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Abstract

The purpose of this study was to evaluate the response of estrogen target cells to a series of

isoflavone glucosides and aglycones from Genista halacsyi Heldr. The methanolic extract of

aerial parts of this plant was processed using fast centrifugal partition chromatography,

resulting in isolation of four archetypal isoflavones (genistein, daidzein, isoprunetin, 8-C-β-

D-glucopyranosyl-genistein) and ten derivatives thereof. 7-O-β-D-glucopyranosyl-genistein

and 7,4΄-di-O-β-D-glucopyranosyl-genistein were among the most abundant constituents of

the isolate. All fourteen, except genistein, displayed low binding affinity for estrogen recep-

tors (ER). Models of binding to ERα could account for the low binding affinity of monogluco-

sides. Genistein and its glucosides displayed full efficacy in inducing alkaline phosphatase

(AlkP) in Ishikawa cells, proliferation of MCF-7 cells and ER-dependent gene expression in

reporter cells at low concentrations (around 0.3 μM). ICI182,780 fully antagonized these

effects. The AlkP-inducing efficacy of the fourteen isoflavonoids was more strongly corre-

lated with their transcriptional efficacy through ERα. O-monoglucosides displayed higher

area under the dose-response curve (AUC) of AlkP response relative to the AUC of ERα-

transcriptional response compared to the respective aglycones. In addition, 7-O-β-D-gluco-

pyranosyl-genistein and 7,4-di-O-β-D-glucopyranosyl-genistein displayed estradiol-like effi-

cacy in promoting differentiation of MC3T3-E1 cells to osteoblasts, while genistein was not

convincingly effective in this respect. Moreover, 7,4-di-O-β-D-glucopyranosyl-genistein sup-

pressed lipopolysaccharide-induced tumor necrosis factor mRNA expression in RAW 264.7

cells, while 7-O-β-D-glucopyranosyl-genistein was not convincingly effective and genistein

was ineffective. However, genistein and its O-glucosides were ineffective in inhibiting differ-

entiation of RAW 264.7 cells to osteoclasts and in protecting glutamate-challenged HT22

hippocampal neurons from oxidative stress-induced cell death. These findings suggest that
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7-O-β-D-glucopyranosyl-genistein and 7,4-di-O-β-D-glucopyranosyl-genistein display

higher estrogen-like and/or anti-inflammatory activity compared to the aglycone. The possi-

bility of using preparations rich in O-β-D-glucopyranosides of genistein to substitute for low-

dose estrogen in formulations for menopausal symptoms is discussed.

Introduction

Isoflavonoids have a limited distribution in the plant kingdom, occurring particularly in the

Papilionoideae subfamily of Fabaceae, and they are regarded as chemotaxonomic markers of

Genista L., a large genus of spiny and non-spiny shrubs that thrive mainly around the Mediter-

ranean [1,2]. Isoflavonoids are mostly found in plants as complex C-β-D- and O-β-D-gluco-

sides (hereafter simplified to C- and O-glucosides) [3]. Several isoflavone aglycones are known

to bind both isotypes of estrogen receptor, ERα and ERβ and often display biological activities

quite similar to 17β-estradiol (estradiol) [4–6]. ERα and ERβ are co-expressed in many estro-

gen target cells and are known to promote and inhibit, respectively, cell proliferation as well as

to regulate ER target gene transcription through ligand-induced hetero- and/or homo-dimer-

ization, with ERα playing a dominant role in heterodimer functionality [7–9]. Dietary O-glu-

cosides are thought to display estrogenic activity following hydrolytic release of aglycones in a

manner that depends on the glucosidase activity of intestinal lumina and microflora [10–12].

In line with this notion, low nanomolar concentrations of daidzein and genistein and trace

amounts of their glucosides, as compared to low micromolar levels of conjugates (mainly glu-

curonides and sulfates), were detected in the plasma of volunteers following consumption of

various soy products [13,14]. Likewise, levels of approx. 1 μM of conjugated genistein or daid-

zein were detected in the plasma of individuals after ingestion of 50 mg of the respective 7-O-

glucosides [15]. C-glycosylated isoflavonoids display a distribution in plants similar to that of

the other isoflavonoids. Daidzein and 8-C-glycosylated daidzein, for instance, are major com-

ponents of leguminous plants. They are metabolized to the highly estrogenic equol (4’,7-isofla-

vandiol) by human intestinal microflora, with low nanomolar concentrations of total equol

detected in e.g. breast tissue following ingestion of soy isoflavones [16,17]. In contrast to O-

glucosides, C-glucosides cross the intestinal lumina using glucose transporters and remain

metabolically stable in the circulation [12].

It has been observed that menopausal symptoms are less frequent among Asian women.

This has been associated with their isoflavone-rich soy-based diet and has led to the inference

that isoflavones could substitute for estrogen in treating the symptoms of menopause [18,19].

However, inconsistent clinical findings, cast doubt on the effectiveness of isoflavone-rich die-

tary products as alternatives to hormone therapy [18,19]. The inconsistencies could reflect the

fact that isoflavones are present in plants and plant extracts mostly in the form of various com-

plex glucosides, requiring intricate hydrolysis to release the aglycone and thus its bioavailabil-

ity [11,12]. Reports on the bioavailability of isoflavones ingested in aglycone and glucoside

form are conflicting. Izumi et al. [20] reported that isoflavone aglycones are absorbed faster

and in greater amounts than their glucosides, while others reported that their bioavailability in

glucoside form is similar [21] or even higher than their bioavailability as aglycones [22]. Isofla-

vone aglycones are known to cross plasma membrane by passive diffusion, predominantly

depending on their hydrophobicity and solubility in water, while glucosides are highly polar

entities that cannot cross plasma membrane [12]. Experiments with intestinal and non-intesti-

nal epithelial cells have shown that O-glucosides are predominantly substrates of β-glucosi-

dases rather than glucose transporters [23,24]. However, assessment of the biological activity
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of glucosides compared to aglycones using epithelial estrogen target cells yielded disparate

results. For instance, Morito et al. [25] reported that genistein stimulated MCF-7 cell prolifera-

tion less than its 7-O-glucoside, although the latter was transcriptionally less active than the

aglycone.

As part of our ongoing research for new phytoestrogens from Leguminous plants that form

part of the Mediterranean flora [26,27], we used fast centrifugal partition chromatography

(FCPC) [28], to isolate isoflavone aglycones and C- and O-glucosides from the methanolic

extract of aerial parts of Genista halacsyi Heldr., an endemic plant of Greece. Using many dif-

ferent estrogen-responsive cell lines, we assessed transcriptional, estrogenic, osteoblastic, anti-

osteoclastic, anti-inflammatory and neuroprotective activities of the isolated isoflavonoids.

Our findings suggest that low micromolar concentrations of genistein and its O-β-D-glucopyr-

anosides display similar estrogen-like activities compared to low levels of the hormone, indi-

cating that they might substitute for low-dose estrogen therapy of menopausal symptoms.

Materials and methods

General

Chemicals and reagents were from Merck (Darmstadt, Germany). Evaporation of solvents was

performed on a vacuum rotary evaporator (Rotavapor R-3000r, Buchi, Switzerland). FCPC

was carried out on a Kromaton instrument equipped with a 1000-ml column, adjustable rota-

tion of 200–2000 rpm and a preparative Laboratory Alliance pump with a pressure safety limit

of 50 bar. NMR spectra in MeOD were recorded at 400 and 600 MHz (Bruker Advance III 600

MHz and DRX 400). 2D NMR experiments, including correlation spectroscopy (COSY), het-

eronuclear single-quantum correlation (HSQC) and heteronuclear multiple-bond correlation

(HMBC) were performed using standard Bruker microprograms. Electrospray ionisation mass

spectrometry (ESI-MS) experiments were performed on a LTQ-Orbitrap XL hybrid mass spec-

trometer (Thermo-Scientific, Bremen, Germany). Analytical TLC was performed on Merck

Kieselgel 60 F254 or RP-8 F254 plates. Spots were visualized by UV light (254 and 365 nm) or by

spraying with sulfuric vanillin. The plates were then heated for 2 min at 110˚C. Preparative

TLC was conducted on PLC Silica gel 60 F254 plates (1 mm). The selected zones were scraped

and extracted with ethyl acetate to separate the corresponding compounds. Column chroma-

tography was performed on silica gel 70–230 mesh (63–200 μm). Size exclusion chromatogra-

phy was performed on Sephadex LH-20.

Plant material extraction and isolation

The aerial parts of Genista halacsyi (Fabaceae) were collected from Mount Parnon in the Pelo-

ponnese, Greece. The plant material was identified by Dr. E. Kalpoutzakis. A Voucher speci-

men has been deposited in the herbarium of the Laboratory of Pharmacognosy and Natural

Products Chemistry, Faculty of Pharmacy, University of Athens, Greece, under the number

KL121.

Dried pulverized aerial parts of Genista halacsyi (1.5 kg) were extracted exhaustively by

maceration using initially CH2Cl2 (3 x 2L) and then MeOH (3 x 2L). The solvents were

removed under reduced pressure to give 20.1 g of a crude CH2Cl2 extract and 34.2 g of MeOH

extract. The MeOH extract was submitted to fractionation using FCPC in a dual mode meth-

odology. Fourteen solvent systems (Table A in S1 File) were selected and evaluated for their

suitability for FCPC using a shaken tube test in combination with TLC. For the evaluation, a

small amount of the sample was thoroughly mixed in a vial with equal volumes of the upper

and lower phases of the solvent system to test and the solubility of the extract and the settling

time of the biphasic system were recorded. The systems that were considered suitable were
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then evaluated for the distribution of the components of the extract in the two phases. Equal

volumes of each phase were applied to a TLC plate and allowed to migrate in the presence of

the two-phase solvent system. Optimal systems are expected to give equal distribution of the

sample components between the two phases and Rf values of 0.2–0.5. This procedure showed

that the biphasic system EtOAc:EtOH:H2O of 10:1:10 was the most appropriate for the frac-

tionation of the MeOH extract of the aerial parts of Genista halacsyi. To proceed with FCPC, 6

L of this solvent system were prepared in a funnel and, after agitation, the phases were sepa-

rated. Initially, the column (total volume of 1L) was filled with stationary (aqueous) phase

using a flow rate of 20 ml/min and the revolution speed was set at 850 rpm. The extract (4.5 g)

was dissolved in 30 ml of the two phases and the resulting mixture was introduced into the col-

umn, while the organic phase was passed (flow rate 10 mL/min) through the stationary phase

in a tail to head or ascending mode. The effluent of the column was collected in 50 mL aliquots

and after TLC analysis eight fractions (A-H) were collected. The aqueous layer was then used

as mobile phase (flow rate 10 mL/min) in a head to tail or descending mode (reversed phase

elution) and four aliquot-combining fractions (I-M) were collected. Fraction A (250.8 mg),

containing several apolar flavonoids, as revealed by TLC analysis, was subjected to silica gel

chromatography using CH2Cl2/MeOH of increasing polarity as mobile phase. Preparative

TLC analysis of fractions A3 (20.1 mg) and A5 (24.8 mg), which were eluted with CH2Cl2/

MeOH 98/2, afforded biochanin A (1, 4.7 mg) and 8-methoxy-formononetin (2, 8.1 mg),

respectively. Furthermore, the A7 (6.9 mg) fraction, eluted with CH2Cl2/MeOH 95/5, was

identified as pure genistein (3, 6.9 mg), while the A8 fraction (28.9 mg), eluted with CH2Cl2/

MeOH 93/7, was chromatographed by preparative TLC and CH2Cl2/MeOH 90/10 as mobile

phase, resulting in isolation of isoprunetin (4, 6.1 mg), daidzein (5, 2.7 mg), 3-methoxyisopru-

netin (6, 2.5 mg) and 5-O-methylorobol (7, 3.9 mg). In addition, FCPC fractions D, F, H and

K yielded directly in pure form 8-C-glucopyranosyl-genistein (8, 30.4 mg), 8-C-glucopyrano-

syl-orobol (9, 22.8 mg), 7-O-glucopyranosyl-isoprunetin (10, 24.1 mg) and 7,4-di-O-glucopyr-

anosyl-genistein (11, 28.7 mg), respectively. Finally, 7-O-glucopyranosyl-genistein (12, 26.0

mg), 8-C-glucopyranosyl-3-O-methylorobol (13, 12.7 mg) and 8-C,4-O-diglucopyranosyl-

genistein (14, 7.9 mg) were isolated from fractions B (152.6 mg), E (124.5 mg) and L (110.2

mg), respectively, using Sephadex column chromatography. All compounds were identified by

means of spectral data (HRMS, 1H-NMR, 13C-NMR, COSY, HSQC, HMBC) and direct com-

parison with the respective literature data [29–33].

Cell culture

The mouse preosteoblast cell line ‘MC3T3-E1 subclone 4’, which is capable of differentiating

to mature mineralizing osteoblasts, was purchased from ATCC (ATCC CRL-2593). The cells

were cultured in alpha-MEM medium (GIBCO) supplemented with 10% FBS (Biosera), 100

units/ml penicillin and 100 μg/ml streptomycin (Biochrom). Cells were subcultured before

reaching confluence (approx. every 2 days). For differentiation to osteoblasts, MC3T3-E1 cells

were cultured with DMEM-low glucose medium (Sigma-Aldrich) supplemented with 3% FBS,

10mM beta-glycerophosphate (Sigma-Aldrich) and 50μg/ml ascorbic acid (Sigma-Aldrich).

RAW 264.7 mouse macrophages capable of differentiating to multinuclear osteoclasts were

purchased from ATCC (ATCC TIB-71). The cells were maintained in alpha-MEM medium

supplemented with 10% heat-inactivated ultra-low endotoxin FBS (Biosera), 100 units/ml pen-

icillin and 100 μg/ml streptomycin. Cells were subcultured before reaching confluence

(approx. every 2 days). For differentiation to osteoclasts, RAW 264.7 cells were cultured with

alpha-MEM medium and 50 ng/ml Receptor Activator of Nuclear Factor kappaB ligand

(RANKL, R&D Systems). ER-expressing HT22 neuronal cells were kindly provided by Dr
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David Schubert (The Salk Institute). The cells were maintained in Dulbecco’s Modified Eagles

Medium (DMEM) supplemented with 10% FBS at a confluence not greater than 50%. MCF-7

human breast adenocarcinoma cells (from ATCC) and Ishikawa human endometrial adeno-

carcinoma cells (from ECACC) were cultured as recommended by the suppliers. MDA-MB-

231 cells (ATCC) were cultured as already described [34]. MCF-7:D5L cells, a clone of MCF-7

cells stably transfected with an Estrogen Response Element (ERE)-endowed reporter plasmid

(pERE-Gl-Luciferase), were generated and cultured as previously described [26]. HEK:ERβ
cells, a clone of HEK-293 human embryonic kidney cells stably transfected with an expression

plasmid coding human ERβ and an ERE-endowed reporter plasmid (pERE-tk-Luciferase),

were generated and cultured as previously described [35]. Unless stated otherwise, cell culture

media were from Sigma-Aldrich and FBS from Invitrogen. Dextran-coated-charcoal-treated

FBS (DCC-FBS), i.e. FBS treated with 10% DCC to remove endogenous steroids, was prepared

as already described [36]. The effect of test compounds on the viability of plated cells was

assessed using Trypan blue as already described [34].

Cell differentiation

Differentiation of MC3T3-E1 cells to osteoblasts has been extensively used to screen for com-

pounds that may promote bone formation [37,38]. Differentiation of MC3T3-E1 cells was car-

ried out in 96-well plates using 3,300 cells per well and was assessed via induction of, i)

Alkaline Phosphatase (AlkP) activity after 6 days of treatment and, ii) mineralization of extra-

cellular matrix after 21 days of treatment. Briefly, 24 h after plating, the cells were incubated

with test compounds or vehicle i.e. the compound diluent (0.1% DMSO) and then exposed for

6 days to differentiation medium in presence or absence of differentiation factors (cf. Cell cul-

ture) with a change to fresh compounds and medium in 3 days. AlkP activity was assessed at

405 nm in a Safire II microplate reader using as substrate p-nitrophenyl-phosphate (pNPP,

Sigma-Aldrich) as already described [39]. Mineralization of MC3T3 cells was assessed by stain-

ing with Alizarin red (Fluka). Cells were cultured and treated as described above for 21 days,

with media and test compounds changed every 3 days, and calcium phosphate deposition was

assayed as described by Gregory et al. [40]. Briefly, the cells were washed twice with PBS and

fixed with 70% ethanol for 15 min on ice. The cells were stained with Alizarin red solution (40

mM, pH 4.2) for 30 min at room temperature, washed twice with distilled water and once with

PBS. The dye from the stained mineral deposits was extracted with 33% acetic acid and the

absorbance was measured at 405 nm using a Safire II microplate reader (Tecan).

Clones of RAW 264.7 cells competent to differentiate to multinuclear osteoclasts upon acti-

vation with RANKL provide valuable information on the regulation of osteoclast differentia-

tion [41]. Differentiation-competent RAW cells (ATCC TIB-71) were seeded in 96-well plates

at a density of 9,600 cells per well. The cells were plated in the presence of test compounds or

compound diluent (0.1% DMSO) and, 4 h after plating, were exposed for 3 days to 50 ng/ml

RANKL or to plain medium. Osteoclastic differentiation was assessed via induction of Tar-

trate-Resistant Acid Phosphatase (TRAP) activity. The cells were washed with PBS and incu-

bated with 25μl lysis buffer (0.4 M NaCl, 25 mM Hepes pH 7.7, 1.5 mM MgCl2, 0.2 mM

EDTA, 1% NP40) for 5 min on ice. Then, 25μl of assay solution (100 mM pNPP, 125 mM

Sodium Acetate pH 5.2, 1mM L(+) Tartrate) were added followed by incubation at 37 oC for

10 min and the absorbance was measured at 405 nm using a Safire II microplate reader.

Neuron glutamate toxicity

Glutamate-challenged HT22 cells suffer oxidative stress-induced cell death (oxytosis) within

24 h due to glutathione depletion and consequent massive accumulation of ROS [42]. The
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efficacy of test compounds to prevent oxytosis of HT22 cells was assessed as already described

[43]. Briefly, HT22 cells were plated in 96-well flat bottom plates at a density of 4,000 cells per

well in 100 μl of DMEM (low glucose) containing 2% FBS. 24 h after plating, the cells were

treated with test compounds or compound diluent (0.1% DMSO) and then challenged with 5

mM glutamate for 24 h. Relative numbers of viable cells were determined following conversion

of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT, Sigma-Aldrich) to

coloured formazan, with the difference in optical density at 550 and 690 nm taken as a measure

of viable cell number. Non-challenged cells served to assess test compound effects on cell via-

bility, whereas challenged cells served to assess the neuroprotective activity of test compounds.

Cell proliferation

Test compound effects on the proliferation of MCF-7 and MDA-MB-231 cells were assessed as

previously described [34]. Briefly, the cells were plated in 96-flat-bottom-well plates at a den-

sity of 8,000 cells per well in phenol-red-free MEM supplemented with 1 μg/mL insulin and

5% DCC-FBS. 24 h after plating, the cells were exposed for 72 h to 0.1 nM estradiol (Sigma-

Aldrich), test compounds or vehicle (� 0.2% DMSO), in the absence or presence of 1 μM of

the ER-degrader ICI182,780 (Tocris Bioscience), and viable cells were determined using MTT

as described above. The difference in optical density at 550 and 690 nm was taken as a measure

of the number of viable cells and used to derive the number of compound-treated cells relative

to that of vehicle-treated cells. Relative numbers of cells exposed to estradiol or to ICI182,780

acted as positive and negative control, respectively.

Estrogen receptor activities

Transcriptional activity. Assessment of ER/ERE-dependent luciferase gene transcription

in MCF-7:D5L (express ERα) and HEK:ERβ cells (express ERβ) and determination of ER tran-

scriptional agonism was carried as already described [44]. Briefly, the cells were plated in

96-well plates at a density of 12,000 cells per well in phenol-red-free MEM (MCF-7:D5L cells)

or phenol-red-free DMEM (HEK:ERβ cells) supplemented with 1 μg/mL insulin and 5%

DCC-FBS. Three days after plating, the cells were exposed for 18 h to 0.1 nM estradiol, to the

indicated concentrations of test compounds or to vehicle (�0.2% DMSO), in the absence or

presence of 1 μM ICI182,780, and luciferase expression was assessed in a Safire II microplate

reader (Tecan) using the Steady-Glo Luciferase Assay System (Promega). Cells exposed to

vehicle, estradiol and/or ICI182,780 served as controls. Dose-response data of ERα/ERE-

dependent luciferase expression were curve fitted using SigmaPlot10 (SPSS Inc) and the area

under the dose-response curve (AUC) was calculated using>150 trapezoids and Microsoft

Excel. The AUC of luciferase response of 3, 4, 5 and 8 (taken as the archetypal isoflavones) was

calculated up to the concentration that provided a response most comparable to that of 0.1 nM

estradiol (i.e. up to 0.3, 10, 1 and 3 μM for 3, 4, 5 and 8, respectively). The concentration of 3

(i.e. 0.3 μM) that mounted an estradiol-like luciferase response was used to calculate the AUC

of 1, 11 and 12, while that of 4 (i.e. 10 μM) was used to calculate the AUC of 6, 7 and 10, that

of 5 (i.e. 1 μM) was used for the AUC of 2, and that of 8 (i.e. 3 μM) was used for the AUC of 9,

13 and 14. The AUC of the isoflavonoids of each group were then expressed as % of the AUC

of the respective archetypal isoflavone. Since AUC data combine the efficacy as well as the

potency of cell response into a single parameter, the %AUC data were considered here as a

more reliable measure of relative ER/ERE-dependent luciferase expression of the test

compounds.

AlkP expression. Induction of AlkP expression of Ishikawa cells is considered as a reliable

in vitro measure of estrogenic activity [45,46]. Assessment of AlkP expression in Ishikawa cells
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was carried as already described [26]. Briefly, the cells were plated in 96-well plates at a density

of 12,000 cells per well in phenol-red-free MEM supplemented with 1 μg/mL insulin and 5%

DCC-FBS. 24 h after plating, the cells were exposed for 72 h to 0.1 nM estradiol, to the indi-

cated concentrations of test compounds or to vehicle (� 0.2% DMSO), in the absence or pres-

ence of 1 μM ICI182,780, and AlkP activity was assessed at 405 nm in a Safire II microplate

reader using pNPP. Cells exposed to vehicle, estradiol and/or ICI182,780 served as controls.

Data on the dependence of AlkP activity on isoflavonoid concentration were curve fitted using

SigmaPlot10 (SPSS Inc) and the numerical data of curve fitting were used to determine AUC

as described above, using for the calculation of AUC of a particular AlkP response the very

same concentration used for the respective luciferase response. The AUC of AlkP responses of

the isoflavonoids of a group were expressed as % of the AUC of the luciferase response of the

respective archetypal isoflavone.

ER binding. Test compound affinity of binding to ERα and ERβ relative to that of estra-

diol (relative binding affinity, RBA) was assessed using competitor assay kits with full-length

recombinant ERα and ERβ (Invitrogen) as already described [26]. Briefly, the concentration of

17β-estradiol or test compound that inhibited the binding of the fluorescent estrogen ES2

(Invitrogen) to ERα or ERβ by 50% (IC50) was used to calculate RBAα, RBAβ and the ERβ-

binding selectivity as already described [26].

TNFα mRNA expression

To assess TNFα mRNA expression, RAW 264.7 cells were plated in 6-well plates in alpha-

MEM medium supplemented with 10% DCC-FBS, at a density of 300,000 cells per well, main-

tained in culture for 72 h and then exposed to vehicle (0.3% DMSO) or 3 μΜ test compound

for 20 min or 24 h prior to stimulation with 100 ng/ml lipopolysaccharide (Sigma L4391) for 1

h. Extraction of total RNA, reverse transcription (RT) and quantitative PCR (qPCR) analysis

of mRNA expression levels were performed as previously described [47]. Relative gene expres-

sion levels were calculated by the comparative Ct method using the formula 2(-ΔCt). Tumor

necrosis factor alpha (TNFα) mRNA levels were normalized to the respective levels of glyc-

erol-3-phosphate dehydrogenase (GAPDH). Test compound effects on the relative number of

viable cells were assessed using crystal violet and a Safire II microplate reader (Tecan) as previ-

ously described [39]. The difference in optical density at 550 and 690 nm was taken to measure

the actual number of viable cells. The following primers were used:

Mouse TNFα: FW: 5’-TCTCATTCCTGCTTGTGGCA-3’
RV: 5’-AGGGTCTGGGCCATAGAACT-3’

Mouse GAPDH: FW: 5’-CATGGC CTTCCGTGTTCCTA-3’
RV: 5’-CCTGCTTCACCACCTTCTTGAT-3’

Molecular modeling

LogP values. Theoretical logP values were calculated using QikProp software as imple-

mented on Maestro 10. (Schrödinger Release 2017–4: QikProp, Schrödinger, LLC, New York,

NY, 2017)

Receptor and ligand preparation. PDB entries 1X7R [48] and 2P15 [49] were used as

starting structures for the ligand-binding domain of ERα having H12 in agonist position, in

complex with genistein and ortho-trifluoromethyl-phenylvinyl estradiol (EZT) respectively.

The protein preparation wizard was utilized as implemented on Maestro Software. All crystal-

lographic water molecules were deleted except the one between ARG 394 and GLU 353. HIS

524 was protonated on NE2. All ligands were designed using Maestro 10. (Schrödinger

Release, 2017–4: Protein Preparation Wizard; Epik, Schrödinger, LLC, New York, NY, 2016;
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Impact, Schrödinger, LLC, New York, NY, 2016; Prime, Schrödinger, LLC, New York, NY,

2017. LigPrep, Schrödinger, LLC, New York, NY, 2017).

Induced fit docking calculations. Schrödinger developed and validated an Induced Fit

Docking (IFD) protocol based on Glide and the Refinement module in Prime for accurate pre-

diction of ligand binding modes and concomitant structural changes in the receptor. (Schrö-

dinger Release, 2017–4: Schrödinger Suite, 2017–4 Induced Fit Docking protocol; Glide,

Schrödinger, LLC, New York, NY, 2016; Prime, Schrödinger, LLC, New York, NY, 2017) [50].

The IFD protocol models induced fit docking of ligands using the following steps:

1. An optional constrained minimization of the receptor (protein preparation, refinement

only) with an RMSD cutoff of 0.18 Å. Normally, this is done when preparing the protein

with the Protein Preparation Wizard.

2. Initial Glide docking of each ligand using a softened potential (van der Waals radii scal-

ing), and optional removal of side chains and application of constraints. By default, a

maximum 20 poses per ligand are retained.

3. Prime side-chain prediction for each protein-ligand complex, on residues within a given

distance of any ligand pose (default 5 Å), with optional inclusion or exclusion of other

residues, and an optional implicit membrane model. Prime minimization of the same set

of residues and the ligand for each protein-ligand complex pose. The receptor structure

in each pose reflects an induced fit to the ligand structure and conformation.

4. Glide redocking of each protein-ligand complex structure within a specified energy of

the lowest-energy structure (default 30 kcal/mol). The ligand is rigorously docked, using

default Glide settings, into the induced-fit receptor structure.

6. Estimation of the binding energy (IFDScore) for each output pose.

Statistical analysis

Data were expressed as mean ± standard error of the mean (SEM) of at least three independent

experiments carried out in triplicate. Statistically significant differences were determined using

one-way ANOVA and SPSS 13.0 software unless stated that t-test was used. Differences were

considered significant for values of p� 0.05.

Results

Isolation of isoflavones and isoflavone glucosides

In continuation of a screening programme investigating plants of the Mediterranean basin for

compounds with estrogen-like activity, we observed that the methanolic extract of the aerial

parts of Genista halacsyi displayed considerable AlkP-inducing activity in Ishikawa cells. In

order to fractionate the extract rapidly and effectively, we used FCPC. Initially, fourteen sol-

vents systems (Table A in S1 File) were evaluated for the solubility of the extract, the settling

time of the biphasic system (should be shorter than 30 seconds) and the distribution of the

components in the two phases by TLC. The biphasic systems 9, 11, 13 and 14 were rejected

due to the formation of emulsion. On the other hand, TLC revealed an inappropriate partition

of the ingredients in two phases in the case of systems 1–7, 10 and 12. Finally, the biphasic sys-

tem EtOAc : EtOH : H2O (10 : 1 : 10) was selected as the most suitable. Fractionation of 4.5 g

of the extract using 2 L of organic solvents yielded in 4 h several fractions of 4.4 g total weight

amounting to 98.2% recovery. The FCPC separation process yielded directly in pure form four

isoflavone glucosides (8–11). In addition, this process, in combination with Sephadex column
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chromatography, provided three more isoflavone glucosides (12–14) and, in combination

with preparative TLC, seven aglycones (1–7).

The structure of the isolated components (Fig 1) was elucidated by High Resolution Mass

Spectrometry and 1D and 2D NMR spectroscopy, and by comparison with literature data

(Tables B-O in S1 File). The quantities of pure isoflavonoids isolated from 4.5 g of extract ran-

ged from 2.5 (6) to 30.4 mg (8). The total amount of genistein (6.1 mg) and its 7-O- and 7,4-

di-O-glucosides (28.7 and 26.0 mg, respectively) amounted to 33% of the total amount of iso-

lated isoflavonoids. For the ensuing biological evaluation, the isoflavonoids were taken to

belong to 4 groups, each comprising an archetypal isoflavone (underlined) and members

deriving from minimal addition(s) to the core structure of the archetypal entity (underlined):

the genistein group (1, 3, 11, 12), the isoprunetin (5-methyl-genistein) group (4, 6, 7, 10), the

daidzein group (2, 5) and the 8-C-glucopyranosyl-genistein group (8, 9, 13, 14).

Relative binding affinities for ERα and ERβ
Initially we determined the binding affinity relative to estradiol (RBA) of isoflavonoids for

ERα (RBAα) and ERβ (RBAβ). Table 1 shows that, with the RBAα and RBAβ of estradiol set

equal to 100, the RBA of isoflavonoids ranged from 68.4 (RBAβ of 3) to less than 0.01 (RBAα
and RBAβ of 11). Specifically, none of the 14 isoflavonoids displayed RBAα>1, six displayed

values between 0.1–1 (1, 3, 6, 7, 9, 13) and eight displayed values<0.1 (2, 4, 5, 8, 10–12, 14).

Similarly, one isoflavonoid displayed RBAβ>>1 (3), seven displayed values between 0.1–1 (1,

2, 4–7, 13) and six displayed values<0.1 (8–12, 14). Notably, 3 displayed high selectivity for

ERβ, 1 and 4–6 displayed moderate selectivity for ERβ, while none of the 14 isoflavonoids

Fig 1. Isoflavonoids isolated from Genista halacsyi. Biochanin A (1), 8-methoxyformononetin (2), genistein (3),

isoprunetin (4), daidzein (5), 3-methoxyisoprunetin (6), 5-O-methylorobol (7), 8-C-glucopyranosylgenistein (8), 8-C-

glucopyranosyl-orobol (9), 7-O-glucopyranosyl-isoprunetin (10), 7,4-di-O-glucopyranosylgenistein (11), 7-O-β-D-

glucopyranosyl-genistein (12), 8-C-glucopyranosyl-3-O-methylorobol (13) and 8-C,4-O-diglucopyranosyl-genistein

(14).

https://doi.org/10.1371/journal.pone.0210247.g001
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displayed appreciable selectivity for ERα. It is evident that the absence of a 5-OH group in 5,

the substitution of a methoxy group for the 5-OH in 4 and the 8-C-glycosylation in 8 rendered

all three of them much less ERβ-selective and much weaker ER binders compared to 3. It is

also evident that the RBA of archetypal isoflavones ranked differently compared to other mem-

bers of their group: 3 displayed higher RBAβ compared to 1, but 4 displayed lower RBAα com-

pared to 6 and 7 and this was also the case with the RBAβ of 4 compared to 6.

We calculated the mean value (and the range) of previously reported RBAα and RBAβ val-

ues to be, respectively, 1.51 (0.03–4) and 20.7 (0.86–87) for 3, 0.20 (0.01–0.55) and 0.65 (0.04–

2.11) for 5, 0.18 (0.02–0.34) and 0.69 (0.18–1.20) for 1, and<0.01 and <0.01 for 12 [4,25,52],

in good agreement with the data of Table 1.

Models of binding to ERα
To better understand the binding affinity of the 14 isoflavonoids, we run docking calculations

and we analyzed the physicochemical properties as described by their logP values. For docking

calculations two different structures of ERα were utilized, having helix-12 (H12) of ERα in the

agonist position, one in complex with genistein (PDB entry 1X7R) [48] and the other in com-

plex with ortho-trifluoromethyl-phenylvinyl estradiol (EZT, PDB entry 2P15) [49]. The latter

is a very good example where the plasticity of the receptor allows fitting of a relatively volumi-

nous estradiol analog (Fig 2A). The binding pocket of ERα has a hydrophobic binding cavity,

with only two hydrophilic spots, R394/E353 and H524 in a distance of 12Å. Glucosides 8–14

Table 1. Relative ER-binding affinity (RBA) and selectivitya.

Compound RBAα RBAβ RBAβ / RBAα

Estradiol 100 100 1.00

Genistein group

3 0.59 ± 0.21 68.4 ± 11.1 116

1 b 0.24 ± 0.11 0.92 ± 0.16 3.83

11 <0.01 <0.01 (-)

12 0.04 ± 0.03 0.07 ± 0.02 1.75

Isoprunetin group

4 0.03 ± 0.01 0.15 ± 0.05 5.00

6 0.14 ± 0.04 0.63 ± 0.14 4.50

7 0.13 ± 0.04 0.15 ± 0.04 1.15

10 0.02 ± 0.01 0.03 ± 0.01 1.50

Daidzein group

5 c 0.04 ± 0.02 0.36 ± 0.09 9.00

2 0.06 ± 0.02 0.15 ± 0.04 2.50

8-C-glucopyranosyl-genistein group

8 0.05 ± 0.01 0.09 ± 0.02 1.80

9 0.11 ± 0.03 0.05 ± 0.01 0.45

13 0.12 ± 0.05 0.12 ± 0.04 1.00

14 0.02 ± 0.01 0.05 ± 0.02 2.50

a RBA values (mean ± SEM of three independent experiments) of the test compounds for ERα (RBAα) and ERβ (RBAβ) were calculated by [RBA = (IC50 estradiol/IC50

compound) × 100]; IC50 values are estradiol or test compound concentrations that inhibit binding of fluorescent estrogen ES2 (1 nM) to ERα and ERβ by 50%. RBAα and

RBAβ of estradiol were set equal to 100. Selectivity for ERβ was classified as high, moderate or weak depending on whether RBAβ/RBAα was >10, 3–10 or <3,

respectively.
b data from Fokialakis et al. [51].
c data from Halabalaki et al. [27].

https://doi.org/10.1371/journal.pone.0210247.t001
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Fig 2. (A) Ribbon representation of ERα in complex with genistein (GEN, orange ribbons) and ortho-trifluoromethylphenylvinyl estradiol (EZT, light blue ribbons).

The flexible region which accommodates the bulky group of EZT is inside the red circle. (B) Superposition of crystal structure of EZT with global minimum structure

of 8 inside the binding pocket of ERα. (C) Superposition of global minimum structure of 12 with global minimum structure of 8 inside the binding pocket of ERα. (D)

Superposition of crystal structure of genistein with global minimum structure of 8 inside the binding pocket of ERα. For clarity reasons Helix 1 has been removed

from all figures. Hydrogen bonds are depicted with red dashed lines.

https://doi.org/10.1371/journal.pone.0210247.g002
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displayed very low logP values (Table P in S1 File), reflecting their hydrophilic profile which

perturbs binding to ERα and lowers binding affinity for the receptor.

Upon Induced Fit Docking, all compounds except 11 and 14 fitted inside the binding

pocket of 2P15 ligand binding domain. However, only the aglycons (1–7) were able to bind on

1X7R, while the remainder isoflavonoids were rejected because of their volume. Compounds

11 and 14 contain two glucose residues, of which one is at position 4’, and are the most hydro-

philic of the fourteen isoflavonoids (Table P in S1 File). Compound 8 bound to ERα very simi-

larly to EZT and genistein (Fig 2B and 2D). However, although 12 was able to bind to ERα
with similar orientation (Fig 2C), the inability to form a hydrogen bond with H524 due to the

absence of a OH group at position 7 increased the theoretical free energy of binding by 1.2

kcal/mol compared to compound 8.

Agonism of gene transcription, AlkP expression and cell proliferation

We then examined whether the isoflavonoids induce, i) ERE-dependent luciferase gene tran-

scription in MCF-7:D5L cells (known to express ERα), ii) expression of AlkP in Ishikawa

endometrial adenocarcinoma cells (known to express ERα and ERβ), iii) stimulate prolifera-

tion of MCF-7 breast adenocarcinoma cells (known to express ERα but not ERβ) and, iv) affect

proliferation of MDA-MB-231 breast adenocarcinoma cells (known to express neither ERα
nor ERβ). We also examined whether ICI182,780, a full antagonist of ER, suppresses modula-

tion of these activities by the 14 isoflavonoids and whether the isoflavonoids suppress induc-

tion of these activities by 0.1 nM estradiol (postmenopausal level of the hormone). The

isoflavonoids were tested at 1 μM, since higher concentrations are hardly attainable in vivo

and hence of little practical interest. Fig 3A shows that luciferase gene transcription was

induced 3.36-fold in the presence of 0.1 nM estradiol but not in the presence of 1 μM

ICI182,780; that 3, 11 and 12 induced gene transcription to levels very similar to estradiol; that

isoflavonoid-induced gene transcription was fully suppressed by ICI182,780; and that none of

the isoflavonoids was able to suppress estradiol-induced gene transcription.

Fig 3B shows that AlkP expression was induced 3.68-fold in the presence of 0.1 nM estradiol

but not in the presence of 1 μM ICI182,780; that 3, 11 and 12 induced AlkP expression to levels

very similar to estradiol; that isoflavonoid-induced AlkP expression was fully suppressed by

ICI182,780; and that none of the isoflavonoids was able to suppress estradiol-induced AlkP

expression. Some isoflavonoids (e.g. 12) displayed somewhat lower AlkP expression compared

to vehicle in the presence of ICI182,780; however, these effects were not statistically significant.

Fig 3C shows that proliferation of MCF-7 cells was induced 1.80-fold in the presence of 0.1

nM estradiol but not in the presence of 1 μM ICI182,780; that several isoflavonoids induced

cell proliferation to levels similar or somewhat lower to estradiol; that all these cell proliferation

effects were fully suppressed by ICI182,780; and that none of the isoflavonoids was able to sup-

press estradiol-induced cell proliferation. Finally, Fig 3D shows that the proliferation of

MDA-MB-231 cells was not affected by estradiol, ICI182,780 or any of the isoflavonoids, with

the exception of few very minor stimulatory effects which are considered haphazard.

The data of Fig 3 were used to deduce estrogen agonist effects of isoflavonoids at 1 μΜ as

compared to the respective agonist effect of 0.1 nM estradiol. Regarding induction of AlkP,

only four isoflavonoids displayed statistically significant agonist effects that were similar to (3,

11, 12) or lower than (1) the effect of estradiol (Table 2, column 2).

With reference to induction of MCF-7 cell proliferation, eight isoflavonoids displayed sta-

tistically significant agonist effects that were similar to (1, 3, 5, 8, 11, 12) or lower than (4, 6)

the effect of estradiol (Table 2, column 3). With respect to ERα-dependent induction of gene

transcription, seven isoflavonoids displayed statistically significant agonist effects that were
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higher than (3, 12), similar to (1, 11) or lower than (5, 6, 8) the effect of estradiol (Table 2, col-

umn 4). Finally, in relation to ERβ-dependent induction of gene transcription, nine isoflavo-

noids displayed statistically significant agonist effects that were similar to (3, 6, 11, 12) or

lower than (1,4, 7, 8, 14) the effect of estradiol (Table 2, column 5). Agonist effects higher than

or similar to the respective effect of estradiol were mostly classified as full, effects lower than

the effect of estradiol were classified as partial or weak, while effects that were not statistically

significant were classified as marginal (Table 2). Interestingly, the data of Table 2 revealed that

AlkP-inducing agonisms were more strongly correlated with transcriptional agonisms through

ERα (Pearson’s r = 0.945; 2-tailed p = 0.000; n = 14) than through ERβ (Pearson’s r = 0.734;

2-tailed p = 0.004; n = 13).

Fig 3. Effect of isoflavonoids on ERE-dependent gene transcription, alkaline phosphatase expression and breast cancer cell proliferation. (A) Relative

activity of ERE-dependent luciferase gene transcription in estrogen-free MCF-7:D5L cells, (B) Relative AlkP expression of estrogen-free Ishikawa cells and (B)

relative number of viable estrogen-free (C) MCF-7 cells and (D) MDA-MD-231 cells following incubation with vehicle or isoflavonoids (1 μM) in the absence

or presence of either 1 μM ICI182,780 or 0.1 nM estradiol. AlkP expression was assessed at 405 nm through the hydrolysis of p-nitrophenyl phosphate to

coloured p-nitrophenol. Viable cell numbers were assessed at 550 nm through the conversion of MTT to coloured formazan. Absorbance in the presence of

vehicle was set equal to 100. Data are Mean±SEM from at least three independent experiments carried out in triplicate. �, p<0.05 vs no treatment (ANOVA).

https://doi.org/10.1371/journal.pone.0210247.g003
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Dose-response variations of AlkP-inducing and ERα-transcriptional

activities

Having shown that the agonist effects of the O-glucosides of genistein rivaled those of the agly-

cone when tested at 1 μM, we set out to investigate in more detail how glucose moieties and

other substituents in the structure of genistein affect the AlkP-inducing response compared to

the ERα-transcriptional response in a dose-dependent manner. Figs 4A and 5A show that

luciferase and AlkP responses of 4 and 8 were considerably weaker compared to 3, while those

of 11 and 12 were fairly comparable to 3. Similarly, Figs 4B and 5B show that luciferase and

AlkP responses of 9, 13 and 14 were weaker compared to 8 and Figs 4C and 5C show that lucif-

erase and AlkP responses of 4, 7 and 10 were considerably weaker compared to 6.

Table 3 shows IC25 (columns 2 and 5) and IC50 data (columns 3 and 6) from several experi-

ments such as those shown in Figs 4 and 5 as well as AUC data (columns 4 and 7), as normal-

ized on a group basis using the AUC of ERα/ERE-dependent luciferase response of 3

(genistein group), 4 (isoprunetin group), 5 (daidzein group) and 8 (8-C-glucopyranosyl-genis-

tein group) up to 0.3, 10, 1.0 and 3.0 μM, respectively. The AUC data were moderately corre-

lated inversely with IC50 data (Pearson’s r = -0.609; 2-tailed p = 0.027; N = 13) but not with the

Table 2. Agonism of AlkP expression, cell proliferation and gene transcription.

Compound Induction of AlkP expression

(Ishikawa cells)

Induction of cell proliferation

(MCF-7 cells)

Induction of luciferase gene transcription through ERα
or ERβ

MCF-7:D5L cells HEK:ERβ cells

Agonisma at 1μΜ
(% of 0.1nM E2)

Agonisma at 1μΜ
(% of 0.1nM E2)

Agonisma at 1μΜ
(% of 0.1nM E2)

Agonisma at 1μΜ
(% of 0.1nM E2)

Estradiol 100 ± 9 # 100 ± 19 # 100 ± 5 # 100 ± 12 #

vehicle 0 ± 1 � 0 ± 4 � 0 ± 4 � 0 ± 5 �

Genistein group

3 110 ± 11 (Full) # 79 ± 6 (Full) # 135 ± 7 (Full) # � 116 ± 18 (Full) #

1 53 ± 9 (Partial) # � 70 ± 10 (Full) # 83 ± 16 (Full) # 31 ± 15 (Weak) �

11 105 ± 9 (Full) # 79 ± 5 (Full) # 114 ± 4 (Full) # 80 ± 20 (Full) #

12 101 ± 5 (Full) # 79 ± 9 (Full) # 127 ± 8 (Full) # � 121 ± 18 (Full) #

Isoprunetin group

4 Marginal 19 ± 6 (Weak) # � Marginal 27 ± 5 (Weak) # �

6 Marginal 32 ± 3 (Weak) # � 22 ± 5 (Weak) # � 81 ± 5 (Full) #

7 Marginal Marginal Marginal 13 ± 4 (Weak) �

10 Marginal Marginal Marginal Marginal

Daidzein group

5 54 ± 4 (Partial) # � 59 ± 7 (Partial) # 50 ± 12 (Partial) # � 84 ± 8 (Full) #

2 Marginal Marginal Marginal Marginal

8-C-glucopyranosyl-genistein group

8 21 ± 5 (Weak) # � 44 ± 2 (Partial) # 39 ± 7 (Partial) # � 46 ± 3 (Partial) # �

9 Marginal Marginal Marginal Marginal

13 15 ± 4 (Weak) # � Marginal Marginal Marginal

14 Marginal Marginal Marginal 18 ± 1 (Weak) # �

a Agonism was calculated by: [(Effect test compound—Effect vehicle) × 100 / (Effect 0.1nM E2—Effect vehicle)] Agonism was classified as full, partial, weak or marginal

depending on whether induction of the effect was, respectively,�67, 34–66, 11–33 or ⩽10% of the respective agonism of 0.1 nM estradiol

�, p<0.05 vs Agonism of 0.1 nM estradiol (t-test)

#, p<0.05 vs no treatment (t-test)

E2 = estradiol

https://doi.org/10.1371/journal.pone.0210247.t002
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IC25 data (Pearson’s r = -0.268; 2-tailed p = 0.609; N = 13). The ratios of normalized AUC

responses of 1 and 11 were lower than the ratio of 3 while the ratio of 12 was higher (Table 3,

column 9). Likewise, the ratio of normalized AUC response of 6 was lower than that of 4 while

the ratio of 10 was higher. As well, the ratio of normalized AUC response of 9 was lower than

that of 8 while the ratio of 14 was higher. Evidently, monoglucosides 10, 12 and 14 displayed

higher AUC ratios compared to the respective archetypal isoflavone, while their 4-methoxy-

(1), 3-methoxy- (9) and 3-hydroxy-derivatives (6) and the di-glucoside 11 displayed lower

ratios. While seven isoflavonoids displayed an AUC ratio significantly different from the ratio

of the respective archetypal isoflavone, only four isoflavonoids displayed an IC50 ratio signifi-

cantly different from the IC50 of the respective archetypal isoflavone, possibly indicative of

lower discriminative power of IC50-based comparisons relative to AUC-based ones.

Effects on osteoblastic and osteoclastic differentiation and on neuronal

oxytosis

Since micromolar concentrations of isoflavonoids 3, 11 and 12 displayed AlkP-inducing activ-

ity and ERα-dependent transcriptional activity comparable to physiological concentrations of

estradiol but much higher compared to micromolar concentrations of the other isoflavonoids,

we also compared their effects on the differentiation of MC3T3-E1 to osteoblasts using induc-

tion of AlkP and Alizarin red staining as markers of osteoblastic differentiation and minerali-

zation, respectively. Incubation of MC3T3-E1 cells for 6 days with differentiation factors (DF:

10 mM beta-glucerophosphate, 50 μg/ml ascorbic acid plus test compound vehicle) or DF-free

medium (plus test compound vehicle) resulted in 3.7-fold induction of AlkP expression in the

presence of DF (Table 4, column 2). The DF-induced AlkP expression was increased in the

presence of 1 nM estradiol or 1 μΜ 3, 11 or 12, although the effect of 3 was not statistically sig-

nificant. AlkP expression was not affected following treatment of DF-free MC3T3-E1 cells

with test compounds. Similarly, incubation of MC3T3-E1 cells for 21 days with DF or DF-free

medium resulted in 2.8-fold increase in Alizarin red staining in the presence of DF (Table 4,

column 3). The DF-induced staining increased in the presence of estradiol, 11 and 12,

although the increase observed in the presence of the glucosides was not statistically signifi-

cant. No increase in staining was observed following treatment of DF-free MC3T3-E1 cells

with test compounds. We also determined the effect of estradiol, 3, 11 and 12 on the differenti-

ation of RAW 264.7 cells to osteoclasts, using induction of TRAP expression as differentiation

marker. Incubation of RAW 264.7 cells for 3 days with 50 ng/ml RANKL (DF plus test com-

pound vehicle) or RANKL-free medium (plus test compound vehicle) resulted in 2-fold induc-

tion of TRAP expression in the presence of RANKL (Table 4, column 4). The RANKL-

induced increase in TRAP expression was not affected by estradiol, 3, 11 or 12. TRAP expres-

sion of RANKL-free RAW 264.7 cells was not affected following treatment with test

compounds.

HT22 cells are known to undergo oxidative stress-induced cell death (oxytosis) within 18–

24 h following exposure to 5 mM glutamate. We therefore sought to determine whether estra-

diol, 3, 11 or 12 could affect the viability of HT22 hippocampal neurons under normal growth

conditions or following exposure to glutamate. Fig 6 shows that under normal growth

Fig 4. Effect of isoflavonoids on ERE-dependent luciferase expression. Luciferase expression of estrogen-free MCF-

7:D5L cells following incubation with increasing concentrations of isoflavonoids 2–4, 8, 11, 12 (A), 8, 9, 13, 14 (B) and

4, 6, 7, 10 (C). Expression in the presence of vehicle was set equal to 100. Basal expression in the presence of vehicle is

shown by a dashed line while expression in the presence of 0.1 nM estradiol is shown by a straight line. Values (% of

vehicle) are mean±SEM of an experiment carried out in triplicate. ERE, estrogen response element.

https://doi.org/10.1371/journal.pone.0210247.g004
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conditions, the viability of HT22 cells growing in the presence of 1 nM estradiol or 1 μΜ 3, 11

or 12 was not different compared to that of vehicle-treated HT22 cells (set equal to 100%;

p>0.05, t-test). Treatment with glutamate reduced cell viability to�40% of that of glutamate-

free cells, whether the treatment was carried out in the presence of vehicle, 1 nM estradiol or

1 μM 3, 11 or 12.

Effects on TNFα mRNA expression of RAW 264.7 cells

The mouse macrophage cell line RAW 264.7 is known to express ERα and ERβ. Since the ER-

dependent activities of 3, 11 and 12 were much higher compared to the activities of the other

Fig 5. Effect of isoflavonoids on alkaline phosphatase expression. Alkaline phosphatase (AlkP) expression of

estrogen-free Ishikawa cells following incubation with increasing concentrations isoflavonoids 2–4, 8, 11, 12 (A), 8, 9,

13, 14 (B) and 4, 6, 7, 10 (C). Expression in the presence of vehicle was set equal to 100. Basal expression in the

presence of vehicle is shown by a dashed line while expression in the presence of 0.1 nM estradiol is shown by a

straight line. Values (% of vehicle) are mean±SEM of an experiment carried out in triplicate.

https://doi.org/10.1371/journal.pone.0210247.g005

Table 3. Induction of AlkP expression & ERE-dependent gene transcription.

Compound Induction of ERE-dependent Luciferase

Transcription

(MCF-7:D5L cells

Induction of Alkaline Phosphatase Expression

(Ishikawa cells)

Ratio

of

EC50

Ratio

of

AUC

EC25E2
a (μM) EC50E2

a (μM) AUC b

(%)

EC25E2
a (μM) EC50E2

a (μM) AUC b

(%)

(AlkP / Lucif)c (AlkP / Lucif)d

E2 3.60±0.72# 10.0±4.0# 100±9 9.83±0.44� 19.6±2.4# 111±17# 2.58±0.83 1.11±0.12

Genistein group

3 0.03±0.01 0.09±0.03 100±17 0.03±0.01 0.05±0.02 124±19 0.63±0.02 1.24±0.12

1 0.16±0.09 0.30±0.03� 33±8� 0.19±0.01� 0.42±0.03� 26±2� 1.40±0.05� 0.79±0.04�

11 0.04±0.01 0.15±0.03 75±6 0.09±0.01� 0.16±0.02 66±5 1.12±0.09� 0.88±0.06�

12 0.05±0.01 0.13±0.03 69±7 0.05±0.01 0.07±0.01 110±10 0.57±0.04 1.59±0.10�

Isoprunetin group

4 3.72±0.63 7.32±2.18 100±14 3.90±0.19 7.94±2.28 94±16 1.26±0.26 0.94±0.03

6 0.98±0.07� 1.57±0.24� 289±14� 1.60±0.05� 2.61±0.29 182±8� 1.69±0.10 0.63±0.01�

7 5.35±0.61 9.50±1.57 103±9 7.08±0.45� 11.8±2.5 76±15 1.23±0.17 0.74±0.13

10 6.50±1.10 29.8±5.2� 69±5 3.48±0.51 8.23±1.24 109±8 0.28±0.03� 1.58±0.12�

Daidzein group

5 0.38±0.07 1.09±0.09 100±13 0.46±0.05 1.30±0.15 104±19 1.25±0.10 1.04±0.13

2 >30 >30 0.7±0.1� >30 >30 0.5±0.2� n-a 0.71±0.15

8-C-glucopyranosyl-genistein group

8 0.42±0.05 1.38±0.59 100±21 0.66±0.06� 1.21±0.43 100±18 0.84±0.06 1.00±0.06

9 >30 >30 1.6±0.3� >30 >30 1.1±0.1� n-a 0.69±0.07�

13 2.20±0.18� 3.42±0.91 77±17 1.01±0.27 2.34±0.65 61±11 0.67±0.02� 0.79±0.13

14 3.57±0.58� 7.72±3.08 30±13� 3.72±0.31� 6.42±1.52� 46±10� 1.68±1.09 1.53±0.02�

a compound concentration required to achieve 25% (IC25) or 50% (IC50) of the effect of 0.1 nM E2
b %AUC was calculated by: [AUCn×100] / [AUCarch]; AUCarch is the luciferase response of 3, 4, 5 or 8 up to 0.3, 10, 1.0 and 3.0 μM, respectively. AUCn is the AlkP or

luciferase response of isoflavone in group n up to the concentration used for the AUCarch of group n
c calculated by: [EC50E2 AlkP / EC50E2 luciferase]
d calculated by: [(AUCAlkP / AUCluciferase)]
# expressed in nM

�, p<0.05 vs the IC25, IC50, AUC of luciferase response of the respective archetypal compound (t-test)

E2 = estradiol

https://doi.org/10.1371/journal.pone.0210247.t003
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isoflavonoids, we tested the ability of these three isoflavonoids to modulate transcription of the

gene of pro-inflammatory cytokine TNFα in estrogen-free RAW 264.7 cells following 1-h

stimulation of the cells with lipopolysaccharide (LPS). Pre-treatment of the cells with 3, 11, 12

or vehicle for 20 min prior to stimulation with LPS resulted in ~30-fold induction of TNFα
mRNA expression in the presence of vehicle and in 30% reduction of this induction in the

presence of 11 (Fig 7A). Pre-treatment of the cells with the test compounds for 24 h prior to

the stimulation resulted in ~50-fold induction of TNFα mRNA expression in the presence of

vehicle and in 15, 29 or 20% reduction of this induction in the presence of 3, 11 or 12, respec-

tively, with the effect of 11 being statistically significant (Fig 7B). None of the isoflavonoids

could affect TNFα mRNA expression in the absence of LPS. In addition, none of the isoflavo-

noids affected cell viability whether in the absence or presence of LPS (Fig 7C).

Table 4. Effects on osteoblastic and osteoclastic differentiation.

Treatment Differentiation of

MC3T3-E1 cells

Differentiation of RAW 267.4 cells

AlkP expression (%)a Alizarin red staining (%)a TRAP expression (%)a

No DF + vehicle 27±4� 36±1� 51±3�

DF + vehicle 100±3 100±8 100±7

DF + E2 (1 nM) 118±2� 134±7� 105±3

DF + 3 (1 μM) 116±7 n-d 106±11

DF + 11 (1 μM) 120±6� 120±5 112±9

DF + 12 (1 μM) 125±8� 137±14 110±5

a Effects in the presence of DF plus vehicle were set equal to 100

� p<0.05 vs DF + vehicle (ANOVA)

n-d, not determined; AlkP = alkaline phosphatase; DF = differentiation factors; TRAP = tartrate-resistant acid phosphatase

https://doi.org/10.1371/journal.pone.0210247.t004

Fig 6. Viability of HT22 neuronal cells in the absence and presence of glutamate. HT22 cells were exposed to

estradiol (E2, 1 nM), isoflavonoids (1 μM of 3, 11 or 12) or vehicle (Veh, 0.1% DMSO) and then challenged with 5 mM

glutamate for 24 h prior to assessing the number of viable cells relative to that of vehicle-treated not challenged cells

using MTT. Data are mean±SEM of three independent experiments in triplicate. Numbers of isoflavonoid-, E2- or

vehicle-treated cells were similar (p>0.05, ANOVA) in the absence as well as the presence of glutamate.

https://doi.org/10.1371/journal.pone.0210247.g006
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Discussion

In an ongoing search for phytoestrogens from Mediterranean flora we found that the metha-

nolic extract of the aerial parts of Genista halacsyi induced AlkP in Ishikawa cells. Induction of

AlkP activity in Ishikawa cells is considered as a reliable measure of estrogenic activity [45].

This was not unexpected given that isoflavonoids with estrogen-like activity reportedly feature

among the secondary metabolites of Genista species [1]. However, the phytochemical compo-

sition of Genista halacsyi had not yet been studied, and conventional chromatographic tech-

niques had mainly been used for the isolation of compounds from plants belonging to this

genus. We therefore exploited the advantages of FCPC (low risk of sample degradation, revers-

ible adsorption of ingredients and low organic solvent consumption) in order to fractionate

the extract. Several two-phase solvent systems have been reported for the chromatographic iso-

lation of isoflavonoids from various natural sources [28]. Using a biphasic system consisting of

EtOAc, EtOH and H2O we succeeded in fractionating the methanolic extract of G. halacsyi
rapidly as well as effectively, and in isolating 14 isoflavonoids in pure form and in substantial

amounts.

Assessment of RBAα and RBAβ of the isolated isoflavonoids revealed that 3 displayed ER-

binding affinities and ERβ selectivity considerably higher than those of the other isoflavonoids.

It has been reported that ERα and ERβ bind compounds with OH groups at a distance of 9.7–

12.3 Å, through hydrogen bond formation with Glu353/Arg394 and His524 of ERα and

Glu305/Arg346 and His475 of ERβ; that the ERβ selectivity of 3 likely depends predominantly

on van der Waals contacts between its A and C rings and Ile373 and Met336 of ERβ, respec-

tively; that the 5-OH and the keto group of the flavone part of 3 likely participate in intramo-

lecular hydrogen-bond formation that gives rise to a planar 3-ring flavone system; and that the

expanded planar structure of 3 in conjunction with the smaller ligand-binding pocket of ERβ
compared to ERα likely provide for tighter packing of ERβ binding pocket residues around the

flavone ring system of 3, and hence for pronounced ERβ affinity and selectivity [53–55]. It is

therefore likely that the smaller planar structure of 5 compared to 3, due to the absence of a

5-OH in the former, reduces the number of ER pocket residues that could pack around the

ligand and hence the ER-binding affinity and selectivity of 5 compared to 3. It is also likely

that introduction of bulkiness by methylation of 5-OH or by addition of a C-8 glucose moiety

to generate 4 or 8, respectively, prevents proper alignment for hydrogen bond formation

through 4-OH and 7-OH, thus reducing their affinity and selectivity compared to 3. Notably,

6 and 13 displayed higher RBAα compared to 4 and 8, respectively, likely reflecting a compara-

tively higher hydrogen bonding ability of the 4-OH of 6 and 13, due to the high electron donor

potential of their 3-methoxy group. Similarly, the electron donor potential of 3-OH may

account for the higher RBAα of 7 and 9 compared to 4 and 8, respectively. Finally, as expected,

1, 10, 11, 12 and 14, which carry modified 4-OH and/or 7-OH groups, displayed considerably

weaker RBA compared to 3, 4 and 8. Although 11 had RBA<0.01, 12 and 14 had measurable

RBA for both ER subtypes. On 11, the 7-OH and 4’-OH are substituted, while on 12 and 14,

4’-OH and 7-OH, respectively, are free for hydrogen bond interaction. Although 12 was able

to bind to ERα with very low affinity, it displayed estrogen-like activities much higher than

excepted based on its RBAα, suggesting that these activities were due to hydrolytic release of

the aglycone. Induced fit docking failed to predict binding mode for compound 14. Probably,

the binding cavity of 2P15 is not large enough to accommodate compound 14 and more resi-

dues should be shifted for binding. It is possible that 14 may have suffered limited hydrolysis

at position 4’ during its isolation.

It is widely assumed that, although isoflavones display much lower ER-binding affinity

compared to estradiol, their estrogen-like activity in vivo can match that of the hormone,
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given that their concentration in the circulation can reach levels up to 1 μΜ (i.e. ~10,000-fold

higher than postmenopausal levels of the hormone) [13–15,56]. We showed that 0.1 nM estra-

diol displayed full AlkP-inducing, proliferative and ERα-transcriptional agonisms at concen-

trations� 0.1 nM and this was the case also with 3, 11 and 12 at concentrations� 0.3 μM. We

also showed that all isoflavonoid agonisms were inhibited by ICI182,780, suggestive of ER-

dependent responses. In addition, we showed that AlkP-inducing agonisms were more

strongly correlated with transcriptional agonisms through ERα than through ERβ. This corre-

lation bias was clearly reflected in that e.g. 4 and 6 at 1 μΜ displayed partial and full, respec-

tively, ERβ-dependent transcriptional agonisms, but marginal and weak, respectively, AlkP-

inducing agonisms and ERα-dependent transcriptional agonisms. Thus, it appears that,

although both ER subtypes are involved in regulating AlkP expression [51], the regulation is

predominantly driven by ERα, presumably due to the dominant role that the latter reportedly

plays in heterodimers with ERβ [9]. Moreover, we showed that none of the isoflavonoids dis-

played ER antagonist activity at 1 μΜ, suggesting that the substituents introduced in the arche-

typal structures failed to give rise to entities with antiestrogen-like and/or antiproliferative

activity. However, this was reportedly not the case with some alkyl substitutions of the 7-OH

of daidzein [57].

While the archetypal isoflavones 3, 5 and 8 displayed higher activities compared to the other

isoflavonoids of the respective group, 6 displayed higher activities compared to 4, in accordance

with their RBAα. However, the RBAα of 7, 9 and 13 could not account for their lower activities

compared to 4 and 8, possibly reflecting variations in the ability of isoflavone-bound ERα to

recruit transcriptional coactivators and/or to variations in cell uptake, metabolism and efflux of

the aglycones. It has been reported that differential cofactor recruitment by phytoestrogen-bound

ER may cause induction potencies to deviate considerably from predictions based solely on RBA

[6]. In addition, it has been reported that the cellular availability of o-diphenolic compounds such

as 7 and 9 could be drastically reduced by oxidation to ortho-quinones and by phase II metabo-

lism to rapidly excreted sulfonate and glucuronide esters [13,14,58,59].

Unlike aglycones, which are more or less readily transported across plasma membranes,

O-glucosides need processing by β-glucosidases before transport [11,12]. Deglycosylation by

intestinal β-glucosidases is critically involved in the uptake of O-glucosides in humans and

likely accounts for the significant variations observed in aglycone bioavailability [10,11,12].

O-glucosides 11 and 12, in particular, displayed fairly similar AlkP-inducing and ERα-tran-

scriptional activities compared to 3. The presumptive beta-glucosidase activity that released 3

from 11 and 12, is unlikely to have originated from the culture medium or from dead cells,

given that cell viability was>95%, and serum was heat-inactivated for 1 h [60]. Most likely,

this activity was secreted to the medium by living cells and/or was located in their plasma

membrane [61]. In contrast to 11 and 12, O-monoglucoside 14 displayed lower AlkP-inducing

and ERα-transcriptional activities compared to 8, implying that release of the 4-O-linked glu-

cose moiety of 14 could be impeded by its 8-C-linked glucose moiety.

Although potency is widely used to report data on in vitro biological evaluation of test com-

pounds, an AUC metric fitted over the entire range of comparatively relevant test compound

Fig 7. Effect of isoflavonoids on basal and LPS-induced TNFα mRNA expression in RAW 264.7 cells. Expression

of TNFα mRNA in estrogen-free RAW 264.7 cells pre-treated for (A) 20 min or (B) 24 h with test compounds (3 μΜ)

or vehicle (0.3% DMSO) prior to stimulation of the cells with LPS (100ng/ml) for 1h. Values are expressed as % of

TNFα mRNA expression following treatment of vehicle pre-treated cells with LPS. (C) Relative numbers of RAW

264.7 cells pre-treated for 24 h with test compounds or vehicle and exposed or not to LPS, as assessed using crystal

violet. Absorbance at 550 nm of vehicle pre-treated cells not exposed to LPS was set equal to 100. Values are mean

±SEM of at least three independent experiments carried out in triplicate. �, p<0.05 vs TNFα mRNA levels in vehicle

pre-treated LPS-treated cells (ANOVA).

https://doi.org/10.1371/journal.pone.0210247.g007
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concentrations combines both efficacy and potency and is considered as a more reliable measure

of bioactivity [62,63]. The AUC of AlkP and ERα-transcriptional responses of isoflavonoids of a

group were normalized using the AUC of the transcriptional response of the respective archetypal

isoflavone. The relative AUC ratios revealed that the 3-OH and 3-methoxy derivatives 6, 7, 9 and

13 displayed AlkP responses ~30% lower than ERα-transcriptional responses, possibly reflecting a

lower availability of these derivatives compared to the archetypal isoflavones that predominantly

affected the AlkP response. Similarly, the lower relative AUC ratio of 11 compared to 3 may indi-

cate a lower availability of di-glucoside-derived aglycone compared to the free one that disfavored

the AlkP response. In contrast, monoglucosides 10, 12 and 14 displayed AlkP responses ~40%

higher than ERα-transcriptional responses, possibly indicating a relative availability of monoglu-

coside-derived aglycones compared to the free ones that favored the AlkP response. Indeed, com-

parison of the rank order of AlkP-induction efficacies of 3, 11 and 12 at 0.3 μM (3 = 12>11; Fig

5A) to the rank order of the respective transcriptional efficacies (3>12 = 11; Fig 4A) could partly

account for the finding that 11 and 12 displayed lower and higher, respectively, AUC ratio of

AlkP response to ERα-transcriptional response compared to the aglycone.

Differentiation of MC3T3-E1 cells to mineralizing osteoblasts reportedly recapitulates in
vitro many estrogen and ERα-dependent effects that promote osteoblastic differentiation in
vivo and therefore has been extensively used to screen for phytoestrogens with osteoprotective

activity [37,38]. We showed that estradiol, 11 and 12 promoted differentiation of MC3T3-E1

cells to osteoblasts, while 3 was not convincingly effective in this respect. In addition, estradiol

and 12 promoted mineralization of differentiated MC3T3-E1 cells, while 11 was not convinc-

ingly effective in this respect. Part of these findings is in accordance with previous reports on

effects of estradiol and genistein on the osteoblastic differentiation and mineralization of

MC3T3-E1 cells [64]. In addition, they show that the O-glucosides of genistein stimulate oste-

oclastic differentiation of MC3T3-E1 cells as effectively as estradiol.

We also looked for effects of estradiol, 3, 11 and 12 on osteoclast differentiation of RAW

264.7 cells following treatment with RANKL (50 ng/ml) using induction of TRAP expression

as differentiation marker. We observed no change of the basal or the RANKL-induced TRAP

activity in the presence of 1 nΜ estradiol or 1 μM of 3, 11 or 12. These findings are in accor-

dance with previous reports that estradiol and genistein can inhibit osteoclastic differentiation

of RAW 264.7 cells at concentrations�10 μM [65,66]. Similarly, it has been reported that the

inhibition of differentiation of RAW 264.7 cells to osteoclasts by resveratrol and other flavo-

noids depends predominantly on their antioxidant activity and that the inhibition is apprecia-

ble provided these compounds are tested at high concentrations [65,67]. Thus, it appears that

estradiol, 3, 11 and 12 at physiologically and/or pharmacologically relevant concentrations are

unable to inhibit osteoclastic differentiation of RAW 264.7 cells. In line with this notion, it has

been reported that stimulation of osteoblastic differentiation of MC3T3-E1 cells by soybean

extract or silibinin (a flavonolignan) endows the culture medium with factors capable of inhib-

iting osteoclastic differentiation of RAW 264.7 [68,69], implying that isoflavones inhibit differ-

entiation of monocytes to osteoclasts indirectly.

Using HT22 cells, a ER-expressing hippocampal cell line used for screening chemical librar-

ies for neuroprotective compounds [42,43,70,71], we showed that estradiol at 1 nM and 3, 11

or 12 at 1 μM failed to display neuroprotective activity. Estradiol is reportedly able to protect

glutamate-challenged HT22 cells from oxytosis in an ER-dependent manner, although at

supraphysiological concentrations (IC50>800 nM) and in an ICI182,780-independent man-

ner at high physiological concentrations (50 nM) [71], implying that the involvement of ER in

estrogen-dependent oxytosis prevention in HT22 cells is minor, if not obsolete. Others have

also reported that even 1 μM estradiol or 2.5 μM genistein are unable to prevent oxytosis of

glutamate-challenged HT22 cells [72,73]. However, given that the half maximal concentration
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for HT22 oxytosis inhibition by renowned antioxidants such as resveratrol and fisetin is

�3 μM [43,70], one cannot exclude that 3, 11 and 12 may inhibit oxytosis at higher (yet not

pharmacologically relevant) concentrations, as already shown for estradiol [72].

LPS is predominantly involved in stimulating TNFα mRNA expression and production of

this cytokine following infection of monocytes. We have shown that compared to 3 which was

ineffective and to 12 which was marginally effective, 11 displayed a ~30% suppression of LPS-

stimulated TNFα mRNA expression in estrogen-free RAW 264.7 cells pre-incubated with

3 μM isoflavonoid prior to the stimulation. The higher efficacy of the 7,4-di-O-glucoside of

genistein to prevent LPS-induced TNFα transcription compared to the respective 7-O-mono-

glucoside and the aglycone may reflect a higher availability of di-glucoside-derived aglycone

compared to the mono-glucoside-derived one and to the free aglycone. However, others have

reported that pre-incubation with low micromolar concentrations of genistein is capable of

causing 30–40% inhibition of TNFα gene transcription in RAW 264.7 cells [74]. These find-

ings indicate that the extent to which genistein can moderate LPS-induced TNFα mRNA

expression of RAW 264.7 cells may depend on cell culture conditions and/or on using specific

clones of RAW264.7 cells [41]. Although the mouse macrophage cell line RAW 264.7 is known

to express ERα and ERβ, estradiol was reportedly unable to suppress TNFα mRNA expression

and release of this cytokine following stimulation of estrogen-free RAW 264.7 cells with LPS

[75]. Others have reported, however, that pretreatment of estrogen-free RAW 264.7 cells with

1–10 μM equol reportedly resulted in dose-dependent suppression of LPS-induced TNFα
mRNA expression and cytokine release in an ER-independent manner [76].

The genitourinary syndrome of menopause (GSM) is known to affect more than 50% of

menopausal women, especially breast cancer survivors, to whom even low-dose vaginal estro-

gen may be unacceptable due to concerns over possible breast or endometrial cancer risk

[77,78]. While orally administered isoflavones are extensively metabolized and rapidly conju-

gated and excreted, topically or parenterally administered isoflavones are found in the circula-

tion in unconjugated form in appreciable amounts [12]. Accordingly, topically administered

isoflavones may reportedly relieve GSM as effectively as vaginal estrogen [79]. The present

data on the estrogen-like activity of isoflavonoids may be taken to suggest that formulations

rich in O-glucosides of genistein could be useful for topical treatment of GSM.

Conclusion

We have determined the estrogen-like activities of 14 isoflavonoids isolated from the aerial

parts of Genista halacsyi using FCPC. We have shown that the estrogen-like activities of O-glu-

cosides were similar to those of the respective aglycones, while the activities of C-glucosides

were lower. We have also shown that low micromolar concentrations of genistein and its 7-O-

mono- and 7,4-di-O-glucosides were at least as active as physiological concentrations of estra-

diol. Our findings could be taken to indicate that topical use of formulations rich in O-gluco-

sides of genistein could substitute for low-dose vaginal estrogen for the treatment of GMS.

However, further studies using the ovariectomized mouse model of menopause are required

in order to determine whether topical application of genistein and/or its glucosides may have

GSM chemopreventive and/or therapeutic potential.
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