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Radiomics-guided deep neural networks stratify
lung adenocarcinoma prognosis from CT scans
Hwan-ho Cho 1,2, Ho Yun Lee 3,4✉, Eunjin Kim1,2, Geewon Lee5, Jonghoon Kim1, Junmo Kwon1,2 &

Hyunjin Park 2,6✉

Deep learning (DL) is a breakthrough technology for medical imaging with high sample size

requirements and interpretability issues. Using a pretrained DL model through a radiomics-

guided approach, we propose a methodology for stratifying the prognosis of lung adeno-

carcinomas based on pretreatment CT. Our approach allows us to apply DL with smaller

sample size requirements and enhanced interpretability. Baseline radiomics and DL models

for the prognosis of lung adenocarcinomas were developed and tested using local (n= 617)

cohort. The DL models were further tested in an external validation (n= 70) cohort. The local

cohort was divided into training and test cohorts. A radiomics risk score (RRS) was developed

using Cox-LASSO. Three pretrained DL networks derived from natural images were used to

extract the DL features. The features were further guided using radiomics by retaining those

DL features whose correlations with the radiomics features were high and Bonferroni-

corrected p-values were low. The retained DL features were subject to a Cox-LASSO when

constructing DL risk scores (DRS). The risk groups stratified by the RRS and DRS showed a

significant difference in training, testing, and validation cohorts. The DL features were

interpreted using existing radiomics features, and the texture features explained the DL

features well.
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Lung adenocarcinoma is one of the most common cancers,
and because it can lead to vastly different clinical outcomes,
a proper stratification of its prognosis is critical1. Lung

adenocarcinoma is divided into low, intermediate, and high-grade
prognostic groups according to the most predominant pattern
evaluated by histopathology, not in vivo imaging1–4. However,
even among lung adenocarcinomas with the same most pre-
dominant pattern, the spectrum of actual prognosis varies
widely3,5–7. The presence of any high-grade pattern such as a
micropapillary and solid pattern is known to have a poor prog-
nosis regardless of the predominant pattern6,8,9. A proper stra-
tification of prognosis for operable lung cancer allows us to
prevent local treatment failure by finding high-risk patients who
cannot be fully treated with standard management10–13. It will
lead to pursuing more aggressive treatments such as adjuvant
treatment or open thoracotomy for those high-risk patients.
Imaging, particularly computed tomography (CT), has been
widely used for the prognosis of lung adenocarcinoma using
semantic features, such as shape, size, and margin derived from
expert knowledge. Recent studies adopted approaches based on
radiomics to assess the risk of various types of cancer14,15. In
particular, the efficacy of radiomics analysis on lung cancer using
routine clinical imaging such as CT and PET has been demon-
strated in many studies16–21. Some studies successfully showed
that prognostic models based on radiomics are feasible in lung
cancer22–25. In radiomics, imaging data are transformed into
high-dimensional features, and tumors are quantified with such
features typically focusing on intra-tumoral heterogeneity or
tumor appearance26–31. Radiomics can effectively decode tumor
properties associated with treatment response, prognosis, and
diagnosis26–31. Furthermore, radiogenomics, a method for inte-
grating two types of high-dimensional information, one from
imaging and the other from genomics, can lead to a compre-
hensive interpretation of the tumor32–34. Radiomics mostly
adopts features that are mathematically or semantically defined
and hence are referred to as handcrafted features based on expert
knowledge. Even if many radiomics features are present, abstract
information from imaging data that are not properly modeled
using our current semantic knowledge could remain
uncovered14,35.

A branch of artificial intelligence known as deep learning (DL)
has recently made a meaningful impact on medical imaging,
propelled by advances in computing hardware, algorithms, and
big data36. In non-medical imaging fields using natural images,
the performance of DL algorithms has routinely exceeded that of
humans37,38. Such advances are less common in the medical
imaging field because the number of imaging data and the
associated annotations are far scarcer than those in natural
images39. One way to circumvent the issue of the sample size is to
adopt DL networks pretrained from natural images40,41. The
burden of the sample size is decreased because we can simply
apply or fine-tune the pretrained model using fewer samples as
compared to developing a DL network from scratch. Especially,
DL networks trained to recognize objects in natural images can be
effectively applied to medical imaging because abstract high-level
information is common between natural and medical images42.
Another major drawback of DL is the difficulty of interpretation.
DL studies on lung cancer offered limited explanations using
gradient-weighted class activation mapping43–46. The approaches
highlight important regions contributing to the DL network and
have a weak link to the underlying biology. This issue becomes
more critical in medical imaging because the decisions of the
algorithms require well-rooted explanations for use in clinical
practice47. Features derived from DL models are difficult to
interpret and linking them to features that are more interpretable

such as handcrafted radiomics features could enhance the inter-
pretability of the DL models.

In this study, we aimed to propose a methodology that applies
pretrained DL models in a radiomics-guided manner and to
verify the proposed method by stratifying the prognosis of lung
adenocarcinoma. We hypothesize that the use of the pretrained
DL model and linkage with radiomics features allow us to explore
DL-derived features with smaller sample size requirements and
enhanced interpretability. A prognostic model was built using the
proposed approach for the training cohort and further validated
in an external cohort.

Results
Overall workflow. The overall workflow is shown in Fig. 1. We
studied 617 patients from a local cohort and 70 patients from an
external validation cohort in the public domain with lung ade-
nocarcinoma. Preoperative CT images were analyzed and survival
analysis was performed based on Cox’s proportional hazard
model with a few features. As a baseline, we computed radiomics
features and built a radiomics risk score (RRS). Three pretrained
DL networks were used as feature extractors and the extracted DL
features were subjected to correlation analysis with radiomics
features to retain important radiomics-guided features. The
selected features were used to build a DL risk score (DRS) for
each network. The DRS models were compared with RRS and
important DL features were interpreted with radiomics features.
Full details are provided in the “Methods”.

Baseline radiomics model for prognosis. The local cohort
(n= 617) was randomly divided into a 7:3 ratio and used as
training and test cohorts. ROI reproducibility in terms of Cohen’s
kappa was a mean (standard deviation [SD]) of 0.8916 (0.0416),
whereas feature reproducibility of the radiomics in terms of intra-
class correlation coefficient (ICC) of all features was a mean (SD)
of 0.9533 (0.0563). More details on the ICCs are in Supplementary
Data 1. Table 1 describes the RRS model for prognosis using the
selected features. The RRS model was built using one shape fea-
ture, three texture features, and one margin feature. The shape
feature was the maximum 2D diameter associated with T stage48.
Two of the texture features were from the gray-level co-occurrence
matrix (GLCM), and the other was from the gray-level size-zone
matrix (GLSZM). Autocorrelation of GLCM measures the fineness
and coarseness of texture, the informational measure of the cor-
relation of GLCM quantifies the complexity of intra-tumoral
heterogeneity, and large area emphasis of GLSZM measures the
distribution of large-sized clusters whose high value indicates a
greater coarseness in texture49. The marginal feature was the
skewness of the cumulative distribution function (CDF) slope
reflecting the degree of pathological invasiveness of tumor50.

Table 1 Radiomics risk score model for prognosis and the
associated radiomics features.

Category Feature Cox-LASSO
coefficient

Shape Maximum 2D dameter 0.1581
GLCM Autocorrelation 0.0409
GLCM IMC2 −0.0050
GLSZM Large area emphasis −0.0067
Margin CDF slope skewness 0.1930

GLCM gray-level co-occurrence matrix, GLSZM gray-level size-zone matrix, IMC informational
measure of correlation, CDF cumulative distribution function. The optimal penalty is the penalty
term of the Cox-LASSO model.
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Figure 2 shows a Kaplan–Meier plot using RRS for both
training and test cohorts. Survival analysis using baseline
radiomics was limited to the training and test cohorts where
the ROI was available. The risk group stratified by the RRS

showed a significant difference in both training and test cohorts.
We observed a hazard ratio (HR) of 4.1384 (95% confidence
interval (CI) 1.1940–8.9479), p-value of 0.0006, and Concordance
index (C-index) of 0.7459 for the training cohort, whereas an HR

Fig. 1 Overall workflow of the study. (a) Three major procedures used in this study. (b) Graphical description of DL feature selection guided by radiomics
used for prognosis.
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of 5.0566 (95% CI 1.5379–16.6263), p-value of 0.0180, and
C-index of 0.6837 were observed for the test cohort. Patients with
high-risk scores were candidates for close surveillance or adjuvant
therapy even in an early stage. The same criterion was applied to
both the local and validation cohorts.

Radiomics-guided pretrained DL model for prognosis.
Through the first stage of prognostic DL feature filtering, we
retained 30, 51, and 90 DL features with corresponding
Bonferroni-corrected p-values of 3.2 × 10−13, 5.9 × 10−13, and
1.2 × 10−13 for Yolo, DenseNet, and VGG, respectively. After the
Cox-LASSO feature selection, three, five, and five features

remained and were used to build DRS models for Yolo, Dense-
Net, and VGG, respectively. The performance of various
radiomics-guided DL models is shown in Table 2.

Table 3 describes the best DRS model (i.e., Yolo model) for
prognosis using the selected DL features, and Fig. 3 shows the
Kaplan–Meier plot using the DRS model for the training, test, and
validation cohorts. The risk group stratified by the DRS showed a
significant difference in all cohorts. We observed an HR 3.1728
(CI 1.4675–6.8596), p-value 0.0061, and C-index 0.7994 in the
training cohort, whereas an HR 7.6277 (CI 2.2870–25.4399),
p-value 0.0027, and C-index 0.7593 were observed in the test
cohort. In the external validation cohort (TCIA-Radiogenomics),
an HR 6.5362 (CI 2.1773–19.6213), p-value 0.0022, and C-index
0.7696 were observed. The risk stratification using the DRS in the
training and test cohorts was better than that using the RRS in
terms of the C-index, demonstrating the effectiveness of the DL
approach. DRS models using Dense and VGG networks are
shown in the supplementary document (Figs. S1, S2; Tables S1,
S2). Histogram plots of RRS/DRS for both risk groups are given
with median cut-off (Fig. S3).

Interpretation of the DL features with radiomics. During the
filtering procedure to identify the potential prognostic DL fea-
tures, we computed correlations of all possible pairs of DL and

Fig. 2 Kaplan–Meier plots of the baseline radiomics model. a Kaplan–Meier plot of training cohort, hazard ratio of 4.1384 (95% CI of 1.9140–8.9479),
p-value of 0.0006, C-index of 0.7459. b Kaplan–Meier plot of test cohort, hazard ratio of 5.0566 (95% CI of 1.5379–16.6263), p-value of 0.0180, and
C-index of 0.6837.

Table 2 Performance of various radiomics-guided DL
models.

Training

Hazard ratio (95% CI) p-value C-index

Radiomics 4.1384 (1.9140–8.9479) 0.0006 0.7459
Yolo 3.1728 (1.4675–6.8596) 0.0061 0.7994
DenseNet 4.4383 (2.0468–9.6241) 0.0003 0.7410
VGG 4.2454 (1.9658–9.1683) 0.0005 0.7660

Test
Hazard ratio (95% CI) p-value C-index

Radiomics 5.0566 (1.5379–16.6263) 0.0180 0.6837
Yolo 7.6277 (2.2870–25.4399) 0.0027 0.7593
DenseNet 5.3620 (1.7011–18.5774) 0.0116 0.7214
VGG 4.7060 (1.4333–15.4520) 0.0244 0.8009

Validation
Hazard ratio (95% CI) p-value C-index

Radiomics – – –
Yolo 6.5362 (2.1773–19.6213) 0.0022 0.7696
DenseNet 4.2277 (1.4800–12.0768) 0.0153 0.7112
VGG 3.5488 (1.2409–10.1494) 0.0362 0.6757

Table 3 DL (Yolo) risk score model for prognosis and the
associated DL features.

Feature Cox-LASSO coefficient

Yolo_Latent_1145 −0.0376
Yolo_Latent_1161 −0.0632
Yolo_Latent_22664 0.5524

The numbers appearing as the postfix of the feature names denote the index of the DL features.
The optimal penalty is the penalty term of the Cox-LASSO model.
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radiomics features. This allows us to interpret the selected DL
features in the context of radiomics features. Table 4 shows the
radiomics features associated with prognostic DL features and
their correlation. Yolo_Latent_1145 feature was significantly
(p < 0.05) correlated with 60 radiomics features. The numbers
appearing as the postfix of the feature names denote the index of
DL features. Among them, 14 radiomics features showed an

absolute correlation of over 0.4, and the inverse difference nor-
malized feature of GLCM was the most significantly correlated
(r=−0.5057). Yolo_Latent_1161 was significantly correlated
with 63 of the radiomics features, 17 of the radiomics features had
an absolute correlation of over 0.4, and the inverse difference of
GLCM was the most significantly correlated (r=−0.5743). In
addition, Yolo_Latent_22664 was significantly correlated with 54

Fig. 3 Kaplan–Meier plots of radiomics-guided DL (Yolo) model. a Kaplan–Meier plot of training cohort, hazard ratio of 3.1728 (95% CI of 1.4675–
6.8596), p-value of 0.0061, and C-index of 0.7994. b Kaplan–Meier plot of test cohort, hazard ratio of 7.6277 (95% CI of 2.2870–25.4399), p-value of
0.0027, and C-index of 0.7593. c Kaplan–Meier plot of validation cohort, hazard ratio of 6.5362 (95% CI of 2.1773–19.6213), p-value of 0.0022, and
C-index of 0.7696.
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radiomics features. Only one radiomics feature showed an abso-
lute correlation value of over 0.4 and the inverse difference of
GLCM was the most significantly correlated (r= 0.4009).

The first two DL features correlated with many handcrafted
radiomics features and thus we could interpret them as combined
features from the interpretable radiomics features. The first DL
feature, Yolo_Latent_1145, could be interpreted as a combination
of two histogram features, 10 texture features, and two marginal
features. All 14 features have mathematical definitions and hence
offer some degree of explanation. Especially, the texture features
are biologically rooted and offer a potential explanation of how
they are important. The inverse difference feature of GLCM
measures local homogeneity and was the most contributing
radiomics feature for Yolo_Latent_1145. The second DL feature,
Yolo_Latent_1161, can be interpreted as a combination of one

shape feature, two histogram features, 12 texture features, and
two marginal features. The largest portion (12 out of 17 features)
was from the texture feature similar to the first DL feature
confirming the importance of the texture features. The inverse
difference normalized feature of GLCM also measures local
homogeneity and was the most contributing radiomics feature for
Yolo_Latent_1161. The first two DL features (Yolo_Latent_1145
and Yolo_Latent_1161) have many common radiomics features
and most of the common ones belong to the texture features. The
texture features mostly reflect tumor heterogeneity and thus can
be biologically interpreted. In short, two prognostic DL features
largely depend on radiomics texture features related to the
heterogeneity of the tumor. The third DL feature, Yolo_La-
tent_22664, could be interpreted as a surrogate for one texture
feature, again confirming the importance of the texture features.
Yolo_latent_1145 and Yolo_Latent_1161 have negative contribu-
tions towards high risk (i.e., negative Cox-LASSO coefficients),
while Yolo_Latent_22664 has a positive contribution towards
high risk. This implies that the most related radiomics feature
such as the inverse difference normalized feature of GLCM could
have an opposite direction of correlation.

Figure 4 shows how each prognostic DL latent feature has
different proportion of associated radiomics features in five
categories for the three networks. Three DL networks provided
different features and after the Cox-LASSO procedure, different
sets of features were selected. Only the selected prognostic
features for each network were interpreted with radiomics
features in Fig. 4. The texture information (i.e., GLCM, GLSZM)
was dominant in all latent DL features. Histogram-based features
and margin features were also found in some latent DL features.
Shape features were the most scarce.

Discussion
In this study, we proposed a methodology using a pretrained DL
model in a radiomics-guided manner and found that our method
can explore DL features for the prognostication of lung adeno-
carcinomas, requiring a relatively smaller sample size and
enhancing interpretability. The radiomics-guided approach (i.e.,
DRS) outperformed the baseline radiomics approach (i.e., RRS)
demonstrating the effectiveness of the DL approach evaluated in
the training, test, and validation cohorts.

Proper prognosis stratification for operable lung cancer is
important because treatment options for lung adenocarcinoma
vary depending on the situation. For example, adenocarcinoma
with non-predominant micropapillary or solid component shows
aggressive behavior and may require adjuvant treatment after
resection13. Early lung cancers with nodal metastasis may not be
completely operated by the widely used video-assisted thoracic
surgery, and thus require open thoracotomy10–12. In sum, prog-
nosis stratification allows identifying high-risk patients that are
difficult to manage using conventional operations. Our results
show that prognosis stratification using preoperative imaging is
feasible by radiomics-guided DL approach.

In our study, the radiomics part is necessary for two aspects.
First, its main role is to guide the selection of DL features. We
retained DL features that showed significant correlations with
radiomics features that are interpretable. Our approach adopted
radiomics-guided DL features and thus is more interpretable than
using many DL features without selection. However, using many
DL features without radiomics guidance might lead to a better
survival prediction that is more difficult to interpret. Second, the
radiomics part serves as a baseline model for comparison.
Radiomics is a well-established analysis method using conven-
tional machine learning approaches and thus is a suitable choice
for comparison.

Table 4 DL (Yolo) risk score model for prognosis and the
associated DL features.

Prognostic DL
feature

Category Radiomics
feature

Correlation

Yolo_Latent_1145
Histogram Entropy 0.4559
Histogram Uniformity −0.4188
GLCM Difference

average
0.481

GLCM Difference
entropy

0.493

GLCM Inverse difference −0.5057
GLCM IDM −0.4893
GLCM IDMN −0.4025
GLCM IDN −0.4966
GLCM IMC2 0.4124
GLCM Inverse variance −0.493
GLCM Sum entropy 0.4148
GLSZM Zone percentage 0.4718
Margin CDF slope

skewness
−0.4467

Margin CDF slope
kurtosis

−0.432

Yolo_Latent_1161
Shape Maximum 2D

diameter
−0.4104

Histogram Entropy 0.5011
Histogram Uniformity −0.4517
GLCM Contrast 0.4523
GLCM Difference

average
0.5585

GLCM Difference
entropy

0.5581

GLCM Inverse difference −0.5742
GLCM IDM −0.5538
GLCM IDMN −0.4748
GLCM IDN −0.5743
GLCM IMC1 −0.4199
GLCM IMC2 0.4441
GLCM Inverse variance −0.5601
GLCM Sum entropy 0.4551
GLSZM Zone percentage 0.5417
Margin CDF slope

skewness
−0.4905

Margin CDF slope
kurtosis

−0.4665

Yolo_Latent_22664
GLCM IDN 0.4009

GLCM gray-level co-occurrence matrix, GLSZM gray-level size-zone matrix, IMC informational
measure of correlation.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02814-7

6 COMMUNICATIONS BIOLOGY |          (2021) 4:1286 | https://doi.org/10.1038/s42003-021-02814-7 | www.nature.com/commsbio

www.nature.com/commsbio


Fig. 4 Comparison of different proportions of radiomics features in five categories associated with the prognostic DL features for the three networks.
The five categories are shape (in blue), first-order (in orange), GLCM (in gray), GLSZM (in yellow), and margin (in light blue) categories. a Yolo network. b
DenseNet. c VGG.
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We observed the performances of our DL models with respect
to the different number of training samples in 100 sample
increments for the test and validation cohorts (Table 5). There
were no statistical differences between the subsampled and the
whole training sets for survival and death events. The same model
construction procedures were applied with fewer samples. The
C-index gradually increased as we employed more samples and
saturated after using 300 samples. The HR and p-value improved
as more samples were used as well. In particular, a significant
p-value was obtained for 200+ samples in the test cohort and a
significant p-value was obtained for 300+ samples in the vali-
dation cohort. These results might imply that a training sample of
300 or more could lead to sufficient model performance but
additional performance gain might be possible as we increase the
training sample size.

Our DL model adopted a 2.5D model, which considered three
consecutive axial slices centered at the tumor centroid, not a full
3D model where a full 3D CT spanning tens of slices is con-
sidered. Models based on the volumetric convolutions (i.e., 3D
models) require high computational power and memory owing to
a large number of parameters39–42. Because our model uses 2.5D
with only a few slices to consider, it has a lighter computational
burden. Still, 3D models can be more precise and provide a
comprehensive abstraction based on the information from the
entire 3D volume, although this requires a high sample size,
which limits their usage in medical imaging. One of our moti-
vations was to tackle the issue of the sample size, and thus the use
of the 2.5D model can be effective.

The DL features were derived from three well-known DL
networks with frozen weights (i.e., no optimization). Since we are
not finetuning the weights, we do not need many samples. Cor-
relation analysis between 78 radiomics features and tens of
thousands (or hundreds of thousands) features is performed to
filter prognostic DL features guided by radiomics. The correlation
analysis requires fewer samples than retraining a large capacity
(million or more weights) DL model. Thus, we believe our
approach contributes towards using fewer samples.

An interpretable model with a small sample size requirement
was possible through the proposed method, still, the wide CI of
HR may imply that the training sample size is not sufficient in
general. Our sample size of 617 for the local cohort might be on
the small side for natural images, but for medical imaging studies,
it is a fair number. We are not optimizing millions of weights as is
done in DL training. Instead, we are only optimizing a few
parameters as is typically done in conventional machine learning
studies. Existing radiomics and medical AI studies recommended
sample size to be at least five to ten times the selected features51.

Our representative DL risk model using Yolo have three features
and we have more than 100 samples per selected feature (local
cohort of n= 617 split into a train set of n= 432 and a test set of
n= 185). Still, the CI of the proposed model might decrease with
more samples.

We extracted latent variables (i.e., deep learning features) from
the last layer of each pretrained network. Previous studies used
the features of the layer, but they typically combined or con-
catenated the features with the radiomics feature without select-
ing prognostic features52–54. This leads to a lack of
interpretability. Moreover, the last layer tends to contain the most
abstract information and thus we believe the features from the
last layer would be good candidates to correlate with radiomics
features.

We used the last layer because it contains the most abstract
information. Still, important features could be present in the
intermediate layers. Performance of various radiomics-guided DL
models using features extracted from intermediate layers is
reported in the Supplement (Table S3). Our intention is not to
interpret the entire prediction process of DL networks. We
retained DL features correlated with radiomics in the final layer,
not all layers so that the few selected DL features become inter-
pretable. Since we chose a few correlated DL features, the ensuing
Cox model is a compact model that is less susceptible to over-
fitting compared to using many DL features.

During the step used to filter the potential prognostic DL
features correlated with radiomics features, we applied a thresh-
old of 0.4 for the correlation value, which led to retaining the top
5% associated features. We explored using other thresholds, and a
threshold value of 0.3 led to retaining 263 radiomics-associated
DL features, where the related DL model showed an HR 2.7019
(CI 1.2494–5.8432) with p-value 0.0197 for the training cohort, an
HR 7.6754 (CI 2.3150–25.4472) with p-value 0.0025 for the test
cohort, and an HR 4.0050 (CI 1.8806–15.6616) with p-value
0.0213 for the validation cohort. The threshold value of 0.5 led to
retaining seven radiomics-associated DL features, and the related
DL model showed an HR 3.2050 (CI 1.1413–6.9347) with p-value
0.0058 for the training cohort, an HR 7.2715 (CI 2.1746–24.3151)
with p-value 0.0036 for the test cohort, and an HR 5.4270 (CI
1.8806–15.6616) with p-value 0.0043 for the validation cohort.
Using threshold values of 0.3 and 0.5 brought about lower HRs
for the validation cohort than using the threshold value of 0.4. A
higher threshold (>0.5) led to no retaining of any of the DL
features. A lower threshold (<0.3) made the correlation too low,
which made the association with the radiomics features less
meaningful. As a result, we chose a threshold value of 0.4, which
retained the top 5% of the DL features.

Many studies successfully transferred pretrained DL networks
trained from natural images to medical imaging55. Various tasks
including tumor segmentation and response prediction were
possible in many different organs and imaging modalities. This is
mainly because the pretrained DL models rely heavily on con-
volutional neural networks that can extract a high-level abstrac-
tion from images. Such abstractions are common between natural
and medical images in contrast to low-level information (i.e.,
pixel intensity information) that is potentially different between
the two. Our study also confirmed that transferring the pretrained
DL networks was effective for analyzing lung adenocarcinoma.

In our baseline radiomics model, one shape feature, three
texture features, and one margin feature were identified in the
RRS (Table 1). Maximum 2D diameter, a shape feature, is well
known to be directly associated with the T stage reflecting the
tumor burden48. A higher maximum 2D diameter implied higher
RRS in our model. This was rather expected as larger tumors tend
to show a poor prognosis. Intra-tumoral coarseness and the
complexity of texture are also important in an RRS. In detail,

Table 5 Performance of DL (Yolo) risk model with respect to
the different number of training samples for the training and
validation cohorts.

Test

Number of samples Hazard ratio (95% CI) p-value C-index

Whole (n = 432) 7.6277 (2.2870–25.4399) 0.0027 0.7593
300 6.4256 (1.9081–21.6386) 0.0071 0.7950
200 4.0644 (1.2211–13.5284) 0.0478 0.6368
100 2.6913 (0.8064–8.9821) 0.1927 0.5988

Validation
Number of samples Hazard ratio (95% CI) p-value C-index
Whole (n = 432) 6.5362 (2.1773–19.6213) 0.0022 0.7696
300 3.9521 (1.3726–11.3794) 0.0228 0.7724
200 2.4826 (0.8542–7.2149) 0.1620 0.5135
100 2.2463 (0.8442–7.1475) 0.1686 0.5391
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autocorrelation of GLCM measures the degree of linear depen-
dency of elements in GLCM, informational measure of correla-
tion of GLCM reflects texture complexity correlated with the
intra-tumoral genomic heterogeneity, and large area emphasis of
GLSZM measures the distribution of large-sized clusters whose
high value indicate greater coarseness in texture, reflecting a
poorer differentiation in histopathology49. Finally, the skewness
of the CDF slope, the margin feature, is associated with the degree
of invasiveness in tumor and manifests the interaction between
the tumor and surrounding lung parenchyma50. In well-defined
tumors, negative skewness in CDF is likely due to a rapid change
in CDF. Higher skewness of the CDF slope led to a higher RRS in
our model, which implies that the prognosis is poor with ill-
defined tumors.

In the DRS model, we observed three prognostic DL features
(Table 4). Yolo_Latent_1145, Yolo_Latent_1161, and Yolo_La-
tent_22664 showed absolute correlation over 0.4 with 14, 17, and
one radiomics features, respectively. Each prognostic DL feature
is explainable as the combination of different handcrafted
radiomics features. Radiomics features reflecting texture were the
most dominant in all three DL features confirming the impor-
tance of texture in prognosis. Furthermore, the shape and margin
features, maximum 2D diameter and skewness of the CDF slope,
which were included in the RRS, were also reported as correlated
with the DL features. The prognostic DL features are multifaceted
reflecting texture, shape, and margin, and thus can be considered
novel abstract features obtainable through DL approaches. The
multifaceted nature of the DL feature might be the reason behind
the improved performance of the DRS as compared to RRS.

A recent study applied a shallow 3D convolutional neural
network to predict the prognosis of lung cancer patients using
multi-institutional CT datasets56. To the best of our knowledge,
this is the state-of-the-art DL model for lung adenocarcinoma
prognostication. This study also adopted a transfer-learning fra-
mework to build the prognostic model noted as LungNet. They
used five datasets (n= 307) and each dataset included data from
up to ten sites. Although multiple open-source and local datasets
were used to conduct the study, and non-imaging clinical features
were added, their prognostic performance was worse (C-index
0.74) than ours for the same dataset in our external validation
cohort (i.e., TCIA-Radiogenomics). Our model did not consider
clinical features and was trained using fewer imaging data but
showed better prognostic performance (C-index 0.77) for the
external validation cohort. One possible reason could be that a

simple 2.5D model is better suited than a more complex 3D
model with limited samples and guidance with radiomics features
retaining only informative DL features relevant to prognosis.

There are several limitations to our study. Our model adopted
a 2.5D model with a less computational burden. The 3D models
can be more precise and provide comprehensive abstraction from
the whole 3D volume, which requires further study. The demo-
graphic information between the local and external cohorts
showed significant differences in many aspects. This is partly due
to the healthcare environment in South Korea where routine lung
cancer screening is widely applied enabling early diagnosis lead-
ing to a better prognosis. We used a non-contrast CT for our
study, although there were imaging acquisition-related differences
between the two cohorts. The manufacturer and image acquisi-
tion parameters were not strictly controlled. This is mainly due to
the inherent constraints of the open-source datasets. Contrast CT
from the open-source dataset bears additional variations owing to
the difference in how the contrast agents are administered,
whereas non-contrast CT has the advantage of reflecting the
relationship between HU and tumor density/cellularity. Thus, we
chose the non-contrast CT. Future prospective studies controlling
for the imaging parameters are necessary to fully validate the
findings of our study. Label errors are widespread and the medical
field is no exception57. Our model predicted survival information
that contains censored data. Thus, not all death events were
modeled due to missing follow-up. Certain radiomics features
appeared in common analyzing the prognostic DL features. They
are good candidates to forcefully add to the RRS. However, this
makes the comparison among models unfair because all our
models were data-driven ones. Thus, we plan to explore this
option to incorporate important handcrafted features in the
future. Finally, our DL features were explained in terms of
handcrafted radiomics features. All radiomics features are defined
mathematically and hence interpretable in that sense; however,
only a fraction of them have explicit biological explanations. Such
explanations are more difficult for lung cancers because they are
surrounded by air, unlike many types of tumors in solid organs.
Thus, the explanations should consider the specific micro-
environment of lung cancers. Further studies exploring the bio-
logical rationale of radiomics features, possibly in the form of
radiogenomics, are necessary to advance this field.

Deep learning models can uncover high-level abstract infor-
mation for raw imaging data, but suffer from an increased sample
size and interpretability issues. Our approach using a pretrained
DL network in a radiomics-guided manner allowed us to explore
DL features with smaller sample size requirements and enhanced
interpretability. Our approach was only tested in the context of
lung adenocarcinoma, although it can be easily extended to other
cancer types in different organs. We adopted three representative
pretrained networks to extract DL features, but other pretrained
networks can be easily used as well.

In future work, studies using more samples are needed to see if
we can reduce the CI of the hazard ratio for more robust results.
We also need to adjust and fine-tune existing networks. Training
a new network with additional layers and interpreting the final
layer of the new network might lead to better performance. This
may lead to more efficient prognostic task-specific modeling.
Finally, this study focused on the interpretation of the latent
variables of the last layer. A more in-depth study of the inter-
mediate layers might lead to a comprehensive understanding of
the prediction processes of deep learning networks.

Methods
Patient cohorts and imaging collection. For the training and test cohorts, this
single-center prospective study was approved by the institutional review board of
Samsung Medical Center (SMC 2011-09-083), and informed consent was obtained

Table 6 Demographic information of study cohorts.

Local
(train/test)

Validation p-value

n 617 70
Age Mean (STD) 60.2172

(9.3683)
66.9714
(11.1797)

<0.0001

Sex 0.0443
Male 266 39
Female 351 31

Smoking
history

<0.0001

No 384 20
Yes 233 50

Follow-up
period (Month)

Mean (STD) 30.8035
(17.2336)

46.7595
(26.9758)

<0.0001

Death Event <0.0001
Death 37 14
Censored 580 56

STD standard deviation.
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from all patients. This study was conducted as a part of an ongoing prospective
clinical trial of early stage lung adenocarcinoma patients who underwent pre-
operative CT scans (NCT01482585) from January 2014 to July 2019 at Samsung
Medical Center (Seoul, Korea). We included patients who were scheduled to
undergo curative surgery. Patients with a history of previous radiation or che-
motherapy were excluded. The training cohort was used to identify a few DL
features correlated with radiomics features and compute coefficients of the prog-
nostic model in the selected DL features.

For the local cohort, CT images were obtained using a CT scanner (Somatom
Definition Flash; Siemens Healthcare, Forchheim, Germany) with the following
parameters: detector collimation of 0.625 mm, 120 kVp, 150–200 mA, and a
reconstruction interval 1 mm. Image data were reconstructed using a soft-tissue
algorithm for mediastinal window ranges and a bone algorithm for lung window
images. Table 6 shows the demographic information of the study cohorts.

The external validation cohort was collected from the Cancer Imaging Archive
(TCIA) non-small cell lung cancer (NSCLC) Radiogenomics dataset58–61. We
started with 211 patients and retained 70 patients based on the following inclusion
criteria: the availability of a preoperative non-contrast CT, diagnosis of
adenocarcinoma, and availability of survival outcome and demographic
information. The imaging parameters for an external validation cohort were as
follows: slice thickness of 0.625–3 mm (median of 1.5 mm), 80–140 kVp (mean 120
kVp), 124–699 mA (mean 220 mA).

Tumor region of interest. Images in the training and test cohorts (from local data)
were displayed in standard mediastinal (window width, 400 Hounsfield units (HU);
window level, 20 HU) and lung (window width, 1500 HU; window level, −700 HU)
windows. On serial axial CT images displayed at the lung window settings, the
region of interest (ROI) of the whole tumor was segmented by two chest radi-
ologists (HYL with 17 years of experience and GL with 13 years of experience)
using a semi-automated process. Two sets of ROIs were obtained. ROIs were drawn
on transverse CT scans at reconstruction intervals of 1 mm from the top to the
bottom of the tumor, thus covering the entire tumor. The tumor margin including
the ground glass component was defined as the ROI for the local cohort. The
reproducibility of the ROIs and radiomics features were assessed using Cohen’s
kappa and the ICC, respectively.

The tumor ROIs were not drawn on the external validation cohort because they
were used to evaluate the DL model, not the radiomics model. The validation
cohort was used to see if the developed radiomics-guided DL model showed
reasonable performance on the independent cohort.

Construction of baseline radiomics model for prognosis. Seventy-two radiomics
features were computed using the open-source software PyRadiomics49, and six
additional marginal features from our previous study50 were calculated using an in-
house code implemented in MATLAB (MathWorks, Natick, MA, USA) from the
first set of ROIs. A total of 78 radiomics features were calculated reflecting the
shape, intensity distribution, texture (GLCM and GLSZM), and margin char-
acteristics (slope of CDF of tumor intensity). Each feature was z-score normalized
based on the mean and standard deviation of the feature values of the training
cohort.

We adopted the Cox model regularized by the least absolute shrinkage and
selection operator (Cox-LASSO) in the training cohort to select radiomics features
to build the RRS model. The RRS integrates selected radiomics features to predict
patient risk and this term has been used in the previous studies14. Optimal
coefficients were found by nested 5-fold cross-validation and grid search process.
The RRS was defined as a relative risk at the initial time according to the following
equation:

RRSi ¼ h Xi; 0
� � ¼ h0ð0Þ � e

∑
n

j¼1
xij�βj

; ð1Þ

where h Xi; 0
� �

denotes the initial hazard of the ith patient whose feature vector is
Xi , xij denotes jth the prognostic feature of the ith patient, n denotes the number of
selected features, and βj denotes the corresponding Cox-LASSO coefficient of the
jth feature. h0ð0Þ is the constant output of the shared hazard function at the initial
time point. The same RRS model was applied to the test cohort fixing the model
parameters and using the feature values from the test cohort to obtain the RRS for
the test cohort.

Risk groups were stratified by applying the median RRS score of the training
cohort to both the training and test cohorts. Individuals whose risk scores were the
exact median were assigned to the low-risk group. Survival analysis was conducted
using a Kaplan–Meier plot and log-rank tests. The HR, p-value, and C-index were
measured.

Construction of radiomics-guided pretrained DL model for prognosis. Fig-
ure 1b shows a graphical description of selecting DL features guided by radiomics
for prognosis. CT images were cropped into 128x128x3-sized patches whose center
slice showed the largest spatial extent of the tumor in 2D. To extract abstract high-
level information of lung adenocarcinomas, the image patches were fed to the
pretrained You Only Look Once (Yolo) v362, Dense63, and VGG64 networks

without optimization (i.e., frozen weight). The DL feature extraction was imple-
mented using an open-source deep learning library, PyTorch65.

The Yolo v3 network consists of 107 convolutional layers and additional
detection layers. We used the output of the 107th layer, the last layer before the
detection layers, as the latent variables representing the DL features of the tumor
patch. A 128 × 128 × 3-sized patch led to an output of 255 × 16 × 16 (=65,280) DL
features. Additionally, we adopted 201-layered pretrained Dense and 19-layered
pretrained VGG networks. The final classifier stages of the pretrained networks
were removed so that the pre-trained networks could be used as feature extractors.
Because the minimum size of the input images for these two networks was
144 × 144 × 3, the image patch used for Yolo v3 was upsampled to 256 × 256 × 3.
The final classifiers were eliminated to be used as a feature extractor. As a result,
122,800 and 25,088 DL features were calculated for DenseNet and VGG,
respectively.

All DL features were z-score transformed to the normalized range before
conducting further processing. To filter the potential prognostic DL features, we
calculated the correlation of all possible pairs of DL features and radiomics features
and retained the DL features with absolute Pearson’s correlation of over 0.4 and
Bonferroni-corrected p-value less than 0.05 in the training cohort. We focused on
explaining a few important DL features in the final layer. Thus, we intended to
build a compact prognostic DL model by correlating DL features with radiomics
features. The chosen DL features were subjected to the same feature selection
approach of Cox-LASSO used to build the DRS model as Eq. (1). The same DRS
model was applied to the test and validation cohorts while fixing the model
parameters and by using the feature values from the test and validation cohorts to
obtain their DRS. The risk groups were stratified by applying the median DRS score
of the training cohort to the training, test, and validation cohorts.

Statistics and reproducibility. We used two-sample Student’s t tests to compare
continuous-valued information and Chi-square tests to compare categorized
information in the demographic table. To compare the risk groups, a log-rank test
was adopted. All statistical analyses were conducted using the Statistics and
Machine Learning Toolbox in MATLAB. Our code and model are available on
GitHub and Zenodo (https://github.com/Hwan-ho/RGDL)66. The reproducibility
of radiomics features was measured by calculating the ICC. Results of the survival
analysis were validated with open-source dataset (TCIA-Radiogenomics).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data of the external validation cohort are from The Cancer Imaging Archive (i.e., TCIA-
Radiogenomics) and they are open to the public (https://wiki.cancerimagingarchive.net/
display/Public/NSCLC+Radiogenomics). Data of the local cohort are from the Samsung
Medical Center (SMC) and available with permission from the IRB of SMC. The
permission is necessary due to the approved IRB restriction.

Code availability
Our software code is open (https://github.com/Hwan-ho/RGDL) with the following
(https://doi.org/10.5281/zenodo.5543280)66.
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