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A key issue in modern photonics is the ability to concentrate light into very small volumes, thus enhancing
its interaction with quantum objects of sizes much smaller than the wavelength. In the microwave domain,
for many years this task has been successfully performed by antennas, built from metals that can be
considered almost perfect at these frequencies. Antenna-like concepts have been recently extended into the
THz and up to the visible, however metal losses increase and limit their performances. In this work we
experimentally study the light coupling properties of dense arrays of subwavelength THz antenna
microcavities. We demonstrate that the combination of array layout with subwavelength electromagnetic
confinement allows for 104-fold enhancement of the electromagnetic energy density inside the cavities,
despite the low quality factor of a single element. This effect is quantitatively described by an analytical
model that can be applied for the optimization of any nanoantenna array.

R
eceiving antennas are devices that harvest the energy of free propagating electromagnetic waves and convert
it into an AC voltage1. Antennas are widely used in the low frequency part of the electromagnetic spectrum,
but recently nano-antenna devices have been explored up to the visible range2–4. Another way to apprehend

the antenna operation is in terms of electric field, rather than voltage5,6. In this case, antennas can be seen as
devices that are able to localize an oscillating electric field into a region of the space that is much smaller than the
wavelength of light. Antennas are therefore closely related to microcavities, which also have the peculiar property
to squeeze the electromagnetic energy into small volumes, for a particular resonant wavelength6,7. This property of
antennas or mirocavities is now intensively investigated to extract and control the emission from single nano-
scale objects such as molecules or quantum boxes3,4,8,9.

The ability of some photonic structures to operate both as antennas and microcavities is best illustrated in the
THz and micro-wave frequency regions, where metals are commonly used to confine light1,10. In this case the
charges induced in the metal walls by an incident radiation can be clearly linked to the oscillating electric field in
the resonator. Probably the best example is provided by the patch antenna, which consists of a metal ground,
dielectric layer and a square patch of size s1. If the dielectric layer thickness L is much smaller than the wavelength,
such structures support a TM100 mode with a frequency n0 5 c/(2sneff), with c the speed of light and neff the
effective index of the resonator. These cavities have been exploited to study the light-matter interaction in the THz
and Mid-Infrared regions11–13, and are widely used as antennas in the micro-wave region1. Antennas are now used
also as a tool to optimize and control light extraction from Quantum Cascade Lasers operating in double-metal
waveguides14–16. In this respect, the THz domain is also a formidable illustration of the crossover between optics
and electronics. At sub-THz and microwave frequencies, patch antennas are used to capture an impinging
electromagnetic radiation in order to feed oscillating electronic circuits. For frequencies above a few THz, these
structures are used to concentrate light into a semiconductor region, enabling the radiation to excite oscillating
microscopic dipoles originating from the electronic levels of nanometric-scale quantum heterostructures11–13.

In the THz region and up to the Mid-Infrared, a very interesting property of these metallic structures is their
strong sub-wavelength effective volume V 7 that boosts the light-matter interaction between the resonant mode
and the electronic quantum transition11,13. The metallic patch antennas are well suited for these studies, as the
electric field that they concentrate is perfectly aligned with the oscillating microscopic (intersubband) dipoles11,13.
In this context, we recently demonstrated wire-shaped double-metal resonators, where the lateral dimensions of
the patch have been reduced to highly sub-wavelength dimensions17. Funneling the incoming light into such small
volumes can indeed be very useful for building very small active surface detectors with extremely low dark
current. However, when reducing the resonator volume, a crucial question to be answered is how much of the
incident energy is actually coupled inside the structure. Commonly, when an optical resonator is fed by an
incoming wave, the energy density coupled inside the resonator is enhanced by an amount that is equal to the
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resonator quality factor Q18. However, the strong squeezing of the
electromagnetic field between metal layers always results in an
increase of the ohmic losses and therefore it is important to under-
stand the effects of higher losses on the near field enhancement of the
device.

In this work we present an analytical approach that gives quant-
itative information on the properties of these plasmonic structures.
The theoretical model is based on the fact that these double-metal
structures act both as antennas and micro-resonators and is in full
agreement with our experimental data, obtained by systematic stud-
ies of arrays of different geometry and filling factors. We will show
that, both the arrangement of such antennas into periodic (but still
sub-wavelength) array and the strong reduction of the resonator size
allow a very efficient funneling of the incoming electromagnetic
energy into very small volumes. Our results indicate up to 104

buildup of the electromagnetic energy density inside the resonant
structures, despite their low quality factors Q , 60. Moreover, the
main results from this model are expressed in a form that is free from
the details of our experimental system. We therefore believe that the
concepts developed in this work can be very useful for the optimiza-
tion of any antenna-coupled resonant photonic structure.

Results
Reflectivity measurements on wire microcavities. The structure
studied in this work is depicted in Figure 1. Fig. 1(a) is a
schematics of a single wire microcavity, Fig. 1(b) is a top view of a
portion of the array, obtained by scanning electron microscope
(SEM), and Fig. 1(c) is high resolution SEM scan along the red
rectangle in Fig. 1(b). This structure is obtained by Au-Au bonding
of a thin Gallium Arsenide (GaAs) layer on a host substrate. The gold
bonding layer then plays the role of the metallic ground of the
microcavity. An array of thin Au stripes is then deposited on the
top of the GaAs layer. The microcavity operates on the fundamental
TM100 mode, with a resonant wavelength lres 5 2neffs, with s the
length of the stripe, and neff , 4 the effective index17. For all
structures reported here s 5 12 mm, therefore the resonant frequ-
encies span between 3 THz and 4 THz (Fig. 2), which corresponds to
a wavelength range l 5 75 mm–100 mm. Both the width w of the

stripe and the thickness L of the GaAs layer have very subwavelength
dimensions. Two different thicknesses have been used in our
experiments, L 5 1 mm and L 5 300 nm, and for all structures we
have w 5 1 mm.

To probe the cavity resonances, we have performed reflectivity
measurements under almost normal incidence, as described in
Figure 2(a). The incident light was polarized along the cavity length
(the x-direction, Fig. 1(a) and Fig. 2(a)), in order to respect the
selection rule for the TM100 mode19. In Figs. 2(b) and 2(c), we report
the reflectivity curves measured with two sets structures with L 5
1 mm and L 5 300 nm. The absolute reflectivity is obtained by divid-
ing the spectra by a reference obtained with gold mirror and a base-
line correction. The resonant cavity mode appears as a reflection dip
in the spectra. In these experiments, we vary the lateral spacing dy

between the resonators (see Fig. 1(b,c) and Fig. 2(a)). The value of the
longitudinal spacing dx is kept constant, dx 5 3 mm. The grating
periods are kept subwavelength, so that the only contribution in
the reflected signal is the specular reflection (0th diffraction order).
In the plots of Fig. 2(b,c), the experimental data are represented by
symbols, and the continuous lines are Lorentzian fits. For the experi-
mental spectra, the crossed curves indicate measurements from a
repeat sample with the same parameters as the one indicated in dots.

The measurements reported in Fig. 2(b) and (c) display two main
features. The first is that the resonant frequency remains constant
when the cavities are sufficiently apart, (dy $ 3 mm), while it
is progressively red-shifted while the cavities are brought closer.
This behavior arises from a near field coupling between the cavities
that has been discussed elsewhere17. The second main feature of
the experimental data is the progressive decrease of the amplitude
of the dips (the dip contrast, C) as dy is increased and the density of
the arrays is reduced. That means that the ability of the structure
to absorb and dissipate photons is altered by the geometry of the
array. These measurements therefore allow gaining a quantitative
insight for the funneling of the incident electromagnetic wave into
the resonators.

Analysis of the experimental data. The experimental quantities that
describe the ability of the structure to interact with the incoming
radiation are the quality factor of the resonances Q and their

Figure 1 | Array of double metal wire resonators. (a) Schematics of a single wire micro-cavity. A GaAs layer of thickness L is sandwiched between a

metal ground and a metal stripe with length s and width w. The colormap describes the fundamental TM100 mode of the structure. (b) SEM picture of an

array of wire microcavities, indicating the relevant array dimensions. (c) High resolution SEM scan along the red rectangle indicated in (b).

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 1361 | DOI: 10.1038/srep01361 2



reflectivity contrast C, defined as C 5 12Rmin, where Rmin is the
reflectivity minimum at the resonant frequency. Both these values
can be extracted from the data through Lorentzian fits (continuous
lines in Fig. 2(b) and (c)) of the form:

R(n)~1{
C

1z
(n{n0)2

p2n2
0

Q2

ð1Þ

(In this work, the quality factors are defined as Q 5 v0/Dn 5
2pn0/Dn, where Dn is the FWHM of the reflectivity dip. Note that
there is an additional 2p factor with respect to the definition used in
Ref.19.) The contrast C is determined by the balance between the
reflected photons and those absorbed by the array of resonators. The
quality factor Q incorporates the radiation losses, 1/Qrad, and the
ohmic losses of the metal layers, 1/Qohm, through 1/Q 5 1/Qrad 1
1/Qohm. The error bars indicated in Fig. 3 are estimated from the
repeat measurements reported in Figs. 2(b),(c), which provide a
standard mean deviation of 0.06 for the contrast C and 10% of
uncertainties for the quality factors Q.

Our main theoretical result is to provide a link between the absorp-
tion properties of the array to the radiation properties of a single
antenna element. This link is contained into an explicit analytical
relation between the reflectivity contrast C and the ratio Qrad/Qohm.
To derive this relation we have used the Poynting’s theorem and
matched the incoming plane wave to the fringing fields of the struc-
ture, seen as an antenna. As a corollary, we also obtain the ratio

between the amplitudes of the incoming wave and the mode reso-
nantly excited in the microcavity. The detailed derivation is pre-
sented in the Methods section. Here we provide the main
theoretical results that can be directly compared with the experi-
mental data. The expression for the contrast C for the case of normal
incidence with x-polarized light (TM polarization) is:

C~
4a

(1za)2 , a~
Aeff

S

Qohm

Qrad
ð2Þ

In this formula, S is the unit cell surface of the periodic array, that is
in our case S 5 (s 1 dx)x(w 1 dy). The quantity Aeff is the antenna
effective area defined as: Aeff 5 l2 3 (dPrad/dV)/Prad, whith Prad the
total radiated power and dPrad/dV is the maximum radiated intens-
ity20. The quantity a introduced in Eq.(2) can be seen as the ratio
between the photon in-coupling rate (1/Qrad) and the absorption rate
(1/Qohm) corrected by the geometrical ratio Aeff/S. In this respect, the
result of Eq.(2) is analogous to the theory describing the coupling
between a waveguide and a resonator21. Indeed, a maximum contrast
C 5 1 is obtained when all the incident power flow is absorbed by
the structure. This situation is known in optics as critical coupling
regime21. In our case it is obtained when a 5 1, that is a perfect match
between the power dissipated in the microcavity array and the power
coupled inside the array.

In order to treat the experimental data, we calculate the quantities
Aeff and Qrad using microwave antenna theory20:

Figure 2 | Experimental characterization of the arrays. (a) Experimental configuration for reflectivity measurements performed at 10u incidence on

arrays, with variable thickness L and lateral spacing dy. The electric field E of the incident wave has also been indicated. (b,c) Reflectivity spectra

obtained with thickness L 5 1 mm (b) and L 5 300 nm (c). The corresponding spacings dy are indicated on the right. The experimental data is indicated

by dotted curves, and the continuous lines are Lorentzian fits. The crossed curves indicate measurements from a repeat sample with the same parameters

as the one indicated. The curves are shifted with a constant offset for clarity.

www.nature.com/scientificreports
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Aeff ~
l2

3:2
, Qrad~

pe

4neff

Aeff

wL
ð3Þ

Here e 5 12.2 is the dielectric constant of the bulk GaAs. The model
described in the Method section also allows deriving the ratio
between the electromagnetic energy density circulating in each cavity
and the energy density of the incoming wave:

e jEz0j2

jEinj2
~

lresS

2pV
QohmC cos h ð4Þ

Here V 5 wLs is the volume of the resonator, Ein is the electric field
amplitude of the incoming wave, Ez0 is the amplitude of the mode
resonantly excited in the microcavity, and h is the angle between the
incoming wave and the normal of the device. For the data reported
here we have cosh , 1.

Our treatment of the experimental data is presented in Figure 3. In
Fig. 3(a) we report the reflectivity contrast for the two sets of samples,
extracted from the data presented in Fig. 2, as a function of the array
filling factor f defined as f 5 sw/S. In Fig. 3(b) we present, as dotted
curves, the quality factors Q of the resonances obtained directly from
the Lorentzien fits through Eq.(1). According to Eq.(3), the typical
values of Qrad are , 5.5 3 103 for L 5 1 mm and , 2 3 104 for L 5
300 nm. These values are much higher than the values of Q observed
In Fig. 3(b), we therefore conclude that, according to the relation 1/Q
5 1/Qohm 1 1/Qrad, the overall quality factor is essentially dominated
by the ohmic loss of the microcavities, Q , Qohm. This means that the
system is in the undercoupled regime, a , 1, in agreement with
previous studies on THz photonic crystal structures22. According
to Eq.(2), another way to obtain Qohm is from the measurement of
C reported in Fig. 3(a). Combining Eq.(2) and Eq.(3) we obtain a 5
fQohm(4neffL/(spe)), which, together with the condition a , 1 allows
to relate directly the contrast C to Qohm. The resulting values of Qohm

are reported as continuous lines in Fig. 3(b). The shaded areas in
Fig. 3(b) correspond to the standard mean deviation of the model,
obtained from the error bars of C. The match is very good for both the
L 5 1 mm and L 5 300 nm structures, within the experimental
uncertainties. This proves the self-consistency of the model described
by Eq. (2), which sets a correlation between the linewidths and
amplitudes of the reflectivity dips in the experimental spectra.

Having validated our theoretical model through comparison with
measurements, we can now provide quantitative estimation of the
parameters relevant to the emission and absorption of radiation.
These parameters are the light extraction efficiency defined as Q/
Qrad

1, and the ratio between the energy densities of the electromag-
netic field inside the microcavity and that of the incoming field
(Eq.(4)). They are plotted respectively in Figures 4(a) and 4(b).

Not surprisingly, the extraction efficiency is strongly hindered for
the smaller thickness L 5 300 nm. Part of this tendency is explained
by the formula for the radiative quality factor Qrad, which increases as
1/L. However, the strong squeeze of the electric field between the
metal plates separated by L also increases the ohmic loss, thus further
reducing Qohm. This is also clear from the data in Fig. 3(b), since the
ohmic loss is the dominant contribution in Q. Interestingly, for both
thicknesses, the extraction efficiency decreases for high filling factors
f. This behavior indicates an increase of the losses as the array

Figure 3 | Summary of the reflectivity measurements. (a) Contrast of the

reflectivity resonances C as a function of the filling factor f for the gratings

from data Figs. 2(b) and 2(c). (b) The respective quality factors Q

(dotted curves), compared to the model (continuous curves). The shaded

areas correspond to the standard mean deviations of the model, computed

from the error bars of the contrast C and Eq.(2).

Figure 4 | Analysis of the reflectivity data. (a) The light extraction efficiencies of the samples, defined as the ratio Q/Qrad. (b) Ratio between the

electromagnetic energy densities of the microcavity field and the field of the incoming plane wave. The short-dashed lines are extrapolation of the data for

vanishing filling factors. The long-dashed line indicates the ratio Aeff/S (right axis). The shaded area corresponds to the single antenna limit, Aeff/S# 1. In

both (a) and (b) the error bars are estimated from those of C and Q reported in Fig. 3.

www.nature.com/scientificreports
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becomes denser, and can be related to near field phenomena that
appear for small grating periods19, such as light funneling mechan-
isms23. Indeed, as previously reported, for dense arrays the losses are
enhanced by the grating evanescent waves propagating along the
array19.

Similar trend is observed for the energy density ratio, as seen from
the plot in Figure 4(b). For low filling factors, very high ratios are
observed, resulting in strong enhancement of the energy density of
the microcavities: ,104 for the L 5 1 mm array, and , 4 3 103 for the
L 5 0.3 mm array. Similar enhancement factors have been theoret-
ically predicted with bow-tie THz antennas24. Note that this factors
are several orders of magnitude higher than the resonators quality
factors (Q , 60), that also set the limit for the maximum enhance-
ment in the naı̈ve single resonator picture. Such strong enhancement
is due to the presence of the factor lresS/V , neffS/wL in Eq.(4), and
is a direct consequence of the reduction of the transverse resonator
dimensions into highly sub-wavelength values.

As for the case of the extraction efficiency, the energy density
enhancement (Eq.(4)) decreases in the limit of high filing factors
f R 1 because of strong decrease Qohm. However, we observe a
crossover between the L 5 1 mm structures and the L 5 300 nm
structures at f 5 0.2. Indeed, for high values of the array filling factor
(f . 0.2) the enhancement for the L 5 300 nm structures is slightly
higher than that of the L 5 1 mm structures in spite of the fact that the
contrasts and quality factors are lower in that limit. This is because
the contribution of the geometrical factor S/wL is higher for the
smaller thickness. The combination of a strong subwavelength con-
finement with an array configuration is therefore very beneficial for
concentrating the electromagnetic energy into small regions of space.

It is very interesting to examine the near field enhancement that
can be obtained in the limit of very low filling factors, where f R 0
and S R ‘. This limit can be obtained when dy R ‘. Since at some
point the array period w 1 dy will become comparable and greater
than the resonant wavelength, we must take into account the high
order diffracted waves. However, as explained in the Method section,
as long as the gap dx is kept very sub-wavelength (dx = l), and for
normal incidence (h , 0), the diffraction does not intervene and all
the results Eq. (2)–(4) remain valid. In this case we can estimate from
Eq.(2) that the contrast C decreases as C R (4Aeff/S)(Qohm/Qrad).
Replacing in Eq.(4), we find an asymptotic value of the enhancement
parameter:

ejEz0j2

jEinj2
����

f?0

?
2lresAeff

pV
Q2

ohm

Qrad
ð5Þ

It is apparent that this limit depends only on the parameters of a
single receiving element. In our case, in which we deal with patch
antenna, the limit has a very simple form as the volume of the
antenna and the volume of the microcavity are in our case equal
and cancel out:

ejEz0j2

jEinj2
����

f?0

?
16
ep2

n2
eff Q2

ohm ð6Þ

In the case patch antennas, therefore, the limiting value (6) depends
only on the square of the resonator quality factor. The extrapolation
of the data for very small filling factors is plotted as dashed lines in
Fig. 4(b), showing the saturation of the enhancement at the limiting
value of Eq. (6). On the same graph, we have also plotted the ratio
Aeff/S between the antenna effective area and the grating unit cell.
The saturation is clearly attained when Aeff , S, where the behavior
of the system is dominated by that of a single antenna.

Beyond the case of patch-antennas, in general the micro-resonator
and the antenna can be different objects, and the confinement
volume will not necessarily cancel out. Then Eq.(5) clearly indicated
how the combination between antennas with high radiation loss with

a very small volume microcavity can lead to an important enhance-
ment of the electromagnetic field inside the cavity.

Discussion
Our results set general relationships between the electromagnetic
power dissipated in a nano-antenna array, the electromagnetic
energy density enhancement and the geometrical characteristics of
the system, such as the array filling factor. Depending on the par-
ticular applications, the analytical results described in Eq.(2)–(5) can
be used to optimize a given device.

Consider, for instance, the case where the semi-conductor layer is
filled with photoconductive media, such as doped shallow quantum
wells as in a typical Quantum Well Infrared Photodetector (QWIP)
device25. Another possible example is the micro-bolometer detectors
relying on planar antennas26. In this case an important quantity is the
contrast C which describes how much of the incident power is
coupled inside the detector active medium. The latter, however, is
partially dissipated by the metal losses and does not contribute to the
photocurrent signal. For the detector the total non-radiative loss is
then described by a quality factor 1/Qnr 5 1/Qph 1 1/Qohm which
takes into account both contributions, from the metal 1/Qohm and
from the photoconductive media, 1/Qph. In this case we should use
Qnr instead of Qohm everywhere in Eq.(2)–(6). The figure of merit of
the system is therefore CxQnr/Qph which is also directly proportional
to the detector responsivity. If the photoconductive loss is small,
1/Qph = 1/Qohm this figure of merit becomes CxQohm/Qph with C
independent from Qph. In this case the optimal responsivity of the
detector can be evaluated using the values of C and Q reported in
Figure 3(a,b). The result is plotted in Figure 5(a) which provides an
optimum filling factor for a detector array of a given thickness. When
1/Qph cannot be neglected with respect to 1/Qohm, Eq.(2) provides a

Figure 5 | Possible array optimizations. (a) A figure of merit of a possible

detector device build with our THz nano-antenna array. (b) Optimization

of the array from the point of view of a SEIRS experiment. The shaded

areas correspond to the standard mean deviation of the model.

www.nature.com/scientificreports
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relationship between the contrast C and Qnr, and the optimization
can still be performed.

Another example of interest are the surface enhanced infrared
spectroscopy (SEIRS) or surface enhanced Raman scattering spec-
troscopy (SERS) which rely on metallic nano-particle arrays27. In this
case each nano-particle acts as an antenna in order to provide a local
field enhancement and increase the detection sensitivity28. For these
techniques the overall response is proportional to e jE0zj2/jEinj2 (for a
SERS signal we should rather consider e2jE0zj4/jEinj4) multiplied by
the number of cavities illuminated by an incident beam with a spot
size Sbeam. The number of cavities illuminated is Sbeam/S 5 Sbeam/ws
x f and therefore proportional to the filling factor. Once again, our
results in Eq.(4–6) indicate clearly how such optimization can be
performed. The figure of merit for SEIRS becomes f x e jE0zj2/jEinj2
and has been plotted in Fig. 5(b), showing that thinner structures
could have better performance for higher filling factors. Remarkably,
this trend is opposite as compared to the case of detectors (Fig. 5(a)),
that are optimized for lower filling factors and a larger thickness.
More generally, for a given micro-antenna array, our model predicts
a maximum overall signal collected from a SEIRS or a photo-
detection experiment as a function of the geometry of the system.

These examples show how the combination between metallic res-
onant structures providing strong near field enhancement and a two-
dimensional patterning add degrees of freedom to the optimization
of a number of devices, which go beyond the context of the experi-
ments described in this paper. Indeed, our theoretical treatment is
based on general concepts like energy conservation and antenna
theory. Therefore this approach can be adapted to any type of peri-
odic array and any antenna geometry. Indeed, the final results stated
in Eq.(2) and Eq.(4) have a very general form, independent from the
particular type of antennas. We therefore believe that they have wider
domain of application, and can be used to describe, for instance, light
absorption from meta-material arrays29 or nano-antennas in the
visible3. In particular, our results describe quantitatively the near field
enhancement in systems such as very small volume microcavities
combined with high radiation loss antennas. Note that our studies
do not rely on concepts like phase arrays20 which basically exploit the
constructive interference of light emitted or transmitted from each
element30. This is because our results were established for the case
where the high diffraction orders can be neglected.

The concepts developed here could have an important impact
for conceiving and realizing new plasmonic detectors of radiation.
Actually, our results indicate how the electric field amplitudes in each
absorbing element of the array can be enhanced, while the size of

semiconductor active region can be greatly reduced. These structures
can therefore allow increasing the ratio between the photocurrent
(that is proportional to the electromagnetic energy density coupled
in the structure) on the dark current of the detector.

Methods
Here we provide the detailed derivations of Eq.(2) and Eq.(4). The geometry of the
model is described in Figure 6. We consider a TM polarized plane wave incident on
the array, with an in-plane wavevector G00 with components:

G00x~
2p
l

sin h cos w, G00y~
2p
l

sin h sin w ð7Þ

Here h and w are the polar angles that correspond to the direction of the incoming
wave with respect to the resonator axis as defined in Fig. 6. Moreover, we suppose
that the field in the resonator is described by the standing wave equation
Ez 5 Ez0cos(xp/s)19.

The first step to establish the result (2) is a very general energy conservation
argument. Let us consider the Poynting’s theorem31 applied to the rectangular volume
described in Fig. 6(a). The basis of the volume is the unit cell of the grating with a
surface S. (Note that for an arbitrary array the volume is rhomboidal which does not
change the final result.). According to the periodicity of the system, for this particular
choice the Poynting fluxes incoming to a pair of opposite lateral surfaces are exactly
equal, Sa 5 Sc and Sb 5 Sd. However, their contribution to the energy variation of the
volume has an opposite sign with respect to the normal of the surfaces, and therefore
they cancel out. Therefore the energy conservation must account only for the upper
and the lower surface of volume and takes a very simple form:

S(SR{Sin)~SSTz

ððð
V

jEd3r ð8Þ

Here Sin and SR are the z-components of the incoming and the reflected Poynting
fluxes, averaged over the unit cell of the grating, ST is the Poynting flux through the
metal ground and the last term describes the ohmic losses in the metal stripe and
eventually in the semiconductor region of the resonator. Since the metal ground is
optically thick, no field tunnels through, and the flux ST is all lost as ohmic dissipation.
The right hand side of Eq.(8) describes therefore all the non-radiative loss of the
resonator. We can define a non-radiative quality factor Qohm through the relation:

dU
dt

����
nr

~
v0U0

Qohm
~SSTz

ððð
V

jEd3r ð9Þ

Here v0 5 2pn0 and we introduced the total electromagnetic energy stored in the
resonator: U0~ee0jEz0j2swL, by neglecting the contribution of the fringing fields17.
To further explicit relation (8), we use the Rayleigh-Bloch decomposition32 of the field
in the air that can be expressed in terms of the incoming and reflected electric fields:

Ez~
X

G

jGjeiGr(dG,G00 eicG zzRGe{icG z), c2
G~k2

0{G2 ð10Þ

E==~{
X

G

GcG

jGj eiGr(dG,G00 eicG z{RGe{icG z) ð11Þ

Here G 5 G00 1 G9 with G9 the reciprocal lattice vectors, r 5 (x,y) is the in-plane
position vector, c is the speed of light, k0 5 v0/c and E// 5 Ex, Ey. are the horizontal
electric field components. The expressions for the magnetic field components Hy and
Hx can be easily derived from Maxwell equations. The decomposition (10) contains a

Figure 6 | Geometrical layout for our model. (a) Schematic of the volume used to express the energy flow conservation in our system. The volume

lays on a unit cell of the array. The different Poynting fluxes normal to the surfaces are indicated. (b) Representation of the incoming electric field

projection and of the fringing fields for a single resonator. The inset indicates the polar angles describing the direction of the incident plane wave. The

parameter a is the typical extension of the fringing fields.

www.nature.com/scientificreports
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set of reflected waves with amplitudes RG, however, since our grating is very
sub-wavelength (S , l2), only the 0th order is a propagating wave with amplitude R00

and contributes to the reflected Poynting flux SR. Using the explicit expression of the
z-component of the Poynting flux, Sz 5 Re(ExHy* 2 EyHx*), we rewrite (9) in the
following form:

1{jR00j2~e
swL

Qohm

jEz0j2

Sc00
ð12Þ

This equation leads directly to Eq. (4). Indeed, the normalization of incident electric
field corresponding to Eqs. (10,11) is jEinj2 5 k0

2, and the contrast is defined as
C 5 12jR00j2. Furthermore, in Eq.(4) normal incidence is considered (h 5 0), where
c00 5 k0.

The next step is to relate the reflectivity to the radiation loss. For this purpose, we
consider our structure as a patch antenna, and we use the antenna theory20. Following
the treatment provided in Ref. 20, we can express the in-plane components of the
fringing electric field around the resonator openings as a function of the perpendic-
ular component, Ez:

Ex x~0ð Þ~ L
a

Ez x~0ð Þ, Ex(x~s)~{
L
a

Ez(x~s) ð13Þ

Here a is the extension of the fringing fields, as illustrated in Fig. 6(b). We have
considered only the x-components, since the contribution of the Ey components
cancels out due to the symmetry of the mode20. Matching the expressions (13) with
the Bloch-Rayleigh expansion in the air (10), and integrating over the unit cell of the
grating, we obtain:ðð

O1|O2

G00:E==
��
{

e{iG00 rd2r~
ðð

S

G00:E==
��
z

e{iG00 rd2r ð14Þ

In the above expression, we use (11) for E//j1 and (13) for E//j2. Note that this
equation expresses the conservation of the in-plane electric field averaged over the
area of the fringing fields and the unit cell of the lattice, respectively. By carrying out
the integration, we obtain the relation:

c00(1{R00)S~LEz0 1z exp ({iG00xs)½ � 1{ exp ({iG00yw)
� � G00x

jG00jG00y
ð15Þ

By taking the modulus squared of this expression and using Eq.(7) we obtain:

c2
00j1{R00j2S2~4w2L2jEz0j2jF(G00)j2 cos2 w ð16Þ

Here F(h,w) is the aperture function of the patch antenna, describing its radiation
pattern, which writes:

F(G00)~F(h,w)~ cos
G00xs

2

� �
sinc

G00yw

2

� �

~ cos
ps
l

sin h cos w
� �

sinc
pw
l

sin h sin w
� � ð17Þ

The ratio between the expressions (12) and (16) allows one to obtain the following
equation:

j1{R00j2

1{jR00j2
~

4wL
esk0S

Qohm
cos2 w

cos h
jF(h,w)j2 ð18Þ

This equation still contains the parameters specific to the patch antenna. In order to
obtain more general expression that could eventually apply to any antenna, we
re-express the above equations as a function of the antenna effective area, provided
by:

Aeff ~
l2

Drad
ð19Þ

where Drad is the dimensionless angular integral:

Drad~

ðp=2

0

ð2p
0

jF(h,w)j2( cos2 wz cos2 h sin2 w) sin hdwdh ð20Þ

We also use the radiative quality factor Qrad provided by Eq.(3) . This leads to the final
result:

j1{R00j2

1{jR00j2
~a~

Aeff

S

Qohm

Qrad

cos2 w

cos h
jF(h,w)j2 ð21Þ

Eq. (2) is then recovered assuming that the reflected wave has the same phase as the
incoming wave, so that j12R00j5 12jR00j. We have checked numerically that this is
the case when the gratings are sub-wavelength. We then re-express jR00j with the
contrast through C 5 12jR00j2. The prefactor cos2w expresses the polarization
selection rule for the wire shaped structure, since w is the angle between the electric
field of the incoming wave and the wire (Fig. 6(b)). In the experimental conditions
considered in the previous section we have w 5 0 and h 5 0 which leads to Eq.(2).

Similar derivation can be applied to treat any patch antenna structures arranged in
any periodic array. The final result will be identical to Eq.(2) or Eq.(21), expect for the
function cos2w jF(h,w)j2/cosh that must be adapted for the particular geometry of the

resonator. For instance, in the case of the higher order TMK00 mode of the wire
resonators, equation (21) still holds if we define:

F(h,w)~sinc
G00yw

2

� �
|

cos G00xs=2ð Þ, K odd

sin G00xs=2ð Þ, K even

(
ð22Þ

We therefore recover selection rules that are similar to those of the square patch
cavities19, which state that the even K modes are not excited in normal incidence (in
this case a 5 0 and C 5 0). More generally, formula (21) expresses the fact that the
reflectivity selection rules arise from the radiation pattern of a single antenna.
Therefore the absorption properties of a sub-wavelength antenna array can be
engineered by adjusting the radiation pattern of a single element.

To extend this treatment to the case where higher diffraction orders are present, we
must add their contributions 2(cG/c00)jRGj2 to the left hand side of Eq.(12). The
amplitudes of the diffraction orders are readily obtained from Eq.(13), by replacing
G00 with G, which leads to:

c2
GjRGj2S2~4w2L2jEz0j2jF(G)j2 cos2 wG ð23Þ

Here we have defined cos2 wG~G2
x=G2. In the case where dx = l , and for normal

incidence we have G 5 (0, 2pN/(w 1 dy)) with N an integer. We therefore have
cos2 wG~0for the high order diffraction amplitudes, and their contributions vanish.
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