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Abstract: In high-altitude environments, the prevalence of high-altitude polycythemia (HAPC)
ranges between 5 and 18 percent. However, there is currently no effective treatment for this condition.
Therefore, disease prevention has emerged as a critical strategy against this disease. Here, we looked
into the microarray profiles of GSE135109 and GSE29977, linked to either short- or long-term exposure
to the Qinghai Tibet Plateau (QTP). The results revealed inhibition in the adaptive immune response
during 30 days of exposure to QTP. Following a gene set enrichment analysis (GSEA) discovered that
genes associated with HAPC were enriched in Cluster1, which showed a dramatic upregulation on
the third day after arriving at the QTP. We then used GeneLogit to construct a logistic prediction
model, which allowed us to identify 50 genes that classify HAPC patients. In these genes, LRRC18
and HCAR3 were also significantly altered following early QTP exposure, suggesting that they may
serve as hub genes for HAPC development. The in-depth study of a combination of the datasets of
transcriptomic changes during exposure to a high altitude and whether diseases occur after long-term
exposure in Hans can give us some inspiration about genes associated with HAPC development
during adaption to high altitudes.

Keywords: high altitude polycythemia; logistic model; prediction; microarray

1. Introduction

With their hypoxic circumstances, high altitudes have a profound impact on the
physical health of locals and visitors [1]. In order to adapt to hypobaric hypoxia, dwellers
from plain to plateau must allow the lungs to acquire more atmospheric oxygen, and the
number of red blood cells (RBCs) will rise compensatively [2,3]. Mild polycythemia is
considered a beneficial response to high-altitude hypoxia [4]. However, in certain people,
the number of RBCs continues to grow, resulting in high altitude polycythemia (HAPC),
which is characterized by headache, disorientation, sleeplessness, and bone discomfort. It
was first described by Viault in 1980 [5] and is the most typical characteristic sign of chronic
mountain sickness [6].

Over 140 million people reside at altitudes greater than 2500 meters above sea level [7].
The Qinghai-Tibet Plateau (QTP), the highest and largest plateau in the world, is character-
ized by low oxygen levels, and millions of people live and work in this region. According
to reports, the prevalence of HAPC in the QTP increases with altitude and ranges between
5% and 18% [8,9]. As the Qinghai-Tibet Railway was finished, an increasing number of Han
people migrated and traveled to Tibet. HAPC is much more prevalent among Han than
among natives [2]. Historically, studies focused more on the pathophysiologic processes of
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HAPC [10]. Furthermore, numerous investigations have verified the associations between
gene polymorphisms and HAPC by analyzing the genetic backgrounds of Han people and
Tibetans [9,11,12]. Nonetheless, disease-related genes require further investigation, particu-
larly in Han people. Here, we explored the microarray profile of HAPC and discovered
that genes involved in the development of this disease even changed at the early time of
exposure to hypoxia.

This study investigated the microarray profiles of GSE135109 [13] and GSE29977 [6],
respectively. We classified the differential expression genes (DEGs) in GSE135109 into 6
clusters with different dynamic expression patterns. Furthermore, 415 DEGs in GSE29977
were used to construct a logistic model to predict HAPC. At last, we overlapped the genes
identified in two datasets and acquired LRRC18 and HCAR3 as hub genes related to HAPC
development after exposure to QTP. This research will give us some inspiration about
key genes associated with HAPC development during adaption to high altitudes and
significantly enhance the early warning for HAPC.

2. Materials and Methods
2.1. Data Collection and Preliminary Processing

We searched in NCBI-GEO (https://www.ncbi.nlm.nih.gov/geo/, accessed on 17 March
2022), using the keywords “high altitude” and “Homo sapiens” and downloaded the
microarray datasets regarding people adjusting to high altitudes, including GSE135109 [13]
and GSE29977 [6]. The GSE135109 microarray dataset comprised 8 samples, which were
sampled at a low-altitude starting point (500 m) and at 3, 7, and 30 days after a quick ascent
to a high altitude (5200 m). The volunteers in this dataset were never previously at high
altitudes and had not developed HAPC during 30 days of exposure to high altitudes. Using
the GPL24539 platform, white blood cells from the periphery were collected and sequenced.
The oligo package was used to read CEL files from the GSE135109 dataset by annotating
gene symbols. The GSE29977 microarray data included 10 subjects who were Hans and
had migrated to the high altitude (4550 m) for more than 8 months, 5 of which were high
altitude polycythemia (HAPC) patients, while the remaining 5 were matched controls.
The peripheral blood leukocytes of 10 individuals were collected, and the gene expression
profiling was analyzed by GPL570 platform. GEOquery and AnnoProbe packages were
conducted to download and annotate this dataset. The participants in both two datasets
were young men. After the collected datasets were annotated with official gene symbols
and normalized (log2), we acquired 18,190 genes and 18 samples for the following analysis.

2.2. Identification of Differential Expression Genes

A differential expression gene (DEG) analysis was performed on the GSE135109 and
GSE29977 datasets, respectively. The limma (v 3.50.0) package [14] and the normalizeBe-
tweenArrays function were used to normalize the quantiles. The significant DEG threshold
was defined as log(FC) with an absolute value more than 1 and a p-value less than 0.05.

2.3. Microarray Time-Course Analysis

The union DEG sets (1135 genes) between three groups (D03vsD0, D07vsD0, D30vsD0)
were acquired for a further time-course analysis. The avereps function in the limma
package was used to compute the average expression values at various times. The Mfuzz
package [15] was implemented to detect clusters with consistent expression trends during
exposure to QTP.

2.4. Logistic Prediction Model Using Procedure Logistic

To develop a logistic prediction model, the GeneLogit software, a logistic regression
method applied to microarray data in small samples, was utilized [16]. Firstly, the localFDR
function was used to estimate the false discovery rate (FDR). Secondly, the theta estimate
provided by the model estimation function was 0.012. Thirdly, the bootstrap prediction
function was used to find the optimal τ and the corresponding prediction error for different
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values of q. The results are displayed in Table 1. Finally, we selected the procedure logistic
(q = 50, tau = 0.379) to construct our prediction model.

Table 1. The optimal τ and the prediction error for different q.

q 1 10 20 50 100

Optimal τ 4.502 2.316 0.559 0.379 0.214
prediction error 0.059 0.058 0.056 0.051 0.051

2.5. Analysis of Weighted Gene Co-Expression Network Analysis (WGCNA)

We conducted the weighted gene co-expression network analysis (WGCNA) to dis-
cover the relationships between gene expression patterns and phenotypes in GSE29977
using the WGCNA package [17]. For the subsequent analysis, we kept 14043 genes with
a median absolute deviation (MAD) greater than 0.01. The soft power was estimated at
14, and we constructed an unsigned scale-free co-expression network for the genes with a
minModuleSize of 100 and mergeCutHeight of 0.25. Ultimately, we identified 35 modules.
The moduleEigengenes function calculated the dissimilarity of the module eigengenes
(MEs), and then the Spearman correlation was used to assess the associations between the
MEs and phenotypes. The exportNetworkToCytoscape function was used to export the
network of genes selected in the logistic prediction model. At last, Cytoscape software [18]
was acquired to visualize the network.

2.6. Evaluation of Immune Cell Types

The CIBERSORT algorithm was applied to the log transformed normalized microarray
data of GSE135109, and the leukocyte signature matrix (Cibersort: LM22) was used to infer
immune cell types in each sample [19]. We utilized 1000 permutations from the default
signature matrix and calculated the p-value and root mean square error for each sample
file to improve the accuracy of the deconvolution algorithm. The scores for each signature
were summarized for each group and median centered to permit comparisons between
groups. The wilcox.test was used to discover the significance between comparisons.

2.7. Functional and Pathway Enrichment Analysis

A Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis and visualization were performed using the package clus-
terProfiler [20] for genes with different expression patterns. The GO comparison across
clusters was performed using the compareCluster function. The gene set enrichment analy-
sis (GSEA) [21] was performed to determine whether a series of pre-defined geneset were
enriched in the gene rank. The Molecular Signatures Database (MSigDB) [22] was also used
here. p-values of <0.05 denoted statistical significance.

3. Results
3.1. Exposure to the QTP Weakened the Adaptive Immune Response in Leukocytes

To determine the differences in the gene expressions of the four groups, the principal
component analysis (PCA) was conducted (Figure 1A). The apparent distinction was that
the gene expression changes after exposure to the QTP for 3 days were similar to those for
7 days (increasing along the PC1 axis). However, this trend reduced along the PC2 axis
after 30 days, indicating that the continuous exposure altered the expression of genes in
white blood cells. Then, the differential expression gene analysis was conducted to identify
the differential expression genes (DEGs) between different time points (D03, D07, D30) and
the control group (D0). The Venn diagram demonstrated that 108 genes were consistently
significant along with the exposure duration (Figure 1B). We performed GO enrichment to
determine the function of these 108 genes, and the dot plot revealed that these genes were
enriched in the adaptive immune response category (Figure 1C). We extracted 12 genes
related to the adaptive immune response, and the log2 fold change of each treatment group
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declined with exposure time (Figure 1D). These findings suggest that hypoxia in the QTP
might inhibit the adaptive immune response of white blood cells but that it would recover
as the exposure duration increases.
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Figure 1. Altitude exposure weakened the adaptive immune response: (A) PCA plot of GSE135109;
(B) Venn diagram showed the number of shared DEGs in three contrasts; (C) the dot plot was used
for visualization of GO enrichment; (D) the heatmap showed log(FC) values in three contrasts of
genes related to adaptive immune response.

3.2. Dynamic Expression and Functional Characteristics of Leukocytes upon Arrival in the QTP

We investigated the gene expression dynamics in human leukocytes at four time points
using 1135 genes that were significantly different from the control, and six clusters were
obtained (Figure 2A). Cluster 1 (206 genes) and cluster 3 (244 genes) were dramatically
changed with an increase in cluster1 and a decrease in cluster 3 on the third day after
arrival in the QTP. The dynamic expression of these 450 genes exhibited the greatest
altitude sensitivity. Then, we performed an enrichment analysis to determine their function
(Figure 2B). Both overlaps and variances existed between the two clusters. Cluster 1 was
specifically enriched in terms of the intrinsic apoptotic signaling pathway and the cellular
response to interleukin-1, and HIF1α was also found in this cluster. Cluster 3 was enriched
in terms of receptor-mediated endocytosis and adaptive thermogenesis. Both of them were
enriched in the positive regulation of cytokine production.
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Figure 2. Dynamic changes in the expression of leukocytes: (A) time course plots of normalized
data showing 6 patterns of gene expression of 1135 DEGs; (B) genes in cluster 1 and cluster 3
were compared to identify enriched biological processes, with the sizes of the dots representing the
numbers of genes involved and with the colors identifying different clusters.

Cluster 2, cluster 5, and cluster 6 had distinct expression patterns, and the enrichment
of these clusters revealed no relationship between them (Figure 3A). The genes in cluster
2 increased with the time of exposure and were enriched in the positive regulation of
hemopoiesis and related to leukocytes. In contrast, genes in cluster6 decreased and were
enriched in the regulation of lymphocytes. The genes in cluster5 showed a stable state
after three days of arriving at the QTP and were enriched in oxygen transport. Leukocytes
consist of different immune cell types, such as lymphocytes, monocytes, and neutrophils.
To discover the immune cell types in samples, we conducted CIBERSORT algorithm. In
this case, 17 types were acquired, none of which displayed the same expression profile
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(Figure 3B and Figure S1A). This result reminded us that the expression patterns in leuko-
cytes were in entirely different forms.
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Figure 3. The biological functions of genes insensitive to hypoxia and the changes in prediction in
immune cell types: (A) genes in cluster 2, cluster 5, and cluster 6 were compared to identify enriched
biological processes, with the sizes of the dots representing the numbers of genes involved and with
colors identifying different clusters; (B) the heatmap of the scores for each immune cell type.

3.3. Gene Expression in Leukocytes of HAPC Patients Exhibited Substantial Individual Variation

The GSE29977 dataset contains the microarray expression levels of 5 patients and
5 healthy human blood leukocytes that are paired with additional personal information.
However, the PCA revealed significant individual differences, indicating a large dispersion
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in the group (Figure 4A). Next, we performed DEG analysis and acquired 212 downregu-
lated and 203 upregulated genes (Figure 4B). Then, the gene set enrichment analysis (GSEA)
was conducted to figure out the potential function, and the result indicated that genes
involved in the metabolism of heme were downregulated and HBZ was included in this
geneset (Figure S1B).
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Figure 4. Analysis of genes related to HAPC in GSE135109: (A) PCA plot of GSE135109; (B) a volcanic
map showing DEGs, where the red dots indicates DEGs with upregulation and the blue dots indicate
downregulation; the genes with absolute log(FC) values higher than 2.25 were labeled; (C) the GSEA
plot of geneset of cluster 1 in Figure 2A; (D) The heatmap of module trait relationships showing the
correlations between each gene module and the phenotypes.



Genes 2022, 13, 1193 8 of 13

To figure out the relationship with DEGs in GSE135109 and GSE29977, we used the
GSEA. The result was only enriched in cluster1 (Figure 4C), which increased quickly
upon QTP exposure and also reminded us that genes related to HAPC were affected at
an early stage of exposure to high altitudes. However, when we examined genes that
were overlapped in two datasets, a few of them were identified (Figure S1C). In order to
figure out the molecular mechanism underlying HAPC, we obtained the pivotal modules
from the WGCNA analysis (Figures 4D and S2A). The steelblue and salmon modules were
significant in the HAPC patients. The blue module was also negatively correlated with
Qinghai CMS scores but positive with oxygen saturation. This meant that these three
modules were directly related to the disease. The oxygen saturation was also relevant with
the white, royalblue, and purple modules. Additionally, the length of time on the plateau
showed different signs and was significant with modules of grey60, datkturquoise, tan,
and saddlebrown. This result demonstrated that the age, time on plateau, and oxygen
saturation also impact the disease outcome. The steelblue module drew our attention. It
was not only related to the disease phenotype, but also to CMS which is its diagnostic
criterion (Figure 4D). Therefore, we further analyzed the genes in this module. The results
showed that the biological process of this gene set was enriched in the Wnt signaling
pathway (Figure 5A), and the homeostasis in leukocytes was inhibited by genes in this
module (Figure 5B).
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“Homeostatic process” and “ion homeostasis” genesets in the steelblue module.

3.4. Construction of a Prediction Model for HAPC

To identify the marker genes that predict HAPC, we constructed the logistic regression
model using the 415 DEGs. The optimal τ and the corresponding prediction errors for
q = 1, 10, 20, 50, and 100 are given in Table 1. The optimal τ decreases as q increases
and choosing a q value beyond 50 does not help much in further reducing the prediction
error. Next, we chose the procedure logistic (q = 50, τ = 0.379) to build our prediction
model, with the results given in Table 2, and obtained 50 marker genes to construct the
prediction model. However, there was no separate test dataset to assess the prediction error
for our model. Then, we used this dataset itself to cross-validate the model and illustrated
a higher efficiency (Figure S2B). LRRC18 and HCAR3 were also overlapped in the DEGs
of GSE135109 (Table S1). To visualize the contribution of these genes, we built a network
of these 50 marker genes using a weight of edge generated threshold of 0.02 in WGCNA
(Figure 6). HCAR3 showed higher total and inner connectivity (kTotal) in this network.
Here, we constructed a logistic model to screen the marker genes to predict HAPC.
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Table 2. Logistic prediction model using logistic regression (q = 50, τ = 0.379).

Gene Intercept PLA2G2E TNNC2 GAS8 RPTOR GPC3

coefficient 3.405 −0.078 −0.081 0.041 −0.067 0.056
Gene CFH ZNF852 NLRP8 TCERG1L FLJ45513 ARMCX2

coefficient 0.107 0.122 −0.047 0.086 −0.042 −0.068
Gene MIF-AS1 A4GALT ABCC6 LGSN RADIL NEU4

coefficient 0.073 −0.081 −0.096 −0.105 −0.055 −0.052
Gene LINC00290 PCSK6 FGF10 SPIC LRRC18 EFEMP2

coefficient −0.057 −0.064 −0.048 0.067 0.086 −0.048
Gene LINC01315 CYP2F1 CDX2 RASL10B KLK5 RSPO3

coefficient −0.045 −0.044 −0.059 −0.070 −0.057 0.050
Gene PLAC4 TDRD6 ITGA7 KCNA4 SPATA5 HCAR3

coefficient −0.054 0.073 −0.082 −0.053 0.042 −0.048
Gene RBMS3-AS3 HOXA7 CTNNA2 FBXL19 LINC00475 SYT8

coefficient −0.065 −0.056 0.047 −0.082 −0.072 0.080
Gene CYP2S1 CDKL3 ALX4 GPRIN1 TRAV16 CASP12

coefficient 0.084 0.053 0.069 0.051 0.044 −0.057
Gene TRPC4AP FSTL3 TOP3B

coefficient 0.050 0.056 0.050
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4. Discussion

After exposure to the plateau environment, the changes in hematopoiesis are more
complicated in humans than in experimental animals. This study merged two datasets
regarding the expression levels of leukocytes in peripheral blood in humans exposed to QTP
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and identified genes that could predict HAPC. The results indicated that the acclimation to
high altitude affects the immune system and that immune suppression would be restored as
time progressed. HAPC patients and the adapted people had distinct expression patterns,
and the steelblue module was related to both the disease phenotype and CMS. Then the
prediction model for HAPC was also developed, and significant alterations in HCAR3
and LRRC18 were also observed during the beginning of the exposure to a high-altitude
environment, suggesting that HAPC patients can be identified early.

At short timescales, the impact on the adaptive immune response cut a striking figure.
The adaptive immune system relies on B cells and T cells, and in vitro experiments demon-
strated that the human adaptive immune response is dependent on the oxygen level [23].
CX3CR1 is stably expressed on CD8+ T cells [24], and its expression was highly suppressed
on the third day following a quick climb to a high altitude. Physiological hypoxia impacts
the immune cell function, ultimately controlling innate and adaptive immune responses,
mainly though transcriptional regulation via hypoxia-inducible factors (HIFs) [25]. Here,
we showed that HIF1α was rapidly upregulated and associated with multiple biological
processes, including intrinsic apoptotic signaling. Severe acute hypoxia promotes oxidative
damage, which could trigger apoptotic mechanisms [26]. Nonetheless, a study conducted
on the Kyrgyz population revealed that circulating levels of the apoptotic signal were
diminished following acute and chronic exposure to high altitude conditions [27].

Inflammatory factors are reduced with acclimations to high altitude and are closely
related to the pathogenesis of HAPC and high-altitude acclimation [28]. During the first
month of exposure, immune-related genes were mainly affected. Genes associated with
lymphocytes were decreased in leukocytes and increased in lymphocytes. The CIBER-
SORT predictions also suggested that the expression profile of white blood cells exhibited
inconsistencies. This result committed to the study at 3700 m demonstrated an increase
in neutrophils and a slight decrease in lymphocytes [29] and exposure to acute hypoxia
marginally raised the neutrophils [30]. However, several investigations revealed con-
tradictory results. Hypoxic preconditioning combined with altitude training increased
T lymphocyte CD4/CD8 expression [31]. The latest cytological evidence showed that
metabolic stress under hypoxia rapidly drives T cell exhaustion [32]. Different immune cell
types might be related to distinct metabolic features.

HAPC is an adverse consequence of the adaption to high altitude, whereby the RBC
count continues to rise. As a result, significantly higher concentrations of hemoglobin were
found in HAPC patients than in matched controls [6]. However, genes involved in the
metabolism of heme were decreased. Heme is essential in detecting and utilizing molecular
oxygen and must be synthesized and degraded within an individual nucleated cell [33]. A
chronic hypoxia increased erythrocyte lifespan was discovered in a recent study [34], which
might explain why the heme metabolism was inhibited in HAPC. Furthermore, the DEGs
between HAPC and control subjects were also enriched in cluster 1, rapidly upregulated
after high altitude exposure, and inhibited in HAPC patients. These results indicate that
people who developed HAPC were sensitive to hypoxia. In this study, we discovered that
the critical module related to the disease was enriched in Wnt signaling, and it was also
found to be related to adaptation to high altitude in Ethiopia [35]. In addition, the Wnt
pathway impacts the ability of Drosophila melanogaster to complete its life cycle under
hypoxia [36], reminding us that Wnt signaling might serve an essential role in hypoxia
adaptation and may disturb the steady-state in HAPC patients.

Prediction models are designed to assist individuals in making decisions on the use of
diagnostic testing and starting or stopping treatments [37]. Here, we constructed a logistic
prediction model to discover 50 genes to predict HAPC. Serum inflammatory factor profiles
revealed several proinflammatory factors that were higher expressed, including IL-1 β,
IL-2, IL-3, TNF-α, MCP-1, and IL-16 between the HAPC and plateau control groups in
Han people [28]. However, the ages between the two compared groups showed a large
difference (37.4 ± 9.7 in HAPC and 27.2 ± 3.5 in control), and aging may be associated
with an upregulated inflammatory response [38]. In another study, plasma biomarkers of
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HAPC in older Tibetans (about 50 years old) were identified, including C4A, C6, CALR,
MASP1, and CNDP1 [39]. Among these proteins, MASP1 showed higher transcriptional
expression (log2(FC) = 1.04, p value = 0.07) than others in this dataset. This inconsistency
might remind us that the mechanisms between Tibetans and Hans in developing HAPC
was differ.

HCAR3 and LRRC18 were also sensitive to exposure to high altitudes and might be
able to predict whether a person would develop HAPC. HCAR3 activates Gi signaling in
immune cells and is also a therapeutic target for breast cancer and inflammatory bowel
diseases [40–42], and these diseases cause hypoxia response. HCAR3 activates ERK1/2,
which in turn activates NFκB-mediated hypoxia responses. Its transcriptional expression
also is more downregulated in smokers than nonsmokers at altitude, which might be related
to the inhibition of the hypoxic response [43]. LRRC18 was also identified as a critical gene
in coronary artery disease diagnosis [44], and its single-nucleotide polymorphisms are
associated with systemic lupus erythematosus [45]. However, the relationship between
these genes and the HAPC remains unclear. To investigate the underlying mechanism,
additional research is required.

This study had several limitations. It was necessary to consider the restricted sample
size while evaluating the results. Although split-sample validation was not performed,
the goodness of fit of our logistic models was assessed. A cohort will be needed to
evaluate the genes we identified here, along with a depth study of the mechanism of
HAPC development.

5. Conclusions

To discover the molecular mechanism during human exposure to high altitudes, we
explored two datasets related to short and long-term exposure to the QTP. The short-
term microarray expression revealed an impaired adaptive immune response, and several
immune cell types revealed dynamic alterations. In HAPC patients, the gene set for the
heme metabolism was downregulated and also enriched in cluster1, which was immediately
upregulated after arriving at high altitude. HCAR3 and LRRC18 expression might relate
to the development of HAPC. Here, we established a model and preliminarily explored
people who might develop HAPC.
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prediction. y indicates real disease state, fitted indicates the predict result of Logistic model; Table S1:
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