, little is known about the morphological and structural covariance
network (SCN) changes before and after long-term sound therapy. This study aimed
to explore alterations in brain anatomical and SCN changes in patients with idiopathic
tinnitus using voxel-based morphometry (VBM) analysis 24 weeks before and after sound
therapy. Thirty-three tinnitus patients underwent magnetic resonance imaging scans
at baseline and after 24 weeks of sound therapy. Twenty-six age- and sex-matched
healthy control (HC) individuals also underwent two scans over a 24-week interval; 3.0T
MRI and high-resolution 3D structural images were acquired with a 3D-BRAVO pulse
sequence. Structural image data preprocessing was performed using the VBM8 toolbox.
The Tinnitus Handicap Inventory (THI) score was assessed for the severity of tinnitus
before and after treatment. Two-way mixed model analysis of variance (ANOVA) and
post hoc analyses were performed to determine differences between the two groups
(patients and HCs) and between the two scans (at baseline and on the 24th week).
Student-Newman-Keuls (SNK) tests were used in the post hoc analysis. Interaction
effects between the two groups and the two scans demonstrated significantly different
gray matter (GM) volume in the right parahippocampus gyrus, right caudate, left superior
temporal gyrus, left cuneus gyrus, and right calcarine gyrus; we found significantly
decreased GM volume in the above five brain regions among the tinnitus patients before
sound therapy (baseline) compared to that in the HC group. The 24-week sound therapy
group demonstrated significantly greater brain volume compared with the baseline group
among these brain regions. We did not find significant differences in brain regions
between the 24-week sound therapy and HC groups. The SCN results showed that
the left superior temporal gyrus and left rolandic operculum were significantly different
in nodal efficiency, nodal degree centrality, and nodal betweenness centrality after FDR
correction. This study characterized the effect of sound therapy on brain GM volume,
especially in the left superior temporal lobe. Notably, sound therapy had a normalizing
effect on tinnitus patients.
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INTRODUCTION

Tinnitus is a very common otological disorder. Approximately
10% to 25% of the population is severely affected (Baguley
et al., 2013; Bauer, 2018). Tinnitus reduces the quality of life
for millions worldwide (Shore et al., 2016). Chronic tinnitus
can cause a series of problems, such as sleep disturbances
(Schecklmann et al., 2015), cognitive problems, depression
(Dobie, 2003), and work disorders (Heller, 2003). Previous
studies have shown that tinnitus can cause significant changes
in brain function and structure, which are closely related to
the clinical manifestations of patients (Ryu et al., 2016; Han
et al., 2019a). Also, studies have shown that the brain structure
and function of tinnitus patients have undergone significant
remodeling (Schmidt et al., 2017; Chen et al., 2020). Therefore,
it is very important to fully understand the abnormal brain nerve
activity related to tinnitus.

In our previous research, tinnitus has been confirmed to be
a symptom of abnormal resting-state fMRI (rs-fMRI; Han et al.,
2015; Lv et al., 2016a,b, 2018). The brain regions involved include
sound detection regions, such as the insula and hippocampus
(van der Loo et al., 2011; Hofmeier et al., 2018), and auditory
and nonauditory brain regions (Vanneste and De Ridder, 2012),
such as the parahippocampal gyrus (Vanneste et al., 2011),
posterior cingulate cortex (Vanneste et al., 2010), and anterior
cingulate cortex (De Ridder et al., 2011). In recent years,
the study of brain microstructure has also received increasing
attention. Our previous research also proved that tinnitus can
result in significant alterations in brain white matter (WM)
microstructure (Chen et al., 2020).

Indeed, microstructural changes in the brain have also been
reported in some tinnitus studies (Tae et al., 2018; Besteher
et al., 2019). Different studies have used different methods of
measuring microstructure. Voxel-based morphometry (VBM)
is a neuroimaging technique that investigates focal differences
in brain anatomy (Nemoto, 2017); it can quantitatively detect
the volume of brain tissue at the voxel level, reflecting the
differences in the components and characteristics of brain tissue
in local brain regions of different groups or individuals It can
quantitatively detect the volume of brain tissue at the voxel
level, reflecting the differences in brain tissue composition and
characteristics in different groups or individual brain regions
(Ashburner and Friston, 2000). Currently, VBM has been used
increasingly widely to describe microstructural changes in the
brain in tinnitus patients (Husain et al., 2011; Meyer et al., 2016).
A meta-analysis revealed structural alterations in the brain of
tinnitus patients in the superior temporal gyrus, middle temporal
gyrus (MTG), angular gyrus, caudate nucleus, superior frontal
gyrus, and supplementary motor area (Cheng et al., 2020). Our
previous study also showed that compared with normal controls,
patients with unilateral pulsatile tinnitus have a significantly
increased gray matter (GM) volume in the bilateral superior
temporal gyri (Liu et al., 2018). At the same time, structural brain
networks (structural covariance networks, SCNs) were widely
used in behavioral research and other diseases (Drenthen et al.,
2018; Richmond et al., 2019). However, this method was not used
in the evaluation of the treatment efficacy of tinnitus. In this

study, SCNs were obtained using graph theoretical analysis. After
obtaining the volume of GM in the first step, we continued to
analyze its SCNs, to further evaluate the results.

A deep understanding of the functional and anatomical
changes of the brain is a key factor for the effective treatment
of tinnitus. Many treatment modalities have been applied
to tinnitus patients, such as those treated with repetitive
transcranial magnetic stimulation (rTMS; Poeppl et al., 2018),
drug therapy (Zenner et al., 2017), tinnitus counseling, and
cognitive-behavioral therapy (CBT; Langguth et al., 2013),
hearing aids (Yakunina et al., 2019), cochlear implants (Olze,
2015), and tinnitus retraining therapy (Lee et al., 2019). Krick
applied music therapy to observe patients’ GM volume. After
the Heidelberg model of music therapy intervention, the GM of
the precuneus, medial superior frontal areas, and auditory cortex
increased in acute tinnitus patients accompanied by significantly
decreased tinnitus-related distress (Krick et al., 2015). In recent
years, narrowband-noise sound therapy is currently one of the
common methods for tinnitus (Henry et al., 2002). Our previous
studies have demonstrated functional changes in the brain with
this sound therapy (Han et al., 2019a,b). However, we only found
a few related reports on the morphological changes before and
after sound therapy (Krick et al., 2015, 2017).

In this study, tinnitus patients who underwent 24 weeks of
narrowband-noise sound therapy were enrolled. VBM and SCNs
were applied to analyze the anatomical changes in the brain in
patients before sound therapy and after sound therapy as well
as to acquire data from healthy controls (HCs) at baseline and
at 24 weeks to explore the morphological features and network
alterations.We hypothesize that the brain regions associated with
tinnitus, involving auditory, attentional, subcortical systems,
and other regions, especially the superior temporal gyrus, may
show volume and network alterations after sound therapy.
This study will help provide deeper insight into the changes
in the brain after long-term treatment for tinnitus from a
neuroanatomical perspective.

MATERIALS AND METHODS

Participants
All patients and healthy volunteers were recruited in our
institution. In this study, 33 patients with idiopathic tinnitus
were enrolled. The tinnitus sound was described as a persistent,
high-pitched sound in both ears. The inclusion criteria and the
exclusion criteria included were the same as our previous study
(Han et al., 2019a,b). The characteristics of the subjects are
presented in Table 1.

This research involved human participants. All authors have
declared that this research was approved by the Institutional
Review Board (IRB). This study was approved by the ethics
committees of our research institution (Beijing Friendship
Hospital, Capital Medical University, 2016-P2-012). Written
informed consent was obtained from all study subjects.

Sound Therapy and Clinical Evaluation
First, to characterize the tinnitus and prepare for treatment, the
audiologists in our group examined all the patients for tinnitus
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TABLE 1 | Demographic and clinical characteristics of participants.

Characteristics Tinnitus patients Tinnitus patients Healthy controls Healthy controls P-value
(baseline, n = 33) (24th week, n = 33) (baseline, n = 26) (24th week, n = 26)

Age (years, x̄ ± s) 48.2 ± 12.4 47.3 ± 9.6 0.745a

Gender (male/female) 23/10 15/11 >0.99b

Handedness 33 right-handed 26 right-handed >0.99a

Tinnitus duration (months) ≥6 and ≤48 NA NA
Tinnitus pitch 250–8,000 Hz NA
THI score 52.5 ± 44.3 37.3 ± 20.9 NA NA 0.011c

4THI score 15.3 ± 32.8 NA NA NA NA
Normal hearing All All NA

Data are presented as mean ± standard deviation for all variables except gender. THI, Tinnitus Handicap Inventory. 1THI, THIpre − THIpost. NA, not applicable. aTwo-sample t-tests.
bChi-square test. cPaired-samples t-tests.

loudness matching, pitch matching, minimum masking level,
and residual inhibition. Then, we applied narrowband-noise
(that was used for treatment) to treat tinnitus for 24 weeks,
20 min each time, three times per day. For each tinnitus patient,
the loudness of sound for treatment was set as L + 5 dB. The
frequency was set as a 1 kHz narrowband when setting Tf as the
middle point of the delivered sound (Tf ± 0.5 kHz; for example,
Tf = 4 kHz, low sound cut = 3.5 kHz, high sound cut = 4.5 kHz).

We used the Tinnitus Handicap Inventory (THI) scores to
assess the severity of tinnitus before and after treatment. In our
study, consistent with prior research, a reduction in THI scores
to 16 points or a reduction of 17 points or more was considered
an effective treatment (Zeman et al., 2011). The HC group was
not given any kind of sound during the study.

Data Acquisition and Data Preprocessing
For each patient, to evaluate the change in brain activity under
treatment, structural MRI data were collected at baseline and the
end of therapy (24th week). The HC group was also scanned
at baseline as well as at the 24th week. Images were obtained
using a 3.0T MRI system (Prisma, Siemens, Erlangen, Germany)
with a 64-channel phase-array head coil. During the scanning
process, we used tight but comfortable foam padding tominimize
head motion and earplugs to reduce scanner noise. Using a
3D magnetization-prepared rapid gradient-echo sequence (MP-
RAGE), we obtained high-resolution three-dimensional (3D)
structural T1-weighted images. The parameters were as follows:
repetition time (TR) = 2,530 ms, echo time (TE) = 2.98 ms,
inversion time (TI) = 1,100 ms, FA = 7◦, number of slices = 192,
slice thickness = 1 mm, bandwidth = 240 Hz/Px, field of view
(FOV) = 256 mm × 256 mm, and matrix = 256 × 256, resulting
in an isotropic voxel size of 1 mm× 1 mm× 1 mm.

Image preprocessing was performed with the VBM8 toolbox
in the Statistical Parametric Mapping (SPM) software package
(version 12)1. SPM 12 was installed in MATLAB 2016a
(Math Works, Natick, MA, USA). The procedures for image
preprocessing were the same as our previous research (Liu
et al., 2018). Briefly, the normalized GM and white matter
components were modulated to generate the relative gray
matter volume (GMV) and white matter volume (WMV) by
multiplying by the nonlinear part of the deformation field at the
Diffeomorphic Anatomical Registration through Exponentiated

1https://www.fil.ion.ucl.ac.uk/spm

Lie algebra (DARTEL) step. Only the GM images were analyzed
in this study. The modulated GM images were smoothed with a
6 mm full width at half maximum (FWHM) isotropic Gaussian
kernel. Finally, the smoothed GM images were resampled to a
3 mm× 3 mm× 3 mm voxel size for statistical analysis.

Construction of SCNs
In this study, GM volume served as the morphological measure,
and Pearson correlation was used to compute structural
covariance. First, VBM8 software was used for structural image
segmentation. We put GM volume maps of patients before and
after treatment in one folder and maps from HCs in another
folder. The GM volume value was extracted using DPABI
software2. Second, the automated anatomical labeling (AAL)
atlas was used to divide the whole brain into 90 cortical and
subcortical regions of interest (Tzourio-Mazoyer et al., 2002),
and each was considered a network node. Edges were defined as
the Pearson Correlation coefficients of GMV of different brain
regions. Last, we used the Brain Connectivity Toolbox software
(Rubinov and Sporns, 2010) to construct SCNs in MATLAB
version R2017a.

SCN Analysis
We used binarized graphs to calculate global properties and local
properties and calculate the area under the curve (AUC) for each
property over the sparsity range. The global property was defined
as the average inverse of the characteristic path length (Bullmore
and Sporns, 2009). The global properties included the clustering
coefficient, global efficiency, small-world properties, and shortest
path length. Local (nodal) structural alterations were evaluated
based on the local efficiency, degree centrality, and betweenness
centrality of each region (Fortanier et al., 2019). Nodal efficiency
measured the global efficiency of parallel information transfer
in a network. Degree centrality is the number of nodes directly
connected to the node, which measures the importance of a
single node in the network. Betweenness centrality examines the
contribution of each node to the shortest path between all other
pairs of points (Ravasz and Barabasi, 2003). The degree centrality
and betweenness centrality of nodes reflect the importance of
nodes in information transfer.

2http://rfmri.org/dpabi
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Statistical Analysis
Demographic data were compared through two-sample t-tests
and paired two-sample t-tests using SPSS 19.0 software (SPSS,
Inc., Chicago, IL, USA). P values < 0.05 were considered
statistically significant. Longitudinal changes in the THI score
were also analyzed by using paired two-sample t-tests.

For VBM data, to determine the group × time interaction
effect between the two groups and the two scans, the main effects
of group (the tinnitus patient group and the HC group) and
time (baseline and 24-week follow-up period), two-way mixed
model analysis of variance (ANOVA) and post hoc analyses were
performed. An F-value of VBM analysis and a P-value of SCN
analysis less than 0.05 were considered statistically significant
[false discovery rate (FDR) corrected]. In post hoc analyses,
Student-Newman-Keuls (SNK) tests were used for pairwise
comparisons. To prove our hypothesis, Pearson’s correlation
analyses were further conducted to investigate the relationship
between the change in GM volume and 24 weeks of sound
therapy (4THI score = THIpre − THIpost). P < 0.05 was set
as the threshold to determine significance. The GM volume
results were visualized with BrainNet Viewer3 (Xia et al.,
2013). Pearson’s correlation analysis was performed using
SPSS 19 software (SPSS, Inc., Chicago, IL, USA) between the
THI scores.

For SCNs, we used two-sample t-tests to construct a network
of patients with tinnitus (baseline and after 24-week treatment)
and a healthy group (baseline and after 24-week scan). Then, the
graph theory index of the covariant brain network was calculated,
and a permutation test (1,000 times) was performed on the graph
theory index of the two groups. We applied an FDR of 5% to
adjust for the multiple comparisons of mean local and global
efficiency across the between-group contrasts before and after
24 weeks of treatment.

RESULTS

Demographics and Behaviors of Study
Participants
In this study, we enrolled 33 patients with idiopathic tinnitus,
and we applied VBM to analyze the GM volume and network
changes in the brain in this group before and after sound therapy.
Concurrently, 26 HC individuals were enrolled. Each group of
subjects was age-, sex-, and handedness-matched (Table 1). THI
scores were acquired before and after sound therapy. In the data
preprocessing step, none of the subjects were excluded according
to the head motion criteria. Significant longitudinal decreases in
THI scores were observed. The results are summarized inTable 1.

Statistical Analysis Results
Brain Structural Changes Between the Patient Group
and HC Group at Baseline and Either After Treatment
or 24 Weeks, Respectively, and Between the Patients
Before and After Treatment
As shown in Figure 1 and Table 2, statistical analysis results
demonstrated significant differences in GM volume among

3http://www.nitrc.org/projects/bnv/

the tinnitus patients before sound therapy (baseline), tinnitus
patients after sound therapy (24 weeks), HC individuals at
baseline, and HC individuals after 24 weeks. These brain regions
included the right parahippocampus gyrus, right caudate, left
superior temporal gyrus, left cuneus gyrus, and right calcarine
gyrus (without multiple corrections).

Compared to participants in the HC baseline group and HC
24-week group, significantly decreased GM volume was found
in the right parahippocampus gyrus, right caudate, left superior
temporal gyrus, left cuneus gyrus, and right calcarine gyrus of the
participants in the tinnitus baseline group (Table 2 and Figure 2).

Compared with the tinnitus baseline group, the 24-week
sound therapy tinnitus group demonstrated a significantly higher
GM volume in all of the regions mentioned above. Compared
with the GM in the HC baseline group, the GM in the HC
24-week group did not reach statistical significance in these brain
regions (Table 2 and Figure 2).

Compared with the HC baseline group and the HC 24-week
group, the tinnitus sound therapy group demonstrated slightly
lower GM volume in the right calcarine gyrus and left cuneus
gyrus and slightly higher volume in the right caudate and left
superior temporal gyrus; however, these differences did not reach
statistical significance (Table 2 and Figure 2).

SCN Changes Between the Patient and HC Groups at
Baseline and Either After Treatment or After
24 Weeks, Respectively, and Between Patients
Before and After Treatment
Structural covariance, a measure of structural brain connectivity,
was measured between all pairs of cortical regions. We calculated
the AUC for each network metric, and the AUC provided
a summarized scalar for the topological characterization of
brain networks. The results showed that there was statistical
significance in 12 brain regions (Table 3 and Figure 3), including
nonauditory-related and auditory-related brain regions, such
as the bilateral rolandic operculum and left superior temporal
gyrus, and all 12 regions combined. The left superior temporal
gyrus and left rolandic operculum were significantly different in
nodal efficiency, nodal degree centrality, and nodal betweenness
centrality after FDR correction (Table 3 and Figure 4).
Combining the above results, we found that only the left superior
temporal gyrus showed significant differences in GM volume
and SCNs.

Correlation
The decreased THI score and GM volume change between these
five brain regions were not correlated.

DISCUSSION

This is a meaningful longitudinal investigation. We observe
the changes in GM volume and SCNs in tinnitus patients at
baseline and after 24 weeks of sound therapy. In this study, we
found that tinnitus patients had structural changes in the brain
after treatment. Anatomical changes in the brain were found
in patients before and after sound therapy, mainly in the right
parahippocampus gyrus, right caudate left superior temporal
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FIGURE 1 | Analysis of variance (ANOVA) differences in gray matter volume (GMV) changed among patients at baseline, patients after 24 weeks of sound
treatment, healthy controls (HCs) at baseline, and HCs after 24 weeks (P < 0.05; L, left; R, right). The results showed differences in gray matter (GM) volume in the
right parahippocampus gyrus, right caudate, left superior temporal gyrus, left cuneus gyrus, and right calcarine gyrus, which is shown in red. L, left; R, right.

TABLE 2 | Regions showed a significant difference in volumes between idiopathic tinnitus patients before and after 24 weeks of sound therapy and the controls.

Brain regions Peak location Peak F-score Voxel numbers

x y z

Parahippocampus gyrus R 25 −18 −25 29.62 541
Caudate R 16 7 14 20.04 438
Superior temporal gyrus L −47 −23 8 15.15 117
Cuneus gyrus L 0 −77 22 15.96 371
Calcarine gyrus R 14 −88 6 20.57 441

gyrus left cuneus gyrus, and right calcarine gyrus. The results
of the SCNs provided crucial information for understanding the
network interactions between the whole brain and therapy in
tinnitus. To a certain extent, these brain regions can be used as
neurobiological targets for tinnitus treatment.

Nonauditory-Related Structural Brain
Alterations and the Network Performance
Between Patients and HCs and Between
Patients Before and After Sound Therapy
We observed a significant increase in GM volume in the right
parahippocampus gyrus, right caudate, left cuneus gyrus, and

right calcarine gyrus in the patients after treatment compared
with baseline. The parahippocampal gyrus is regarded to be
critical to emotional processing and auditory information storage
in tinnitus patients; therefore, some studies have noticed that
the parahippocampal gyrus is related to perception in tinnitus
patients (Leaver et al., 2016; Vanneste and De Ridder, 2016).
A previous GM study found two major group differences
that decreased cortical thickness in the left parahippocampal
gyrus in patients with severe tinnitus (Schmidt et al., 2018).
Our results showed that compared with the tinnitus baseline
group, the 24-week sound therapy group demonstrated a
significantly higher GM volume in the parahippocampal gyrus.
This result showed that after a long period of treatment, the
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FIGURE 2 | The post hoc analysis showed that the GMV changed among the baseline, 24-week sound treatment, HC baseline, and HC 24-week groups.
Compared with the tinnitus baseline group, the 24-week sound therapy tinnitus group demonstrated a significantly higher GM volume in all of the regions as this
figure (*P < 0.05, **P < 0.01, ***P < 0.001), compared with the tinnitus baseline group, the HC health baseline group and the 24-week HC group demonstrated a
significantly higher GM volume in all of the regions as this figure (*P < 0.05, **P < 0.01, ***P < 0.001). The P-values are not corrected for multiple comparisons.

TABLE 3 | Regions showed a significant difference in network (P < 0.05, FDR corrected, 1,000 permutations).

Characteristics AAL P-value AAL P-value
Brain regions Brain regions

Nodal Efficiency 5_Frontal_Sup_Orb_L 0.001 17_Rolandic_Oper_L 0.000a

18_Rolandic_Oper_R 0.002 44_Calcarine_R 0.024
46_Cuneus_R 0.029 48_Lingual_R 0.049

53_Occipital_Inf_L 0.01 81_Temporal_Sup_L 0.000a

83_Temporal_Pole_Sup_L 0.023 84_Temporal_Pole_Sup_R 0.005
89_Temporal_Inf_L 0.028 90_Temporal_Inf_R 0.043

Nodal DC 5_Frontal_Sup_Orb_L 0.001 17_Rolandic_Oper_L 0.000a

18_Rolandic_Oper_R 0.002 44_Calcarine_R 0.024
46_Cuneus_R 0.029 48_Lingual_R 0.049

53_Occipital_Inf_L 0.023 81_Temporal_Sup_L 0.000a

83_Temporal_Pole_Sup_L 0.023 84_Temporal_Pole_Sup_R 0.005
89_Temporal_Inf_L 0.028 90_Temporal_Inf_R 0.043

Nodal BC 5_Frontal_Sup_Orb_L 0.001 17_Rolandic_Oper_L 0.000a

18_Rolandic_Oper_R 0.002 44_Calcarine_R 0.024
46_Cuneus_R 0.029 48_Lingual_R 0.049

53_Occipital_Inf_L 0.01 81_Temporal_Sup_L 0.000a

83_Temporal_Pole_Sup_L 0.023 84_Temporal_Pole_Sup_R 0.005
89_Temporal_Inf_L 0.028 90_Temporal_Inf_R 0.043

aFDR corrected; DC, degree Centrality; BC, betweenness centrality.

hearing information storage and emotion of tinnitus patients
had a certain degree of recovery. The calcarine gyrus is an
important part of the primary visual cortex and the main
relay station for transmitting retinal signals; thus, changes
in the calcarine gyrus may result from patients attending

to phantom auditory sensations and having the visual areas
contemporaneously activated (Zhou et al., 2019). Our previous
research has also shown that the local activity and functional
connectivity of the primary auditory cortex were enhanced
(Lv et al., 2020).
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FIGURE 3 | Twelve brain regions reached statistical significance in nodal efficiency and nodal betweenness centrality of the automated anatomical labeling
(AAL)-90 structural covariance network (SCN) in patients before and after treatment, in HCs at baseline, and in HCs after 24 weeks (red ball, P < 0.05). The results
were produced using permutation testing and visualized using the BrainNet Viewer (NKLCNL, Beijing Normal University). Three-dimensional representations (left:
lateral and medial view of the left hemisphere; center: dorsal view; right: lateral and medial view of the right hemisphere) show between-group differences in nodal
efficiency, degree centrality, and nodal betweenness centrality, according to their centroid stereotaxic coordinates. A list of anatomical labels for the nodes is in
Table 3.

FIGURE 4 | The left superior temporal gyrus and left rolandic operculum were significantly different in nodal efficiency, nodal degree centrality, and nodal
betweenness centrality after FDR correction (blue ball, P < 0.05).

In the SCN results, we found that there was a significant
difference in the rolandic operculum of nodal efficiency, degree
centrality, and betweenness centrality. A study speculated that
overactivity in the rolandic operculum was associated with
middle ear proprioception, and changes in this brain region
may suggest that tinnitus could arise as a proprioceptive illusion
associated with widespread emotional and somatosensory
dysfunction (Job et al., 2012). Our results further confirm
this inference. Although these SCN changes may not be as
significant as functional changes, the results also reflect the

efficacy of sound therapy in local network properties to a
certain extent.

Auditory-Related Brain Structural
Alterations and the Network Performance
Between Patients and HCs and Between
Patients Before and After Sound Therapy
The auditory cortex can be divided into the primary auditory
cortex, secondary auditory cortex, and auditory association
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cortex. Our results indicated increased GM volume in the left
superior temporal gyrus, which is the auditory network, mainly
overlapping with the auditory association cortex. The abnormal
parts of the auditory cortex of tinnitus patients, mainly the
auditory association cortex, are relatively sensitive compared to
other parts (Chen et al., 2014; Zhang et al., 2015; Lv et al., 2016a).
The left superior temporal gyrus in degree centrality reached a
significant difference, indicating the importance of a single node
(left superior temporal gyrus) in the network.

Regarding the morphological and functional changes
associated with tinnitus, most previous studies and our recent
research have focused on functional aspects (Minami et al.,
2018). In this study, the 24-week treatment group showed
high levels of auditory-related GM volume, but the tinnitus
baseline group showed less auditory-related GM volume, which
suggests that the associations between networks defined as
being within the auditory-related network architecture were
generally stronger in the 24-week treatment group. Previous
studies have mentioned functional issues but performed fewer
structural analyses (Han et al., 2019b; Berlot et al., 2020). There
are structural changes in tinnitus patients, and these structural
changes will affect structure after treatment (Cheng et al.,
2020); therefore, it is necessary to pay more attention to the
structural changes associated with tinnitus patients. The results
of this study are important supplements for original research.
Therefore, whether in VBM or SCN analyses, the superior
temporal gyrus can be used as one of the important structural
brain areas to measure the effect of tinnitus treatment.

Compared with previous research on tinnitus, in this
study, the aforementioned brain regions could represent new
neuroanatomical features of patients with tinnitus. In particular,
the superior temporal gyrus, whether in VBM or SCN analyses,
can be used as an important structural brain area to measure
the effect of tinnitus treatment. Accordingly, combined VBM
and SCN analyses can provide novel tools to examine complex
network properties of the intact and diseased brain. The two
modalities are complementary.

A suitable treatment method and the correct treatment time
are the keys to achieving curative effects. In our study, we applied
narrow band noise sound therapy with a relatively long treatment
time and a relatively better treatment effect. A previous study
with the Heidelberg model of music therapy analyzed the average
treatment time to be approximately 2 weeks (Krick et al., 2015)
and foundGMvolume changes in the precuneus, medial superior
frontal areas, and auditory cortex. The analysis in our study was
performed for 6 months of treatment with narrowband-noise
sound therapy. The morphological changes that may be found
are different from those of previous studies, which is supported
by our results. However, for different results, we should consider
different opinions, which will help to obtain a balanced view of
our research.

Limitations
There are several limitations to this study. First, the current
study is an exploratory study with microstructure changes in
GM, and it is difficult to obtain a significant result with small
sample size. Therefore, a threshold of p < 0.001 (uncorrected

for multiple comparisons) was applied in the condition group
comparisons based on the stringency of the group contrasts used
in this study. In contrast to functional changes, it is difficult
for the microstructure itself to change significantly within a
relatively short period. Therefore, we believe that this result can
explain the corresponding scientific problem to a certain extent.
Further studies should also include a larger sample size to avoid
these problems. Second, there have been some studies that have
applied VBM to further explore the characteristics of tinnitus,
but the reported results are not completely consistent. Maybe
the methodological differences lead to heterogeneous results
(Scott-Wittenborn et al., 2017). We should further pay attention
to heterogeneity in future studies. Third, the tinnitus patients
included in this study did not have significant hearing loss. Last,
SCNs have been evaluated concerning other clinical diseases, but
there are few studies on tinnitus, so we should perform more
in-depth research in the future.

CONCLUSION

This study analyzed the anatomical changes in tinnitus patients
before and after treatment for 6 months. The effect of sound
therapy included alterations in brain volume, especially in
the left superior temporal lobe. Combined VBM and SCNs
can potentially provide us with a better understanding of the
neuroanatomical and pathophysiological mechanisms before and
after sound therapy in tinnitus patients. Sound therapy had a
normalizing effect on tinnitus patients.
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