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Physical connections between nodes in a complex network are constrained by limiting

factors, such as the cost of establishing links and maintaining them, which can hinder

network capability in terms of signal propagation speed and processing power. Trade-off

mechanisms between cost constraints and performance requirements are reflected in the

topology of a network and, ultimately, on the dependence of connectivity on geometric

distance. This issue, though rarely addressed, is crucial in neuroscience, where physical

links between brain regions are associated with a metabolic cost. In this work we

investigate brain connectivity—estimated by means of a recently developed method

that evaluates time scales of cross-correlation observability—and its dependence on

geometric distance by analyzing resting state magnetoencephalographic recordings

collected from a large set of healthy subjects. We identify three regimes of distance

each showing a specific behavior of connectivity. This identification makes up a new

tool to study the mechanisms underlying network formation and sustainment, with

possible applications to the investigation of neuroscientific issues, such as aging and

neurodegenerative diseases.

Keywords: brain network, time series, cross correlation, magnetoencephalography, network structure,

connectivity

1. INTRODUCTION

The application of network analysis methods on structural and functional brain connectivity
is a widely used tool to investigate the topology of complex brain networks emerging during
both resting state and cognitive engagement in a task. This approach led to strong evidence of
human brain networks exhibiting a small-world topology (Bullmore and Sporns, 2012; Gastner
and Ódor, 2016; Bassett and Bullmore, 2017) and challenged the general assumption of network
stationarity (Chang and Glover, 2010; Bassett et al., 2011; Bullmore and Sporns, 2012; Nicol
et al., 2012; Brookes et al., 2018) suggesting a dynamic continuous reconfiguration of brain
complex networks both in cognitive tasks and at rest. Moreover, small-world topology supports the
well-established principle of segregated/integrated information processing (Bullmore and Sporns,
2012). Instantiating and running a functional brain network has a metabolic cost in term of
glucose and oxygen consumption required to sustain information processing and circulation. This
wiring cost is ultimately related to the distance between communicating brain regions and is
supposed to be minimized by the brain, while preserving the crucial computational advantages
conferred by network complexity (Bullmore and Sporns, 2012; Gollo et al., 2018). Moreover,
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an unbalance between wiring cost and complexity has been
shown to act as a potential source for neuropsychiatric
disorders (Gollo et al., 2018). As a result of the tradeoff between
network complexity and wiring cost, brain connectivity and
its strength turn out to depend on physical distance between
communicating nodes (Bullmore and Sporns, 2012).While actual
anatomical link length does not coincide with a straight segment,
Euclidean distance appears to be a relevant parameter in the
study of brain topology and connectivity (Ghosh et al., 2008;
Supekar et al., 2009; Kaiser, 2011; Cabral et al., 2014), making
up a lower bound to the real anatomical distance (Avena-
Koenisberger et al., 2018). Since the discovery of resting state
networks, like the Default Mode Network (Damoiseaux et al.,
2006), resting state activity has been extensively used to probe
general properties of brain networks. However, despite the
relevance of the topic, to our best knowledge only a few studies
addressed directly the dependence of connectivity on geometric
distance in the brain.

Salvador et al. (2005a,b) analyzed fMRI resting state activity
of 12 young healthy adults. They computed partial correlation
between 90 cortical and subcortical brain regions, demonstrating
for the first time that the intra-hemispheric connectivity was
generally related to Euclidean distance by an inverse square
law. This result was confirmed by another study (Fair et al.,
2009) focused on the development of long distance integrated
processing in healthy children and young adults. Authors defined
networks from correlation coefficients matrices of resting state
fMRI data, confirming that connectivity strength in active links
depends on the inverse of the square of Euclidean distance, as
found in Salvador et al. (2005a,b). These results were challenged
by subsequent studies pointing to different degrees of interplay
between distance and connectivity. In Expert et al. (2011)
the authors investigated scale invariance in brain networks by
analyzing time series from fMRI resting state activity of seven
young healthy adults. By computing correlation coefficients
between brain areas at different levels of spatial granularity, they
found, for short distances, a self-similar behavior of the network,
which corresponds to a power-law dependence of correlation on
distance in the form of the inverse of the square root of Euclidean
distance. Moreover, the self-similar regime, and thus the power-
law dependence, is lost for long distances (about > 50mm).
Furthermore, in another paper, it was found that the global
mean Euclidean distance of links from a brain network defined
by correlating resting state fMRI activity increases when weaker
links are included in the network by lowering the threshold that
defines the adjacency matrix (Alexander-Bloch et al., 2013). In
that work the authors considered results from resting state fMRI
activity and found that an exponential curve reasonably fits the
cumulative distribution of distances of network links.

Besides results being not consistent, there are also some
limitations in the above mentioned studies. On the one hand,
using fMRI resting state time series might not reveal the
contribution of networks operating at time scales faster than the
typical time resolution of magnetic resonance imaging, whose
contribution is convoluted with the hemodynamic response. In
addition, as pointed out also in Coquelet et al. (2017), confounds
might be introduced by the different neurovascular coupling

in different healthy and clinical population, or even within the
analyzed population. Using a direct electrophysiological measure
of brain activity, such as magnetoencephalography (MEG)—
characterized by a higher sampling rate can be more efficient in
addressing the dependence of connectivity on distance.

In a recent paper by our group (Perinelli et al., 2019), we used
a novel method to evaluate connectivity between two brain nodes
by means of the time scale, henceforth referred to as “time scale
of observability,” in which a correlation is observed. Starting from
MEG recordings of cortical activity of healthy subjects in resting
state, we obtained a time series for each examined node in the
brain and, consequently, a time scale of observability of links.
The results hinted at a power-law dependence of the time scale
of observability with respect to geometric distance.

In this paper, we improved our previous analysis by using
a larger dataset containing MEG recordings from 100 healthy
subjects in resting state and, in addition, upgraded analytical
tools. The subjects have an age ranging from 18 to 88 years and
were chosen to yield an approximately uniform age distribution.
A number of 72 nodes was randomly selected on the cerebral
cortex and correlation among all possible 42 pairs of nodes was
evaluated as a function of pair distance. In addition node pairs
were distinguished into inter-hemispheric and intra-hemispheric
in order to highlight possible differences in connectivity in cross-
hemisphere or intra-hemisphere communication.

We obtained evidence of three different regimes of linear
dependence of the time scale of observability on the natural
logarithm of geometric distance. This result proves to be
statistically significant and makes up an interesting base point
for further investigation, aiming, for example, at relating the
different regimes to the small-world network supported principle
of segregated/integrated information processing. Our novel
approach detects communication links between pairs of brain
regions by assessing the time scale of observability as the shortest
time window during which the two time series have to be
observed to significantly detect a correlation (see section 2.2 for
a detailed discussion about that). Because typical values are in
the range between 0.2 and 30 s, our approach is more efficient
than standard correlation analysis of slow fMRI time series in
including potential networks that operate at different time scales
and provides a more complete metrics for the characterization of
the dependence of connectivity strength on distance.

As in all the relevant previous literature about the dependence
of connectivity strength on distance, we use here resting state
data. While this is a limitation because, in principle, networks
with different properties and topologies can emerge in response
to stimuli or in executing actions (Bullmore and Sporns,
2012), we believe that a general property of network brain
communication, like the dependence of connectivity strength of
distance, does not dramatically change whenever subjects are
cognitively engaged in a task. Nevertheless, further investigations
are required to confirm this property, especially with regards to
the validity of the three-regime dependence mentioned above.

The present paper is organized as follows. Section 2 deals
with the description of the available dataset and the related
preprocessing, a summary of the method for the evaluation of
zero-delay cross-correlation, and the analysis of the functional
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relation between time scale of observability and distance. The
outcomes of this analysis are the topic of section 3. Conclusive
remarks on the implications of our results are presented in
section 4.

2. MATERIALS AND METHODS

2.1. Dataset and Pre-processing
Data used in the present work were obtained
from the CamCAN repository (available at
http://www.mrc-cbu.cam.ac.uk/datasets/camcan/) (Shafto
et al., 2014; Taylor et al., 2016). Data collection was conducted in
compliance with the Helsinki Declaration and was approved by
the University of Cambridge ethics committee (Cambridgeshire
2 Research Ethics Committee—reference: 10/H0308/50) (Shafto
et al., 2014).

We selected data from 100 healthy volunteers (49 females,
51 males), with an approximately uniform age distribution
ranging from 18 to 88 years. From the data available in the
CamCAN repository, we retrieved MEG resting state and empty
room recordings together with MRI anatomical scan for each
subject. All data were collected and partially preprocessed at
the MRC Cognition and Brain Sciences Unit of the University
of Cambridge as follows. Individual anatomical MRI images
(T1 weighted, 1mm of resolution) were collected using a 3 T
Siemens TIM Trio scanner with a 32-channel head coil. MEG
data were recorded using a 306-channel VectorViewMEG system
(Elekta Neuromag, Helsinki), with 102 magnetometers and
204 orthogonal planar gradiometers, located in a magnetically
shielded room. MEG data were natively sampled at 1 kHz with
an high pass filter of 0.03Hz. Resting state recordings were
obtained with the participant in seated position and with eyes
closed. Temporal Signal Space Separation (correlation threshold
0.98, 10 s sliding window) has been used to reconstruct missing
channels, to filter data and to correct continuous head movement
(200ms time window) (Taulu and Kajola, 2005; Taulu et al.,
2005; Taulu and Simola, 2006; Shafto et al., 2014). Vertical
and horizontal electro-oculogram (EOG) and electrocardiogram
were also available from the database.

We further preprocessed and prepared data using
FieldTrip (Oostenveld et al., 2011) and custom MATLAB
code (The Mathworks, Natick, MA, USA). Continuous resting
state MEG data were filtered (0.5–125Hz band-pass filter;
49–51Hz notch filter; Butterworth 4-th order two-pass) and
resampled at 250Hz. Identification of physiological artifacts has
been performed by using conservative automatic procedures.
Muscular activity was detected by filtering data through a
90–110Hz band-pass filter (Butterworth 9-th order two-
pass), converting the time series to z-score and averaging
results over channels. Segment having an average z-score
higher than 10 were considered as muscular artifacts and
removed from the data. Eye related activity and cardiac
activity were removed using an automatic procedure based
on Independent Component Analysis (ICA) (Hyvarinen
et al., 2001). Independent components were computed for
magnetometers and gradiometers separately using an extended

infomax algorithm (Lee et al., 1999). Thereupon, variance-
stabilized correlation coefficients between each component
and cardiac/electroocular channels were first evaluated and
then transformed to z-scores. Components yielding scores
that exceed a threshold, here set to 2, were considered as
artifactual and rejected. This identification/rejection procedure
was performed twice to ensure that no artifactual components
remain within the data. In the following analysis, only data
from planar gradiometers are used. MEG empty room data
were preprocessed following the same procedure as for human
resting-state data.

Individual anatomical MRI scans, which are provided along
MEG data, were processed to obtain head models for the solution
of the inverse problem. A model of the cortical mantle (20,484
vertices, 3.1mm of average source spacing) was obtained by
segmenting, correcting and extracting the external surface of the
gray matter using SPM (Friston, 2007) and the CAT12 SPM
toolbox.1 Sulci information was extracted and used to compute
an interpolationmatrix for the projection of the individual source
space to a MNI FreeSurfer average common space (5-th order
recursive icosahedron, 20,484 vertices) (Fischl et al., 1999). Each
vertex in the MNI common space was labeled as belonging to
one of the 360 regions of interest defined in a reference atlas
by Glasser et al. (2016). The atlas identifies 360 brain regions by
combining structural, diffusion, functional and resting state MRI
data from 210 healthy young individuals. In addition, surfaces
of the enclosing brain and of the scalp, each made of 20,000
vertices, were extracted for forward model solution and co-
registration with MEG data, respectively. All extracted surfaces
were co-registered to the position of the participant head in
the MEG resting state session by aligning anatomical landmarks
(nasion, left/right pre-auricular points). The co-registration was
further refined by aligning the scalp surface to the points digitized
during the MEG acquisition (see Shafto et al., 2014; Taylor
et al., 2016) for further details about head digitization during
MEG acquisition).

Source activity was reconstructed on each of the 20,484
vertices from MEG data using a Minimum Norm Estimate
method (Ilmoniemi and Sarvas, 2019). An orientation free source
model was used, thus leading to three time series for each
vertex pointing to the x-, y-, and z-coordinates, respectively.
Normalized lead fields were obtained using a single shell
model (Nolte, 2003), while the covariance matrix was computed
from empty room data. A noise normalized MNE kernel matrix
for the inversion of sensors data into brain sources was estimated
according to Equation (5.39) of Ilmoniemi and Sarvas (2019).
Noise covariance matrix was regularized by 10% and the prior
source covariance matrix was estimated from the trace of the
leadfield matrix as in Hämäläinen (2005). Finally, we reduced
the estimated neural activity by considering the norm of the
time vector at each vertex so that for each source, a time
series corresponding to the norm of the current dipole vector
reconstructed at that location is available.

Before proceeding with correlation analysis, data prepared
for each subject were visually inspected to ensure no errors

1See http://www.neuro.uni-jena.de/cat/ for the CAT toolbox (accessed June 2020).
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in the preparation process. Sensors data were inspected to
confirm, given above mentioned automatic thresholds, the
correct rejection of artifacts. Extracted surfaces were plotted and
checked, together with MEG sensors and projection of individual
sulci data on MNI space, to ensure correct co-registration and
interpolation. Finally, the CAMCaN repository also provides
MEG data with passive audio and visual stimulation. As a further
validation, for each subject, sources were reconstructed using
these auxiliary sensor data and the computed kernel, and results
were visually inspected to check that the corresponding brain
activity was correctly localized in auditory and visual cortices.

A set of 72 sources was selected out of the 20,484 available
ones provided by the reconstruction process. For each subject,
these 72 sources were selected as the closest ones to 72 brain
nodes, namely the centroids of 72 brain regions chosen among
those defined in the reference atlas (Glasser et al., 2016).
Limiting the analysis to 1/5 of the available regions stems from
a trade-off between computational cost and adequate coverage
of the whole brain. The selection of the 72 brain nodes was
carried out randomly and in compliance with a procedure
thoroughly described in Perinelli et al. (2019) (section “Dataset
and preprocessing” therein). The procedure yields nodes whose
pairwise distance is larger than 1 cm, in order to obtain a uniform
coverage of the brain cortex. The 72 brain regions extracted
through random selection and analyzed in the present work
are listed in Table 1, while Figure 1 shows the corresponding
anatomical positions.

Muscular artifacts rejection yielded, for each subject, a set
of epochs having different duration. Analyzed sequences were
extracted by trimming the longest available epoch (having
duration T1) for a given subject, as follows. If T1 > 240 s, samples
are contemporarily removed from the beginning and from the
end of the epoch until the resulting duration is 240 s. If 180 s 6

T1 < 240 s, the same trimming process is carried out until the
resulting duration is 180 s. If T1 < 180 s, the two largest epochs
are considered: segments are selected out of these two epochs
by means of the same procedure so that their total duration
is 180 s. For 10 subjects out of 100, because of insufficient
epoch length, the total duration is 160 s. To summarize, analyzed
sequences have total duration 240 s for 29 subjects, 180 s for
61 subjects, and 160 s for 10 subjects. The restriction of the
analysis to no more than two segments is due to the need of
limiting computational cost. Alternatively, one might choose the
same minimum duration of 160 s for all subjects. While such
a choice would provide a uniform dataset, we rather chose to
maximize, whenever possible, the amount of data included in
our analysis. It is worth mentioning that the cross-correlation
method applied here—and described in section 2.2—yields as
outcome a time scale of observability that is independent of the
underlying sequence length, provided that such length is much
larger than the maximum probed time scale (in this work 30 s).

2.2. Link Assessment via Zero-Delay
Cross-Correlation Analysis
In the present work, the existence of a link between a pair of
nodes is assessed out of the corresponding pair of sequences.

The assessment is carried out by means of a recently-developed
method (Perinelli et al., 2018; Perinelli and Ricci, 2019) based
on the evaluation of zero-delay cross-correlation over moving
windows having different widths. Cross-correlation is quantified
as the sample Pearson correlation coefficient, whereas its
significance is estimated through surrogate-based hypothesis
testing (Schreiber and Schmitz, 2000). The method is extensively
described in Perinelli et al. (2018) and in Perinelli et al. (2019).
An implementation of the method is provided in the publicly
available NetOnZeroDXC package (Perinelli and Ricci, 2019).
The method is here summarized as follows: given a pair of nodes
and their corresponding sequences, both of size N and sampled
with period T, the sample Pearson correlation coefficient r(k,w)
is evaluated on a moving window of widthw and centered at time
tk. The window width takes on values given by mw0, where w0

is the minimum width and m is an integer number between 1
and M. The center point of the first window is set to t0 =

Mw0
2 ,

whereas the successive center points are iteratively set according
to tk+1 = tk + w0 up to the last window that is centered at
tK = N T −

Mw0
2 . The center points and, consequently, the

number of same-sized windows used to cover the sequences, are
the same independently of the window width w. The set of center
points {tk} are ultimately fixed by the size of the sequences N and
the choice of w0 and M. In the present work, w0 was set to 0.2 s
and M to 150, so that the window width covers a range from 0.2
to 30 s.

These last parameters also set the lower and upper time
scale limits within which a link is observable. The upper
limit of 30 s is a consequence of the finite duration (several
minutes) of the available sequences. The lower limit is
instead constrained by the necessity of having a sufficient
number of samples in each windows so as to evaluate
cross-correlation. In this work, because the sampling period
is 4ms, the minimum window width of 0.2 s corresponds
to 50 samples. Smaller time scales could be probed by
increasing the sampling rate by one or more orders of
magnitude, a possibility hampered by the limitations of current
MEG technology.

Given the Pearson correlation coefficient diagram r(k,w), a
p value diagram p(k,w) is obtained by testing a null hypothesis
of independence on a number of 200 surrogates for each pair
of sequences. Upon setting a p-value threshold at 0.05, we
defined an efficiency function η = η(w) which gives the
percentage of windows of size w showing a significant cross-
correlation. Efficiency can be interpreted as an index of how
efficient a window width—and therefore the related time scale—
is in detecting significant cross-correlations between a pair of
sequences (Perinelli et al., 2018). As shown in Figure 2, the
efficiency function η(w) increases monotonically with w. In
the present work, a link is deemed to exist if η(w) overcomes
the efficiency threshold of 0.5. In other words, given a pair
of nodes, the existence of a link is acknowledged provided
that a window width w exists such that the majority of
windows detect a significant correlation in the corresponding
pair of sequences. The minimum value of w at which this
crossing occurs is taken as the time scale of observability of
the corresponding link and is henceforth referred to as W.
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TABLE 1 | Brain areas selected for the present analysis and whose anatomical position is shown in Figure 1.

Nr. Atlas area (hemisphere) Nr. Atlas area (hemisphere) Nr. Atlas area (hemisphere)

1 OP2-3 (left) 25 1 (right) 49 6a (left)

2 24dd (right) 26 POS2 (left) 50 TE1a (right)

3 a24pr (left) 27 V6A (right) 51 H (right)

4 TE2p (right) 28 PFt (left) 52 POS1 (left)

5 SFL (right) 29 A4 (left) 53 TE2p (left)

6 STV (right) 30 V4t (right) 54 PeEc (left)

7 a47r (left) 31 TGd (right) 55 10d (right)

8 TA2 (right) 32 7AL (left) 56 STGa (left)

9 a9-46v (left) 33 MIP (left) 57 8BL (right)

10 7Pm (right) 34 PoI1 (left) 58 PGs (left)

11 47m (right) 35 i6-8 (right) 59 PFm (right)

12 V3CD (left) 36 4 (right) 60 OFC (right)

13 13l (left) 37 RSC (right) 61 V1 (left)

14 A1 (right) 38 p32 (left) 62 6ma (left)

15 V3A (left) 39 25 (left) 63 7AL (right)

16 PGp (right) 40 IFJp (left) 64 MI (left)

17 PeEc (right) 41 31a (left) 65 TE2a (right)

18 a9-46v (right) 42 VMV2 (left) 66 45 (left)

19 TPOJ2 (left) 43 A4 (right) 67 6v (left)

20 8C (right) 44 8Ad (left) 68 VMV1 (right)

21 p9-46v (right) 45 IP2 (left) 69 LIPd (right)

22 9a (right) 46 TGd (left) 70 V8 (left)

23 TE1a (left) 47 PFop (right) 71 p32 (right)

24 TE1m (right) 48 6r (right) 72 V8 (right)

Acronyms pertain to the reference brain atlas defined by Glasser et al. (2016).

FIGURE 1 | Position, represented on a default anatomy, of the areas listed in Table 1. Colors are related to the functional group of the corresponding area according

to the reference atlas (Glasser et al., 2016) considered in the present work.
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FIGURE 2 | (A,B) P-value diagrams p(k,w) of sections of sequences belonging to two pairs of nodes. The diagram in (A) corresponds to a pair that is not deemed to

be linked, while a link exists in (B). The green dashed line shows the link time scale W = 15 s. (C) Efficiency η as a function of the window width w: the blue and red

lines corresponds to the diagrams in (A,B), respectively. The efficiency threshold of 0.5 is reached by the red efficiency curve at w = 15 s. (D) Scatter plot, for one

subject, of the assessed links: each point (link) is identified by the corresponding Euclidean distance d and time scale of observabilityW. The pair of nodes exhibiting a

link contributes to the scatter plot with a point of abscissa given by the distance d between the two nodes (32mm) and ordinate given by the resulting time scale W

(15 s). Two histograms, showing the sample marginal probability distributions of d and W, are also shown.

If η(w) does not overcome the efficiency threshold for any
value of w, no link is deemed to exist between the pair
of nodes.

While W is a measure of time scale of brain dynamics,
it is not related to the signal propagation speed within the
brain (Fransson, 2005; de Pasquale et al., 2010; Perinelli et al.,
2018), which is instead characterized by time scales that are
three orders of magnitude smaller than the time interval range
considered in the evaluation of W. The source of correlation
are segments that are shared by the two sequences and
are strong enough to overcome the noisy background. The
window width W is indeed an integration time: increasing
it does not affect signal components but progressively lowers
noisy contributions. From this point of view, W is inversely
proportional to a threshold value of the signal-to-noise ratio
(SNR) at which the link becomes observable. Two nodes having
maximum connectivity so that their sequences are identical
would correspond to a vanishing time scale of observability W.
On the other hand, two unconnected nodes would produce an
infinite W. Figure 2 shows the p value diagram p(k,w) and the
resulting time scale of observability W in the case of two nodes
that do not exhibit a link and in the case of two nodes exhibiting
a link with time scale W = 15 s. The time scale of observability

W, or better its reciprocal, can be considered as a measure of the
connectivity strength.

Given a number N of nodes within the brain, the number
of possible node pairs, and thus of links, is N(N − 1)/2: the
analysis described above is carried on each of the possible
pairs. While the results, for example in terms of an adjacency
matrix, can be used as a starting point for investigating possible
network structures (Gastner and Newman, 2006; Barthélemy,
2011; Perinelli et al., 2018), the goal of the present work is
the assessment of the dependence of connectivity, quantified
by means of W, on the geometric distance between nodes, as
discussed below.

For each of the 100 available subjects, 2,556 node pairs
are present. For each pair, the link length d, i.e., the
Euclidean distance between the nodes, was computed out of
the corresponding MNI coordinates (Glasser et al., 2016). Given
a pair of nodes, the related d differs among subjects due
to anatomical variability. Consequently, the whole set of 100
subjects results in ∼250,000 values of d within the range from
5 to 175mm. For each subject and pair of nodes, the time scale
of observability W of the corresponding link was assessed out
of the related pair of time series. A number of about 150,000
assessments were discarded from further analysis because they
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FIGURE 3 | (A) Scatter plot of the ratio R and the average W for each of the 100 subjects. Each point corresponds to one subject. The coordinates of the black

square dot correspond to the average R and W over all subjects, while errorbars show the related standard deviations. (B) Bar plot of the average R of the ratio R for

subjects grouped by age decade. The green solid line shows the grand-mean value of R, while green dashed lines bound the 95% (2 σ ) confidence region for R.

FIGURE 4 | (A) Histograms of the ∼250,000 available values of link length d (red lines) and of the ∼100,000 values of d corresponding to observable links (blue lines

and shaded areas). (B) Histograms of the values of log[d(mm)]; color meaning is the same as in (A).

did not deliver a finite value of W. The described skimming
process could be “less severe” by both enhancing the p-value
threshold to assess cross-correlation and reducing the efficiency
threshold. However, any such action would imply a larger
number of spurious correlations to be identified as actual links.
On the other hand, an infinite value of W does not rule out
the possibility of a real connection between the related nodes.
Increasing the upper limit of time scale W that can be assessed,
however, would require longer sequences. The analysis was
therefore carried out on the remaining set of observable links,
having a size of∼100,000.

2.3. Subject Dependence of Relative Link
Occurrence
In order to check the variability of the percentage of observable
links among subjects, we computed for each subject the ratio
R of the number of detected links and the number of available
pairs of nodes. Figure 3A shows a scatter plot of the ratio R
and the average W for each subject. Moreover, the subject-
wise averages of both R and W, as well as the related standard
deviations, are also shown. The clustering observed in the scatter

plot of Figure 3A suggests that our results exhibit little subject-
to-subject variability.

In addition, in order to highlight any age-related variability,
the value of R was averaged over subjects grouped by age.
Figure 3B shows the average value of R for sets of subjects
grouped by decades (18–27, 28–37 years, . . . ). The average value
of R turns out to be (0.40±0.09).While two decades, namely 18−
28 yrs and 68− 78 yrs, show fluctuations larger than the standard
error, there is no clear hint of a systematic age-related variability.

2.4. Functional Relationship Between W

and d
As a preliminary analysis step, the sample distributions of d and
W are considered. Figure 4A shows the sample distribution of
link lengths d. Two histograms are reported: the first one refers to
the whole set of available distances, while the second one includes
only observable links, i.e., node pairs for which the assessment
of W provided a finite value. The histograms of Figure 4B are
instead built by evaluating the logarithm of distances. The sample
distribution of d evaluated by including only observable links
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FIGURE 5 | (A) Histogram of the ∼100,000 available values of time scale W. (B) Histogram of the ∼100,000 available values of log[W(s)].

FIGURE 6 | (A) Joint sample probability distribution f (d,W). The surface plot and the corresponding color map projection on the d,W plane are obtained by

partitioning both the d and the W range in 25 bins each. Integrating f (d,W) along W yields the sample marginal probability distribution of d, which is shown by means

of a blue line (B). Similarly, the red line (C) shows the marginal sample probability distribution ofW. (D) Sample conditional probability distribution f (W |d) ofW given d,

evaluated as f (d,W)/gd (d). (E) Color map representation of the sample conditional probability distribution f (W |d); the d and the W range are partitioned in 50 bins

each. White dots show the average value W of W given d. White dashed lines bound the 68% confidence region for W, namely the region within 1σ from the

average W.

is shifted toward smaller d values, thus implying that smaller
distances correspond to a higher probability of observing a link.

Taking into account observable links only, Figures 5A,B

show the histograms of the time scale W and its logarithm

log[W(s)], respectively. The comparison of the histograms shown
in Figures 4, 5 prompts us to set some constraints on the form
of the mathematical expression of the relationship between W
and d. First, no linear mapping of the abscissa axes can lead to
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FIGURE 7 | Conditional sample distribution f (W | logd) of W given logd (the d

axis is in log scale) obtained by partitioning both the logd range and the W

range in 50 bins. White dots show the average value W of W given logd.

White dashed lines bound the 68% confidence region for W, namely the

region within 1σ from the average W. Black solid lines stem from a best-fit

procedure (see section 3) concerning a piecewise-linear relationship between

W and logd. Black dashed lines correspond to the logd values at which the

slope of the piecewise-linear relationship changes.

an overlap between the histograms shown in Figures 4A, 5A.
Therefore, there is no evidence of a linear relationship between
d and W. Second, a similar argument applied to the histograms
of the logarithm of the two variables d and W, respectively
shown in Figures 4B, 5B, rules out a power-law relationship.
Finally, exponential or logarithmic relationships are also ruled
out because of the impossibility of mapping Figure 4A onto
Figure 5B or Figure 4A onto Figure 5A, respectively, via a linear
rescaling of the abscissa axes.

To further investigate the relationship between link length
d and time scale of observability W, following the approach
introduced in Perinelli et al. (2019), the characterization of
the dependence of W on d is carried out by assessing sample
conditional probability distributions f (W | d). Figure 6A shows
the joint sample probability distribution f (d,W) obtained by
partitioning both the d range and the W range in 25 bins
each. The two sample marginal distributions gd(d) and gW(W),
which are obtained by integrating f (d,W) along the W and
d axis, respectively, are shown as solid lines in Figures 6B,C.
Taking the ratio f (W | d) = f (d,W)/gd(d) yields the sample
conditional distribution f (W | d) shown in Figure 6D. For the
sake of clarity, the color map representing f (W | d) is also
displayed in Figure 6E, in which the number of bins along each
direction is increased to 50.

Figure 7 shows the sample conditional probability
distribution f (W | log d) obtained by considering the logarithm
of distance expressed in millimeters (henceforth, log[d(mm)]
is simply written as log d). As for Figures 6E, 7 also shows the
average value of W, henceforth referred to as W, evaluated as a

TABLE 2 | Results of the characterization of the piecewise-linear relationship for

four different conditions.

Hemispheres m1 (s) m2 (s) m3 (s) d12 (mm) d23 (mm)

All links 7.0 ± 0.1 19.1 ± 0.5 6.7 ± 0.5 44 ± 2 68.3 ± 0.9

Left-Left 7.0 ± 0.2 19.0 ± 0.5 5.3 ± 0.7 44 ± 4 71 ± 1

Left-Right 8.0 ± 0.4 19.4 ± 0.1 6.9 ± 0.5 46 ± 8 67.5 ± 0.8

Right-Right 6.9 ± 0.1 19.1 ± 0.7 8.8 ± 0.5 44 ± 2 67 ± 1

Parameters m1, m2, m3 correspond to the slopes of the first, second, and third linear

regimes, respectively, while d12, d23 are the slope-changing abscissa values.

weighted sum:

W(log d) =
∑

{W | log(d)}

W · f (W | log d) ,

where the sum runs over all W bins having the same log d (the
evaluation of W in the linear case of Figure 6E is computed in
a similar way). Beside W, the related standard deviation is also
evaluated. In principle, one might consider the median of W
instead of the sample mean. However, relying on sample means
allows to associate an uncertainty—and therefore a confidence
interval—to the estimated value W by computing the related
standard deviation.

While the dependence of W on d in the linear case shows at
least six different slopes, and, in addition, an irregular sequence of
transitions from concavity to convexity, the dependence ofW on
log d appears to bemore regular: the functional shape ofW(log d)
evaluated out of the sample conditional distribution f (W | log d)
appears to be well-described by a piecewise linear curve, made of
three segments. Section 3 describes the results of the assessment
of this piecewise-linear curve on different sets of data.

2.5. Independence of the Results on the
Selected Nodes
In order to test whether the results of the present analysis are
independent of the set of randomly chosen nodes, we extracted
additional 72 nodes as a control set. This control set was extracted
with the same procedure of the original set with the only
additional constraint that no nodes of the control set belong to
the original one. Upon selecting seven subjects, each randomly
chosen within a uniform age distribution, we computed the
joint sample probability distribution f (d,W) both on the original
set and on the control set. Thereupon we implemented a 2-
dimensional Kolmogorov-Smirnov test (Press et al., 1997) to test
the null hypothesis that the two sample distributions f (d,W) are
mutually compatible: for 6 of the 7 subjects, the resulting p value
was above 5%, while for a single subject the p value was 2%. This
subject can be considered as an expected outlier by virtue of a
Bonferroni corrected significance level of 0.05/7 ≈ 0.01.

The compatibility between the results of the original set of
nodes and of the control one suggests that an increased number
of nodes does not lead to significant changes in the outcomes of
the analysis discussed in the present work. On the other hand,
selecting too a smaller set of nodes would unreliably sample the
f (d,W) distribution.
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FIGURE 8 | Conditional sample probability distribution f (W | logd) (the d axis is in log scale) obtained by partitioning both the logd range and the W range in 50 bins.

Each color map corresponds to a different sets of links. (A) Links for which both nodes are located in the left hemisphere. (B) Links for which the two nodes are

located in opposite hemispheres. (C) Links for which both nodes are located in the right hemisphere. White dots show the average value W of W given logd. White

dashed lines bound the 68% confidence region for W, namely the region within 1σ from the average W. Black solid lines stem from a best-fit procedure to assess the

piecewise-linear relationship between W and logd.

FIGURE 9 | Conditional sample distribution f (logW | logd) of logW given logd

obtained by partitioning both the logd range and the logW range in 50 bins.

White dots show the average value logW of logW given logd. White dashed

lines bound the 68% confidence region for logW, namely the region within 1σ

from the average log(W). The black dashed line corresponds to the logd value

marking the separation between the second and third regimes. The black solid

line stems from a best-fit procedure of the same power-law equation on points

belonging to the third regime. The light blue solid line shows the results of the

analysis from a previous work (Perinelli et al., 2019) concerning a power-law

relationship between W and d.

3. RESULTS

Three distinct regimes are revealed by representing W as a
function of log d. The regimes are henceforth defined as d 6

d12 (first regime), d12 < d 6 d23 (second regime), and d >

d23 (third regime). As introduced in section 2.4, the sample
conditional distribution f (W | log d) is here described by means

of a piecewise linear curve. It is worthmentioning that alternative
functional forms can be considered as candidates to describe
the observed dependence of time scale on distance. However, a
piecewise linear relationship turns out to adequately capture the
three-regimes behavior while relying on as few as six parameters,
four describing the offset and the three slopes and two describing
the boundaries of the three regions.

To identify and characterize these regimes, a two-steps
best-fit procedure was implemented as follows. First, upon a
manual setting of d12 and d23, three straight lines are fit over
the three resulting ranges. The two abscissae of intersection
between these straight lines, which are highlighted in Figure 7

by means of green dashed lines, are taken as the new estimates
of d12 and d23, thus correcting the preliminary manual settings.
Finally, on the three improved ranges stemming from the
previous step, a second fit procedure is carried out to assess
the final values of the slope of the three straight lines. The
outcome of this two-steps procedure is a piecewise-linear
best-fit curve.

In Figure 7 the piecewise-linear curve fitted on the whole
set of data is shown by means of a black solid line. The slope-
changing abscissa values turn out to be d12 = (44 ± 2)mm
and d23 = (68.3 ± 0.9)mm. The slopes of the three regimes are
m1 = (7.0± 0.1) s,m2 = (19.1± 0.5) s,m3 = (6.7± 0.5) s.

The results presented above concern the whole set of
observable links and subjects and are reported also in Table 2.
However, one might wonder whether these outcomes change if
the analysis is carried out by considering inter-hemisphere or
intra-hemisphere links. We therefore investigated three disjoint
sets: a first set containing links for which both nodes are located
in the left hemisphere; a second set made of links for which each
node belongs to an opposite hemisphere; a third set made of
links for which both nodes are located in the right hemisphere.
Figure 8 shows the resulting maps of the sample conditional
probability distribution f (W | log d) for these three sets of links.
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Again, three regimes, corresponding to three slopes of a linear
W(log d) relationship, can be identified. The characterization of
the three regimes, in terms of best-fit parameters, leads to the
three slopes and the two slope-changing abscissa values that are
also reported in Table 2.

The outcomes of the analysis provide a robust evidence of
the existence of three distinct regimes of W as a function of
d. Consequently, the three-regime separation turns out to be a
shared property of all kinds of links, either concerning nodes
belonging to the same hemisphere (intra-hemisphere) or to
opposite hemispheres (inter-hemisphere).

More in detail, the slope-changing abscissa values d12 and
d23 are mutually compatible among the four sets of links
listed in Table 2. The same occurs for the first two slopes m1,
m2, a fact that might be interpreted in terms of hemisphere-
independent processes that govern network topology for “small”
and “intermediate” distances. The remaining slope m3 exhibits a
higher variability: the larger slope in the Right-Right case with
respect to the Left-Right and Left-Left ones might be due to a
different mechanism underlying link formation. The fact that
m3 < m2 can be also due to saturation, namely to the geometric
boundedness of brain.

3.1. Comparison With Previous
Assessments
A previous paper by our group (Perinelli et al., 2019) described
a similar approach and suggested a power-law relationship

between W and d, which can be expressed as W = W0

(

d
d0

)γ

.

Upon setting d0 = 75mm, a best-fit procedure resulted in
γ = (0.44 ± 0.1) and W0 = (20.9 ± 0.2) s. This equation is
highlighted in Figure 9, which also shows the sample conditional
probability distribution f (W | d) of the dataset used in the present
work. It is worth noticing that, while the curve is shifted with
respect to the values of W, the curve slope for large values of d
is approximately the same. This was confirmed by performing a
best-fit procedure with the equation from Perinelli et al. (2019)
on the points belonging to the third regime d > d23. The fit
resulted in a value of γ = (0.46 ± 0.02), which is compatible
with the previous results. The reason for the different behavior in
the case of the points corresponding to smaller distances could
be due to the improved preprocessing techniques implemented
in the present work, particularly in terms of higher SNR. As a
result, a greater number of links at lower time scales W was
detected, which allowed to increase the resolution in the low W,
and consequently, in the low d regime.

4. CONCLUSIONS

In this paper, we investigated the functional relation between
brain connectivity and geometric distance. We used MEG
recordings from 100 healthy subjects in resting state to
reconstruct time series of cortical activity in 72 randomly chosen
nodes. For all possible pairs of nodes, besides the Euclidean
distance, we assessed, if any, the degree of connectivity between
the nodes by relying on a novel method based on zero-delay

cross-correlation. The relationship between geometric distance
and connectivity was then analyzed by inferring joint and
conditional sample probability distributions. The analysis was
also performed separately on inter-hemispheric pairs and intra-
hemispheric pairs.

While previous works hinted at a power-law relationship
between distance and connectivity, our results suggest that
distances can be distinguished in three regimes and that, in
each regime, connectivity depends on the logarithm of distance.
A logarithmic dependence might hint at the involvement of
information-related mechanisms, while the multiple regimes
can be related to small-world modular network architecture
supporting integrated/segregated processing.

The results presented in the present work can be improved
by taking into account more detailed definitions of distance. In
this framework one could rely, for example, on diffusion imaging
or g-ratio methods to assess physical connections between
nodes. This possibility, though not in the scope of the present
manuscript, makes up an interesting future development.
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