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INTRODUCTION 
 

Alternative splicing (AS) is a crucial process in most 

gene expression and generates more than one mRNA 

from a single gene locus to then generate distinct 

proteins [1, 2]. More than 90% of human genes undergo 

AS, with variability between tissues [3]. Studies have 

shown that AS defects significantly affect cell 

development and underlie many diseases, including 

different cancers, as selective AS allows cancer cells to 

generate isoforms that benefit cell survival [4, 5]. Also, 
AS affects tumorigenesis by influencing genome 

instability [6] and gene mutations, other cancer 

hallmarks [7]. Splicing factor (SF) dysregulation is the 
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ABSTRACT 
 

Background: Recent studies identified correlations between splicing factors (SFs) and tumor progression and 
therapy. However, the potential roles of SFs in immune regulation and the tumor microenvironment (TME) 
remain unknown. 
Methods: We used UpSet plots to screen for prognostic-related alternative splicing (AS) events. We evaluated 
SF patterns in specific immune landscapes. Single sample gene set enrichment analysis (ssGSEA) algorithms 
were used to quantify relative infiltration levels in immune cell subsets. Principal component analysis (PCA) 
algorithm-based SFscore were used to evaluate SF patterns in individual tumors with an immune response. 
Results: From prognosis-related AS events, 16 prognosis-related SFs were selected to construct three SF 
patterns. Further TME analyses showed these patterns were highly consistent with immune-inflamed, immune-
excluded, and immune-desert landscapes. Based on SFscore constructed using differentially expressed genes 
(DEGs) between SF patterns, patients were classified into two immune-subtypes associated with differential 
pharmacogenomic landscapes and cell features. A low SFscore was associated with high immune cell 
infiltration, high tumor mutation burden (TMB), and elevated expression of immune check points (ICPs), 
indicating a better immune response. 
Conclusions: SFs are significantly associated with TME remodeling. Evaluating different SF patterns enhances 
our understanding of the TME and improves effective immunotherapy strategies. 
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main cause of aberrant AS, with SFs functioning as both 

oncoproteins and tumor suppressors [8]. 

 

Globally, lung cancer has the highest cancer related 

mortality [9]. Non-small cell lung cancer (NSCLC) 

accounts for the majority of lung cancers, of which lung 

adenocarcinoma (LUAD) ratios are continuously 

increasing [10]. Altered AS occurs in LUAD and 

mainly results from SF expression, including SRSF and 

RBM families [3, 11]. It was reported that aberrant AS 

events in LUAD contribute to different cell functions, 

such as apoptosis, proliferation, and drug resistance 

[11]. Although the mechanisms underpinning aberrant 

AS patterns remain unclear, assessing such patterns to 

evaluate LUAD risk and predict the effects of LUAD 

treatment may improve patient survival. 

 

In recent years, LUAD treatments have been 

continuously developed and improved, but a definitive 

cure remains elusive [12]. Chemotherapy is the first line 

of treatment for lung cancer; however, its benefits have 

plateaued. Treatments targeting epidermal growth factor 

receptor (EGFR) mutations, anaplastic lymphoma 

kinase (ALK) fusion oncogenes, and KRAS mutations 

are considered promising but their effects are limited 

[13]. 

 

The tumor microenvironment (TME) plays a vital role 

in tumor proliferation, invasion, and migration [14]. 

Consistent with these functions, immunotherapy, 

including the anti-tumor effects of CTLA-4 and 

programmed death-ligand 1/programmed death-1 (PD-

L1/PD-1) blockade, have become leading and powerful 

treatments for LUAD treatment [15–17]. TME 

complexity is mainly reflected by immune infiltration, 

and is based on the spatial localization of immune cells 

relative to the tumor and stromal compartments, 

therefore human tumors are categorized as immune-

inflamed, immune-desert, and immune-excluded 

phenotypes, and present many challenges for tumor 

immunotherapy [15, 18]. 

 

Studies have identified relationships between AS or SFs 

and the immune microenvironment, including head and 

neck squamous cell carcinoma, breast cancer, and 

LUAD [19, 20]. It was reported that PD-L1 generated a 

long non-coding RNA by AS to promote LUAD 

progression [21]. Recent studies also reported 

interactions between SFs and cancer therapy that some 

SFs contributed to drug resistance [13, 22]. In terms of 

cancer immunotherapy, peptides may serve as 

neoepitopes from tumor specific mRNA splicing events, 

with a potential to bind to major histocompatibility 
complex class I molecules [23]. Furthermore, splicing-

derived neoantigens may be useful as predictive 

response biomarkers for immune check point (ICP) 

blockade therapies, such as PD-1 or CTLA-4 [23]. 

There is an urgent need to identify SF related targets for 

cancer therapy, and recognizing the significance of SFs 

and TME characteristics, mediated by SFs, will improve 

our understanding of tumor immunity. 

 

Thanks to the establishment of public databases and 

bioinformatics, the analysis of tumor expression profiles 

is both rapid and convenient. In this study, we 

downloaded gene expression data from The Cancer 

Genome Atlas (TCGA), Gene Expression Omnibus 

(GEO), and TCGA SpliceSeq databases. By analyzing 

SF patterns and SF cluster-related differentially 

expressed genes (DEGs), we constructed several TME 

models to predict immunotherapeutic benefits in 

LUAD. We showed that AS is key for shaping the TME 

and may have important therapeutic applications for 

LUAD. 

 

METHODS 
 

Data sources and preprocessing 

 

AS data from LUAD patients were downloaded from 

the TCGA SpliceSeq database, and included seven 

different AS events: 1) alternate acceptor site (AA), 2) 

alternate donor site (AD), 3) alternate promoter (AP), 4) 

alternate terminator (AT), 5) exon skip (ES), 6) 

mutually exclusive exons (ME), and 7) retained intron 

(RI). Specimens were included for further analysis if 

percentage percent-spliced-in (PSI) value were > 75%. 

An SF list was identified from a published study [24]. 

Gene expression and clinical data were respectively 

retrieved from TCGA (https://portal.gdc.cancer.gov/) 

and GEO (https://www.ncbi.nlm.nih.gov/geo/) data-

bases. In total, six eligible LUAD cohorts (GSE13213 

[25], GSE37745 [26], GSE31210 [27], GSE3141 [28], 

GSE30219 [29], and GSE50081 [30]) were integrated 

as the training cohort. LUAD patients from TCGA  

were the testing cohort. Batch effects from non-

biological technical biases were corrected using the 

“ComBat” algorithm of the sva package. Copy number 

variation (CNV) data from TCGA-LUAD patients 

were obtained from the UCSC Xena website 

(https://xena.ucsc.edu/). 

 

Prognosis-related AS events 

 

We eliminated specimens without follow-up or short 

follow-up information (< 90 days) to exclude the impact 

of short-term follow-up. AS events were eliminated 

when the standard deviation of the PSI value among 

specimens was < 0.01. Prognosis-related AS events were 

identified using univariate Cox regression analysis, and 

displayed in a volcano plot and UpSet map. The top 20 

AS events were displayed in a bubble chart. 

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://xena.ucsc.edu/
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Constructing an AS-SF interaction network 

 

Correlations between prognostic AS events and SFs 

were evaluated by Spearman’s analyses in LUAD 

patients from the TCGA dataset. Interactions were 

included when correlation coefficients were > 0.6 and 

p < 0.001. Then, an AS-SF interaction network was 

constructed and included prognostic AS events and 

related SFs. 

 

SF-based consensus molecular clustering 

 

In our AS-SF interaction network, we identified 16 SFs, 

including CIRBP, CCDC130, CLASRP, LUC7L3, 
CLK1, CLK4, ALYREF, RBM5, CDK10, SREK1, 

SNRNP70, RBM15, ARGLU1, SRSF5, SRRM2, and 

SRSF11. Genes, which were highly correlated with 

prognosis-related AS events. Four genes not found in 

the training cohort (integrated GEO cohort) were 

eliminated. Unsupervised clustering analysis was used 

to identify distinct patterns using these SFs. A 

consensus clustering algorithm was used to classify 

LUAD samples into different SF modification clusters 

and test corresponding stability. The Consensu-

ClusterPlus package [31] was used to perform these 

steps and 1000 times repetitions were calculated to 

guarantee corresponding stability. 

 

Gene set variation analysis (GSVA) 

 

To explore biological heterogeneity between different 

SF patterns, GSVA enrichment was performed in  

the “GSVA” package [32]. Hallmark gene sets 

“h.all.v7.4.symbols.gmt” were extracted from the 

MSigDB database [33] to conduct GSVA. The 

clusterProfiler R package [34] was used to perform 

functional annotations for SF-related genes. An adjusted 

P value < 0.05 was considered statistically significant. 

 

Single sample gene set enrichment analysis 

(ssGSEA) 

 

We used the ssGSEA algorithm to quantify the relative 

abundance of 28 infiltrating immune cell types, 13 

immune functions, and other related biological 

processes in LUAD samples. The gene sets for marking 

each TME infiltration immune cell type stored various 

immune cell subtypes, including activated B cells, 

activated CD8 T cells, activated dendritic cells, 

macrophages, natural killer T cells, and regulatory T 

cells [35]. We extracted 13 gene sets for other related 

biological processes from published studies, including 

(1) immune checkpoints; (2) angiogenesis; (3) antigen 
processing machinery; (4) CD8 T effectors; (5) 

epithelial mesenchymal transition (EMT), including 

EMT1, EMT2, and EMT3; (6) pan-fibroblast TGFb 

response signatures (Pan-FTBRS); (7) Wnt targets; (8) 

mismatch repair; (9) DNA damage repair; (10) DNA 

replication; and (11) nucleotide excision repair [36, 37]. 

 

Identifying DEGs between SF distinct clusters 

 

We next determined SF-related DEGs among distinct 

SF patterns in LUAD. The limma package was used for 

this, and the filtering criteria for DEGs was an adjusted 

P value < 0.05. 

 

Constructing SFscore 

 

An SF scoring approach was developed to quantify SF 

patterns from individual patients based on PCA values. 

DEGs selected from distinct SF phenotypes underwent 

prognostic analyses using univariate Cox regression 

model. Genes with a prognostic significance were 

extracted for next feature selection using recursive 

feature elimination in the ‘caret’ package. PCA analysis 

was then performed based on finally determined genes. 

Principal components 1 and 2 served as the signature 

score. Subsequently, a formula similar to previous 

studies was constructed to define the SFscore: SFscore 

= ∑(PC1i + PC2i), where i = SF-related signature gene 

expression [38]. 

 

Assessing TMB and predicting ICI therapy 

responses  

 

Maftools package was used to visualize somatic 

mutations based on the Mutation Annotation Format file 

in the TCGA cohort [39]. The Tumor Immune 

Dysfunction and Exclusion (TIDE) algorithm in TCGA 

cohort [40], including dysfunction and exclusion of 

infiltrating cytotoxic T lymphocytes (CTLs), was used 

to assess immune evasion mechanisms in the TCGA 

cohort [41]. A high TIDE level indicated a low response 

to immune checkpoint inhibitor (ICI) therapy. The 

tumor neoantigen burden, including clonal and sub-

clonal neoantigen burdens, was also used to assess 

immunotherapeutic efficacy in the TCGA cohort [35]. 

Differential expression analysis of ICP genes was 

performed in the training cohort. 

 

Prediction of drug sensitivity and small molecular 

drugs 

 

The R package “pRRophetic” was used to calculate the 

half maximal inhibitory concentration (IC50) of 

chemotherapy drugs [42]. DEGs between groups with 

high and low SFscore were identified by p < 0.05 and 

|logFC|>1 in “limma”. SFscore-related small molecular 
drugs were identified in the Connectivity Map database 

(CMap; https://clue.io/) after uploading down- and up-

regulated genes [43]. 

https://clue.io/
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Table 1. Multivariate Cox analysis of all prognosis related AS events. 

Id Coef HR HR.95L HR.95H p 

TTC39C|44852|AP 1.248442 3.484908 1.391101 8.730198 0.007711 

CDKN2A|86004|AP 1.489648 4.435536 2.047892 9.60694 0.000158 

C10orf32|12982|RI −9.15774 0.000105 4.24E-07 0.026199 0.001137 

BEST3|23330|AT 1.771023 5.87686 2.010846 17.1756 0.00121 

TLE2|46644|AA −25.1683 1.17E-11 4.38E-16 3.14E-07 1.31E-06 

CA5B|98313|ES −1.1536 0.315499 0.117144 0.849725 0.022483 

SDCBP|83930|ES −13.5109 1.36E-06 8.07E-10 0.002278 0.000363 

HNRNPLL|53258|AT −3.35378 0.034952 0.003746 0.326121 0.003247 

MEGF6|315|ES −1.42332 0.240914 0.095041 0.610679 0.002707 

 

 

Quantitative real-time PCR 

 

Quantitative real-time PCR Total RNA of carcinoid 

tissues was extracted with Trizol reagent (A2A0209, 

Accurate Biotechnology, China). cDNA was amplified 

with reverse transcription kit (A2A1386) was provided 

by Accurate Biotechnology Co. (China). The sequences 

of primers are in Supplementary Table 1. Gene 

expression levels were assayed by qRT-PCR using the 

Roche LightCycler® 480 system (Roche, Basel, 

Switzerland) with the SYBR Green system (A2A1436, 

Accurate Biotechnology). 

 

Statistical analyses 

 

Statistical tests were performed in R-4.0.2 software, and 

a two-sided P value < 0.05 was considered statistically 

significant. Statistical significance for normally 

distributed variables was analyzed using Student’s t-
tests, while non-normally distributed variables were 

estimated using the Wilcoxon rank-sum test. Kruskal-

Wallis tests were used to compare more than two 

groups, as nonparametric and parametric methods, 

respectively. Kaplan-Meier survival analyses were 

conducted using the ‘Survminer’ package to explore 

associations between SF patterns and prognoses. 

Continuous variables were dichotomized for overall 

survival (OS) before the log-rank test using optimal 

cutoff values as determined by the “surv_cutpoint” 

function in the “Survminer” package. After this, that, 

LUAD samples were categorized into high and low 

SFscore subgroups. 

 

Availability of data and materials 

 

The dataset supporting the conclusions of this  

article is available in the TCGA website 

(https://portal.gdc.cancer.gov/) and GEO database 

(https://www.ncbi.nlm.nih.gov/geo/). 

RESULTS 
 

Total and prognosis-related AS events 

 

A flow chart (Figures 1, 2A) shows the study design 

and processes. In total, 572 LUAD specimens with 

43,948 AS events in 10,366 gene symbols were 

collected. These events included 16,793 ES in 6,618 

genes, 8,546 AT in 3,734 genes, 8,992 AP in 3,605 

genes, 3,559 AA in 2,522 genes, 3,057 AD in 2,173 

genes, 2,781 RI in 1,866 genes, and 220 ME in 214 

genes. An UpSet plot was constructed to depict overlaps 

in the seven AS event types, which indicated multiple 

AS events appeared on a single gene (Figure 2B, 2C). 

ES was the most common ES event type, while ME was 

the least common. 

 

Univariate Cox regression analysis was used to select 

prognosis-related AS events, but excluded patients with 

follow-up < 90 days. In total, 2,692 AS events 

significantly associated with OS (p < 0.05) were 

selected, including 906 ES, 487 AT, 744 AP, 185 AA, 

182 AD, 177 RI, and 11 ME. A volcano map depicted 

AS events (Supplementary Figure 1A). The top 20 

prognosis-related AS events of the seven types are 

shown (Supplementary Figure 1B–1H). Multivariate 

Cox analysis was also conducted to identify the 

independent prognostic factors (Table 1). 

 

Construction of an AS-SF interaction network 

 

We performed correlation analysis between prognosis-

related AS events and SFs, from which 20 prognosis-

related SFs were selected (correlation coefficient > 0.6 

and p < 0.001). A prognosis-related AS-SF interaction 

network was constructed, including 12 adverse AS 
events (red nodes), 28 favorable AS events (blue 

nodes), and 20 interacting SFs (black nodes) (Figure 3). 

Most adverse AS were negatively regulated by SFs, 

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
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while MCM7-80881-AP was upregulated by ALYREF. 

In contrast, most favorable AS events were positively 

regulated by SFs, except MCM7-80880-AP and 

FLJ27365-62678-AP; they were downregulated by 

ALYREF and RNU4-1, respectively. 

 

The genetic variation of AS interacting SFs in LUAD 

 

Based on the AS-SF interaction network, we identified 

16 SFs (CIRBP, CCDC130, CLASRP, LUC7L3, CLK1, 

CLK4, ALYREF, RBM5, CDK10, SREK1, SNRNP70, 
RBM15, ARGLU1, SRSF5, SRRM2, and SRSF11) after 

excluding four genes (LUC7L, DDX39B, RNU4-1, and 

RNU5A-1) not found in training cohort. The differential 

expression of these SFs between normal and tumor 

specimens was analyzed in the TCGA cohort (Figure 

4A). Most SFs were highly expressed in tumors, while 

CIRBP, ARGLU1, and SRSF5 were poorly expressed. 

Also, 13 SFs were identified as significant prognostic 

risk factors in LUAD (Supplementary Figure 2). 

 

 
 

Figure 1. Analysis workflow of this study. 



www.aging-us.com 6694 AGING 

 
 

Figure 2. Alternative splicing (AS) events in cancer. (A) Mechanism of splicing regulatory factors in regulating RNA alternative splicing 
and tumor progression. ES (Exon skip) means that an exon is cut from the original transcript. RI (Retained intron): A new exon is formed by 
the retained Intron and the exons on both sides. AD (Alternate Donor site): The 3'-end splicing sites of different transcripts are the same 
but the 5'-end splicing sites are different. AA (Alternate acceptor site): The 5'-end splicing sites of different transcripts are the same but the 
3'-end splicing sites are different. AP (Alternate promoter): The first exon of the two transcripts is different. AT (Alternate terminator): The 
last exon of the two transcripts is different. ME (Mutually exclusive exons): Different exons (called inclusive exons) are present in different 
transcripts. (B) Upset plot of all AS events in LUAD. (C) Upset plot of prognosis-related AS events in LUAD. 

 

 
 

Figure 3. Construction of a splicing factors (SFs)-alternative splicing (AS) events network. Red edges mean positive regulation 

between AS and SF, while blue edges mean negative. 
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To understand the genetic variation landscape of SFs in 

LUAD, we explored the incidence of CNVs and 

somatic mutations in the 16 SFs. CNV alterations were 

widespread. ALYREF, ARGLU1, CLASRP, LUC7L3, 

CLK4, CLK1, and SRRM2 were focused on the 

amplification in copy number, while the others had a 

frequency of CNV deletion (Figure 4B). Among the 561 

LUAD samples, 55 had mutations in AS interacting SFs 

(Figure 4C). The chromosomal positions of CNV 

alteration in the 16 SFs are shown (Figure 4D). Based 

on the TCGA dataset, aa SF interaction network was 

constructed to show connections and the prognostic 

significance of SFs (Figure 4E). This network indicated 

that most SFs had positive correlation interactions, 

while ALYREF interacted with CIRBP, SRSF5, CLK1, 

CLK4 and RBM5 with negative correlations. 

 

Distinct SF patterns mediated by 16 AS interacting 

SFs 

 

Six GEO datasets (GSE13213, GSE37745, GSE31210, 

GSE3141, GSE30219, and GSE50081) were integrated 

into one meta-cohort. Based on SF expression, LUAD 

patients in the GEO meta-cohort were stratified into 

three distinct SF patterns using ConsensusClusterPlus in 

R (Figure 5A). We termed these patterns, SF clusters 

S1–S3, which included 229, 362, and 128 patients, 

respectively. PCA indicated significant distinctions in 

transcription profiles between patterns (Figure 5B). 

Survival analysis for these SF clusters showed a 

significantly prominent survival disadvantage in SF 

cluster-S1 (Figure 5C). Moreover, most SF genes were 

upregulated in SF cluster-S3 and downregulated in 

cluster-S1, while ALYREF and RBM15 showed the 

opposite trend (Figure 5D, Supplementary Figure 3A). 

 

TME cell infiltration characteristics in distinct SF 

patterns 

 

To explore biological function differences among the 

three SF patterns, we performed GSVA enrichment. As 

shown (Supplementary Figure 3B, 3C), when compared 

with SF cluster-S3, a series of carcinogenic and stromal 

pathways were activated in patients in SF-S1 and 

S2clusters, including MYC signaling, E2F signaling, 

mTROC1 signaling, and EMT. Additionally,

 

 
 

Figure 4. Genetic alteration landscape of 16 splicing factors (SFs) in LUAD. (A) Differential mRNA expression of 16 SFs between 

normal and tumor samples (*P < 0.05; **P < 0.01; ***P < 0.001). (B) CNV mutation was widespread in 16 SFs. The column represented the 
alteration frequency. Deletion, green dot; Amplification, pink dot. (C) 56 of the 561 LUAD patients showed genetic alterations of 16 SFs. (D) 
The location of CNV alterations of 16 SFs on chromosomes. (E) The relationship between SFs in LUAD. The thickness of lines linking SFs 
showed the correlation strength. Negative correlation, blue; positive correlation, pink. Up-regulated SFs, red; down-regulated SFs, orange; 
no sense of SFs in differential expression, grey. 



www.aging-us.com 6696 AGING 

immune-related pathways were fully activated in SF 

cluster-S2 patients, including interferon gamma/alpha 

responses, IL-6-JAK-STAT3 signaling, allograft 

rejection, and inflammatory responses. In contrast, SF 

cluster-S3 patients showed activated TGF-β signaling 

and suppressed immune functions. 

 

In SF patterns, the ssGSEA algorithm was used to 

determine the abundance of different immune cell types 

and immune functions. Surprisingly, the patterns had 

significantly distinct TME cell-infiltrating and immune 

function characteristics (Figure 5E, 5F). Cluster-S1  

was classified as an immune-inflamed phenotype, 

characterized by adaptive immune cell infiltration and 

immune function activation; cluster-S2 was identified as 

an immune-excluded phenotype, characterized by innate 

immune cell infiltration; and cluster-S3 was classified 

as an immune-desert phenotype with prominent immune 

 

 
 

Figure 5. SFs patterns and corresponding TME characteristics. (A) Consensus clustering matrix for k = 3. (B) Principal component 

analysis (PCA) was conducted in distinct SFs patterns. (C) Survival analyses for three distinct SFs patterns based on six GEO cohorts 
(GSE13213, GSE37745, GSE31210, GSE3141, GSE30219 and GSE50081). (D) Heatmap of 16 SFs expression in LUAD patients. (E) TME cell 
infiltrating abundances in three SFs clusters. (F) Difference of immune functions in three SFs clusters. (G) Difference of other tumor-related 
biological processes. 
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suppression. Significant differences in TME cell-

infiltrating composition and immune function were 

identified between clusters, and indicated these SFs had 

critical roles in TME remodeling. LUAD samples in 

cluster-S3 had a significantly lower abundance of all 

immune cells and immune functions, but a high 

abundance of eosinophils, mast cells, HLA, and type-II 

interferon responses. In contrast, clusters-S1 and S2 had 

a completely opposite landscape in terms of infiltrating 

cells and immune functions, therefore, cluster-S3 was 

classified as an immune “cold” phenotype, while 

Clusters S1 and S2 were immune “hot” phenotypes. 

 

The three SF clusters also exhibited significant 

differences in distinct tumor-related functions from 

published research (Figure 5G). Cluster-S1 showed the 

highest level of most functions, excluding angiogenesis 

and EMT3, which were enriched in cluster-S3. In 

contrast, cluster-S3 had the lowest level of most 

functions, similar to above immune cells and functions, 

but angiogenesis and EMT3. 

 

Specific correlations between TME infiltrating cell type 

and each SF were further examined using Spearman’s 

correlation analyses (Supplementary Figure 4). These 

SFs displayed mainly negative correlations with 

immune cell-infiltration abundance, except for ALYREF 

and RBM15, which were prominently and positively 

correlated with activated CD4+ T cells, gamma delta T 

cells, and CD56dim natural killer cells. Most SFs were 

related to the infiltration of T cells, including activated 

CD4+ T cells, gamma delta T cells, CD56dim natural 

killer cells, natural killer T cells, and regulatory T cells. 

 

SF cluster-related DEGs in LUAD 

 

Although LUAD patients were stratified into three SF 

patterns according to 16 SFs, the underlying genetic 

alterations were unknown. Therefore, we examined 

transcriptional changes among different SF patterns and 

identified 4,819 SF pattern-related DEGs in “limma” 

(Figure 6A). In total, 2,959 SF-related DEGs were 

screened out with prognosis significance based on Cox 

regression analyses. A gene expression heatmap is 

shown (Supplementary Figure 5A). We next performed 

unsupervised clustering analyses based on these 2,959 

genes to identify different genomic subtypes. We then 

defined these three phenotypes as gene clusters A, B 

respectively (Figure 6B, 6C). Subsequent survival 

analyses showed a prominent prognosis advantage in 

cluster B (Figure 6D). We also examined the 

differential expression of the 16 SFs in these gene 

clusters (Supplementary Figure 5B); significant SF 
expression differences were observed - cluster B had a 

lower abundance of all immune cell types and immune 

functions, with a relevant higher abundance of 

eosinophils, mast cells, HLA and type-II interferon 

responses, while cluster A showed the opposite. 

Therefore, clusters A and B were classified as immune 

“hot” and “cold” phenotypes, respectively. 

 

The role of SF clusters in TME immune landscape 

remodeling 

 

Consistent with immune phenotypes in SF clusters S1–

S3, SF gene clusters A–C were characterized as 

immune-inflamed, immune-desert, and immune-

excluded landscapes, respectively (Figure 6E, 6F). SF 

gene cluster B was identified with a relatively lower 

immune function and infiltrating abundance of most 

cells, and could be classified as an immune-inhibition 

and immune-desert group. In contrast, cluster A was 

significantly associated with an immune-inflamed 

status. Cluster C was defined as an immune-excluded 

phenotype. Similarly, SF gene clusters A–C exhibited a 

consistent trend in distinct tumor-related functions 

(Figure 6G). 

 

Construction of the SFscore 

 

Our results showed the non-negligible regulatory role of 

prognostic AS related SFs in shaping immune 

landscapes. Nevertheless, considering individual SF 

heterogeneity and complexity, a scoring system was 

required to accurately predict SF patterns in individual 

LUAD patients. Based on SF cluster-related DEGs, we 

developed SFscore to quantify SF patterns in patients. 

SF cluster-S3 and gene cluster B had the lowest SFscore 

(Figure 7A, 7B), thus, low scores were closely linked to 

immune-inhibition and immune-desert related clusters. 

 

Subsequently, LUAD patients were divided into low or 

high SFscore groups using a cutoff value determined by 

the survminer package. A high SFscore was associated 

with a prominent survival benefit in GEO and TCGA 

cohorts (Figure 7C, 7D). Similarly, LUAD patients in 

SF cluster-S3 and gene cluster B had a better prognosis 

(Figure 7E). Moreover, we identified a prominent 

correlation between the SFscore and the risk score of a 

prognostic AS signature (Supplementary Figure 6A, 

6B). Thus, a high SFscore was related to a low level AS 

risk score. 

 

To further understand SFscore characteristics, we 

performed GSVA (Figure 7F) and showed that patients 

with high SFscore focused on the inhibition of immune 

pathways, carcinogenic pathways, and stromal 

pathways, including interferon gamma/alpha responses, 

IL-6-JAK-STAT3 signaling, allograft rejection, 
inflammatory responses, MYC signaling, E2F signaling, 

mTORC1 signaling, and EMT. Interestingly, bile acid 

metabolism was activated in the high SFscore group. 
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We also examined correlations between TME cell 

infiltration abundance and SFscore (Supplementary 

Figure 6C). Interestingly, SFscore had significantly 

negative correlations with most immune infiltration 

cells, particularly activated CD4+ T cells, CD56dim 

natural killer cells, gamma delta T cells, MDSCs, 

natural killer T cells, and regulatory T cells 

(Supplementary Figure 6C). Similarly, ssGSEA showed 

a low abundance of most infiltrating immune cells and 

immune functions in groups with a high SFscore, except 

eosinophils and type-II interferon responses (Figure 7G, 

7H). Also, a high SFscore was significantly related to 

lower tumor-related functions, including antigen 

processes, CD8 effectors, EMT, pan-F-TBRS, Wnt 

 

 
 

Figure 6. Construction of SFs signatures. (A) 4819 SFs-related differentially expressed genes (DEGs) between three distinct SFs 

patterns were presented in the Venn diagram. (B) Consensus clustering matrix for k = 3. (C) Principal component analysis (PCA) for the 
transcriptome profiles of gene cluster A, B. (D) Survival analysis for the two gene clusters based on 2959 SFs-related DEGs in GEO cohorts (P 
< 0.001). (E) TME cell infiltrating abundances in two gene clusters. (F) Difference of immune functions in two gene clusters. (G) Difference 
of other tumor-related biological processes. 
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targets, DNA replication, DDR, mismatch repair, and 

nucleotide excision repair (Figure 7I). Nevertheless, 

angiogenesis was activated in groups with high SFscore. 

Finally, patients with high SFscore had low immune 

scores, stromal scores, ESTIMATE scores, and high 

tumor purity (Supplementary Figure 6D). In general, high 

SFscore were identified with immune-desert and stromal-

inhibited landscapes, i.e., the immune “cold” group. 

 

 
 

Figure 7. Characteristics of SFscore in prognosis and TME landscapes. (A) Differences in the SFscore between three SF clusters in 

LUAD (P < 2.22e-16). (B) Differences in the SFscore between two gene clusters in LUAD (P < 2.22e-16). (C) Kaplan-Meier curves for low and 
high SFscore patient groups in GEO cohorts (P < 0.001, Log-rank test). (D) Kaplan-Meier curves for low and high SFscore patient groups 
were validated in TCGA cohorts (P < 0.001, Log-rank test). (E) Alluvial diagram showing the changes of survival status, SFs clusters, gene 
clusters and SFscore. (F) GSVA enrichment analyses between groups with low/high SFscore. (G) TME cell infiltrating abundances in low/high 
SFscore groups. (H) Difference of immune functions in low/high SFscore groups. (I) Difference of other tumor-related biological processes in 
low/high SFscore groups. 
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We also performed correlation analyses between 

SFscore and SF-related prognostic AS events in the 

network (Supplementary Figure 6A). Four AS events in 

two genes exhibited significant correlations with 

SFscore, including NEK2|9717|AT (cor = −0.65), 

NEK2|9718|AT (cor = 0.65), MCM7|80880|AP (cor = 

0.63), and MCM7|80881|AP (cor = −0.63). 

Interestingly, the four AS events showed strong 

correlations with each other, and a distinct AS in a 

single gene showed an opposite correlation with the 

SFscore. Consistently, (Supplementary Figure 6B) these 

four AS events were significantly associated with multi-

type immune cells, in particular activated CD4 T cells 

(cor > 0.5). Also, gamma delta T cells were widely 

associated with these selected AS events. 

 

Characteristic SFscore in tumor somatic mutations 

 

Several studies have highlighted associations between 

tumor somatic mutations and immunotherapeutic 

response [1, 44]. We explored the distribution patterns 

of tumor mutation burden in distinct SFscore groups 

and found that the low SFscore group had a higher 

TMB (Figure 8A). Additionally, the SFscore had a 

predominantly negative correlation with TMB across 

different gene clusters (Figure 8B). Survival analysis 

showed prominent differences among different TMB 

and SFscore combinations (Figure 8C). We next 

performed significantly mutated gene (SMG) analysis 

on LUAD samples in low SFscore versus high SFscore 

subgroups. LUAD samples with a low SFscore had 

significantly higher SMG rates (Figure 8D, 8E) and 

provided novel insights on SFscore in tumor somatic 

mutations, TME remodeling, and ICI therapy. 

 

The role of SFscore in predicting immunotherapeutic 

benefits 

 

Immunotherapies, represented by ICP blockade, have 

emerged as major breakthroughs in cancer therapy.

 

 
 

Figure 8. Characteristics of SFscore in tumor somatic mutation. (A) Differences in tumor mutation burden (TMB) between low and 

high SFscore groups of TCGA cohort (P < 0.001). (B) Correlations between SFscore and TMB using Spearman analysis (R = −0.36, P < 0.001). 
(C) Survival analyses for subgroup patients stratified by both SFscore and TMB using Kaplan-Meier curves. H-TMB, high TMB; L-TMB, low 
TMB (P < 0.001, Log-rank test). (D) The waterfall plot of tumor somatic mutation established by those with low SFscore. (E) The waterfall 
plot of tumor somatic mutation based on LUAD samples with high SFscore. 
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Currently, immunotherapy is considered a first-line 

treatment for patients with LUAD. We extracted 42 

ICPs, including PD-1, PD-L1, and CTLA-4; the mRNA 

expression levels of most ICPs from low SFscore 

subtypes were significantly higher than those in high 

SFscore subtypes (Figure 9A). In addition to well-

known ICPs, newly identified predictors, such as TIDE, 

are widely used and strongly recommended to evaluate 

immune response. We showed (Figure 9B–9D) that low 

SFscore patients were distinguished by a high level of 

 

 
 

Figure 9. The SFscore predicts immunotherapeutic benefits. (A) The relative mRNA expression level of 42 immune checkpoints was 

compared between SFscore high versus low groups. (B–D) The relative distribution of T cell exclusion score, T cell dysfunction score and 
TIDE score were compared between SFscore high versus low groups in TCGA-LUAD cohort (P < 0.001). (E, F) The relative distribution of 
clonal neoantigens and sub-clonal neoantigens were compared between SFscore high versus low groups in TCGA-LUAD cohort (P < 0.05). 
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T cell exclusion scores, TIDE and low T cell 

dysfunction scores. Tumor neoantigen burden, which is 

closely related to immunotherapeutic efficacy, was also 

assessed; LUAD patients with a low SFscore had a 

higher clonal and sub-clonal neoantigen burden (Figure 

9E, 9F). The distinct distribution of these markers 

indicated that low SFscore patients could benefit from 

immunotherapy, especially ICIs. Thus, a crucial role for 

SFscore in mediating immune responses in patients was 

identified. 

 

Drug sensitivity analysis and small molecule drug 

screening based on SFscore 

 

We identified four chemotherapy drugs and estimated 

IC50 levels. As shown (Figure 10A), all four exhibited 

 

 
 

Figure 10. Drug sensitivity analysis and small molecule drugs screening. (A) Low SFscore is more sensitive to sorafenib, paclitaxel, 
sunitinib, cisplatin, docetaxel, Etoposide, vinorelbine, gemcitabine, gefitinib and vorinostat (p < 0.001). (B) Screening of small molecule 
drugs based on SFscore. (C) Network construction of target protein and five small molecule drugs. (D–H) Druggable pharmacophore models 
of five small molecule drugs. 
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significantly low IC50 levels in the low SFscore group, 

including paclitaxel (p < 2.22e-16), cisplatin (p < 8.2e-

10), docetaxel (p < 2.22e-16), and gemcitabine (p < 

7.3e-09). Thus, low SFscore patients were more 

sensitive to the ten selected drugs. To further screen for 

specific drugs for patients with distinct SFscore, we 

analyzed DEGs between groups with distinct SFscore, 

including 111 up- and 106 down-regulated genes. DEGs 

were uploaded to the CMap database, and 16 small 

molecule drugs were identified (p < 0.01, |mean|>0.4) 

(Figure 10B). Among these, ten drugs targeting lower 

SFscore patients were selected with negative 

enrichment and six small molecule drugs were selected 

for higher SFscore patients (with positive enrichment). 

Amiodarone (p = 0.00056, enrichment = −0.809), 

etoposide (p = 0.00123, enrichment = −0.837), 

chlorphenesin (p = 0.00185, enrichment = −0.824), 

karakoline (p = 0.00201, enrichment = −0.699), and 

cefepime (p = 0.00277, enrichment = 0.804) were 

identified, and a network constructed to identify drug 

interactions with target proteins (Figure 10C). Also, 

druggable pharmacophore models of these five 

aforementioned drugs were analyzed and visualized in 

PharmMapper (Figure 10D–10H). 

 

DISCUSSION 
 

While the LUAD incidence in NSCLC is increasing, the 

treatment did not receive promising effect [9, 10]. TME 

has a vital role in LUAD tumorigenesis, progression, 

metastasis, and therapeutic responses [14]. In the lung 

TME, tumor-infiltrating stromal cells are reprogrammed 

by malignant cancer cells, which in turn contribute to 

carcinogenesis [14]. However, the precise mechanistic 

details remain elusive. 

 

Practically all protein-coding genes undergo one or 

more AS processes, including ES, AT, AP, AA, AD, RI, 

and ME. These AS forms require the spliceosome, 

which includes small nuclear ribonucleoprotein 

molecules (snRNPs, U1, U2, U4/U6, and U5) and other 

proteins, to generate different protein isoforms [45, 46]. 

SFs bind to pre-mRNAs which activate AS processes, 

to ultimately regulate cell function [47, 48].In our study, 

we constructed an AS-SF interaction network to 

identify SFs associated with AS events, and summarize 

interactions between OS-related AS events and SFs. 

This network included 12 adverse AS events (red 

nodes), 28 favorable AS events (blue nodes), and 20 

interacting SFs (black nodes) (Figure 3), which 

suggested these SFs may be promising therapeutic 

targets. 

 

It was reported that RBPs include two families: 

serine/arginine-rich proteins and heterogeneous RNPs 

(hnRNPs) which promote exon inclusion and exon 

skipping, respectively [46, 49]. Also, recurrent somatic 

mutations in SF genes may also directly affect cancer 

progression. Patients carrying the SRRM2 missense 

genetic variant exhibited mis-splicing in specific 

cassette exons, while the variant segregated with 

familial papillary thyroid carcinoma [8, 50]. RBM5, 
RBM6, and RBM10 are commonly deleted, mutated, 

and/or under-expressed or overexpressed genes in many 

cancers [8, 44, 51]; however, they have different roles 

in in vitro colony formation assays, partially due to their 

antagonistic regulation of NUMB alternative splicing 

[51]. 

 

Our LUAD data were divided into three patterns based 

on the expression of 16 SFs (Figure 5A, 5B). These 

patterns showed significant differences in OS (Figure 

5C) and oncogenic pathways (Figure 5A, 5B), and 

indicated the important regulatory role of SFs in cancer 

progression. 

 

Importantly, we matched these patterns with three major 

immunophenotypes, immune-inflamed, immune-desert, 

and immune-excluded phenotypes, based on the 

abundance of different immune cell types and immune 

functions (Figure 5E, 5F). Clusters S1–3 were classified 

as immune-inflamed, immune-excluded, and immune-

desert phenotypes, respectively. Among clusters, there 

were apparently differences whether TME cell 

infiltration compositions or immune functions, which 

indicated the vital role of SFs in TME remodeling. 

 

Previous studies demonstrated that TME contexture, 

including tumor-infiltrating CD4+/CD8+ T cells, 

macrophage M1, natural killer cells, and inflammatory 

cytokines, played vital roles in tumor progression and 

immunotherapeutic efficacy [18, 52]. We also showed 

that S3 patterns were significantly related to lower 

tumor-infiltrating CD8+ T cells, macrophage while 

elevated tumor-infiltrating eosinophil, HLA and type-II 

interferon response, which supported the potential value 

on immunotherapy and tumor progression. 

 

To explore the underlying mechanisms of TME 

remodeling as mediated by SFs, we filtered all DEGs 

between the three SF patterns and screened out 2,959 

DEGs which were significantly associated with OS 

(Figure 6D, Supplementary Figure 5A). Based on these 

DEGs, a different genomic subtype was identified 

(Figure 6B, 6C). Two transcriptomic subtypes, based on 

SF pattern genes, were significantly associated with 

different survival outcomes and TME landscape. 

Interestingly, similar to SF patterns, SF cluster-S3 and 

gene cluster B, classified as immune-desert and immune 
“cold” phenotypes, respectively, demonstrated better 

prognoses. As shown (Figure 5G and Figure 6G), these 

clusters were associated with many cancer-related 
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phenotypes, including EMT and Wnt targets. Also,  

we observed significant differences in immune 

characteristics between SF clusters; however, this did 

not mean no immune cell infiltration or immune-related 

cell factors were present (Figure 5E, 5F and Figure 6E, 

6F). In fact, the three immune infiltration phenotypes, 

which represented the degree of immune cell infiltration 

in this study, was a relative description. Also, the 

cancer-immune cycle assumes that the best anti-cancer 

immune response depends on cooperation between 

immune cells, host factors, and tumor antigens, and that 

this cycle must be efficiently initiated and precisely 

maintained, otherwise, the cancer-immunity cycle is 

broken and replaced by inflammation-promoted tumor 

progression [53–55]. In our study, the inflammation 

potentially occurring in relative immune “hot” 

phenotypes also exerted part of the immunosuppressive 

function, such as the up-regulation of immuno-

suppressive cells MDSC, Treg, etc. This may cause 

dysregulated anti-tumor immunity and mediate 

malignant progression. To a certain extent, this explains 

why SF cluster-S3 and gene cluster B had a relatively 

better prognosis. 

 

We also constructed a quantification system “SFscore” 

to define different SF patterns and evaluate therapeutic 

effects and outcomes for LUAD patients. Our analyses 

highlighted that the SFscore was a prognostic biomarker 

for LUAD. Consequently, the immune “cold” 

phenotype showed the highest SFscore indicating a 

relatively low risk, while patterns characterized by the 

immune “hot” phenotype showed lower SFscore but 

with higher risk. As shown (Supplementary Figure 6D), 

the group with the highest SFscore was accompanied by 

a lower ImmuneScore, StromalScore, ESTIMATE 

score, and higher TumorPurity, indicating a lower level 

of immune cell infiltration. Similar to the SF cluster-S3 

in hallmark LUAD, most signaling was downregulated 

in the high SF score group, including IL6/JAK/STAT3 

signaling and inflammatory responses, and this 

downregulation was consistent with immune-desert 

characteristics. 

 

It was reported that eosinophils have antitumorigenic 

roles in many cancers, including breast, colorectal, 

esophageal, and gastric cancers [56]. Activated 

eosinophils inhibited prostate cancer cell growth in vitro 

by secreting interleukin-10 (IL-10) and IL-12, and 

increasing E-cadherin expression, which putatively 

suppressed metastatic seeding [57]. Also, eosinophil-

mediated cytotoxicity was reported in several co-culture 

studies of mouse or human eosinophils grown with 

cancer cells, including hepatocellular carcinoma cells, 
fibrosarcoma, melanoma, and CRC cells [58–61]. 

Interestingly, several mediators were shown to augment 

eosinophil-mediated killing, including interferon-γ [56]. 

In our study, type-II interferon was elevated in SF 

cluster-S3 and gene cluster B, with high SFscore and 

low risk, and bound the interferon-γ receptor to activate 

cell signaling pathways (involving JAK/STAT 

signaling). Consistently, human and mouse in vitro 

eosinophil activation with interferon-γ (but not TLR 

ligands) potentiated the eosinophil-mediated killing of 

CRC cells. Other studies suggested that interferon-γ and 

interferon-γ-induced pathways functioned as key 

regulators of eosinophil antitumorigenic activities [62, 

63]. A collective view of these data indicated that 

eosinophil and type-II interferon had vital roles in 

antitumorigenic processes and, to a certain extent, 

explained the better prognoses in the group with 

elevated eosinophil and type-II interferon levels [56]. 

 

It was reported that gamma delta T cells had important 

roles in the development and progression of lung cancer 

and local microbiota by activating lung-resident gamma 

delta T cells and promoting inflammation associated 

with LUAD [64, 65]. One interesting finding from our 

study (Supplementary Figure 6B) showed that gamma 

delta T cells were negatively associated with all selected 

AS events. In fact, some AS events, such as 

NEK2|9717|AT and MCM7|80881|AP [66], are the 

most common form of gene expression that can perform 

right functions, and in this way, we may conclude that 

gamma delta T cell is closely related to gene AS and its 

function maybe affected by the special form of gene 

splicing. Interferon-γ induces CD8+ T cells to antigen 

(Ag)-specific CTLs and CD4+ T cell differentiation [67, 

68], however, continuous exposure to interferon-γ may 

induce T cell exhaustion and tumor progression [69] by 

inducing immune escape mediators, including PD-L1, 

STAT3, and IDO1 [70, 71]. 

 

Recent studies also identified associations between high 

TMB and clinical benefit in NSCLC, melanoma, and 

bladder cancer patients when treated with PD-1/PD-L1 

inhibitors or CTLA4 blockade [1, 44]. We analyzed 

correlations between TMB and SFscore; a higher 

SFscore was associated with lower TMB (Figure 8A, 

8B) and the TMB of almost all common mutated genes 

in lung cancer decreased in the high SFscore cohort 

(Figure 8D, 8E). The L-TMB+L-SFscore cohort had the 

worst prognosis (Figure 8C) and no significant 

differences were identified between H-TMB+H-SFscore 

and L-TMB+H-SFscore cohorts. Therefore, TMB may 

be effective at predicting survival benefit in groups with 

relatively high degrees of immune infiltration, but not in 

the immune-desert phenotype. 

 

When compared with the low SFscore cohort, almost all 
ICPs were decreased in the high SFscore cohort, and 

accompanied by low T cell exclusion, higher T cell 

dysfunction, and lower TIDE scores (Figure 9). These 
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data suggested that SFscore may provide critical 

guidelines for clinical immunotherapy. 

 

Apart from immunotherapy, we also investigated 

correlations between SFscore and the effects of other 

common chemotherapy drugs; we observed 

significantly different effects between high and low 

SFscore cohorts (p < 0.001). 

 

Importantly, we identified different tumor immune 

phenotypes based on different AS events, provided new 

insights for improving patient clinical responses to 

immunotherapy, and promoted personalized cancer 

immunotherapy in the future. 

 

CONCLUSIONS 
 

We demonstrated some of the extensive regulatory 

mechanisms underpinning AS events in the TME. 

Difference in AS events and SF patterns between 

patients are factors that cannot ignored and may cause 

TME heterogeneity and complexity in individuals. A 

comprehensive evaluation of individual tumor AS 

events and SF patterns will enhance our understanding 

of TMEs and guide more effective therapeutic strategies 

for lung cancer. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Prognosis-related AS events in LUAD patients. (A) Prognosis-related AS events distributions in volcano 

plot. (B–H) Top 20 prognosis-related AS events of seven types in forest plot. 
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Supplementary Figure 2. (A) Kaplan-Meier survival analyses of SFs with prognostic significance; (B) expression level of SFs in surgical 
resected samples. 
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Supplementary Figure 3. (A) expression level of SFs in three SFs patterns; GSVA enrichment analyses based on the Hallmark gene set 
showed the states of biological processes of SFs cluster S1 vs. SFs cluster S3 (B) and SFs cluster S2 vs. SFs cluster S3 (C). 
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Supplementary Figure 4. Correlations between 16 SFs and 28 TME infiltrating cells in LUAD using spearman analysis. 

 

 

 
 

Supplementary Figure 5. (A) Unsupervised clustering of 2959 SFs -related DEGs with prognostic significance in GEO cohorts. (B) The 

expression level of SFs in two gene clusters. 
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Supplementary Figure 6. (A) Correlations between SFscore and SFs interacting AS events. (B) Correlations between SFs interacting AS 

events and 28 TME infiltrating cells. (C) Correlation analysis between SFscore and TME infiltrating cells. (D) Difference of immune score, 
stromal score, ESTIMATE score and tumor purity in low/high SFscore groups. 
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Supplementary Table 
 

Supplementary Table 1. Sequences of primers. 

Gene Forward Reverse 

CIRBP AGACTACTATAGCAGCCGGAGT AAGGTGAACCGAGCTCCC 

CCDC130 GCATCCTCATCATCCGATTCG GTAGTAATTGCCCACCTTCTTCTT 

CLASRP TTTCATTTCCGCTTCCGGTG ATGTTGTTGGTGTCCCCCTG 

LUC7L3 TACTGTTTGACAGTGCAGCG CTAATGGGGGCACGAGTCTG 

CLK1 ATTTTGTTGTTGGTGCGCGA TGAGTGTCTCATCGTCCTGG 

CLK4 TGGCATGCATGTAGCAGTGA GCATCTGGACACATCGGAAGA 

ALYREF AGAGCGTAAACAGAGGTGGC ACTGGTGTCCATTCTCGCAT 

RBM5 CCGGAGAGGACAGTGGATTG TCAGACATGCTTGACCCACC 

CDK10 ACGACCCTAAGAAAAGGGCG GATCGGAAGACCTGGTGTGG 

SREK1 GTCGTAGACGTTGGGGAGC TCACCTGAATCACCGACGTG 

SNRNP70 CGAGACATGCACTCCGCTTA CTCTCATCGTAGCGGGAGGT 

RBM15 ATCATTGTCCGTGGGTTTGGT ACTATAACAGGGTCAGCGCC 

ARGLU1 CGGCAGCGAAAAATTCGACA CGCTCTAGCTCCTCACGTTT 

SRSF5 GACCCCGTCCGGTAGGAAG GACCGAGCCCTAGCATGTTC 

SRRM2 CTCCGATACTTCCCGCAGTC GTCGAGTTGCAGATTTCTCCT 

SRSF11 CCTCTTCCCCCTCCTTCTCA AAAGGCGAATCATCCGGCG 

 

 

 


