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Abstract: We propose a method for minimizing global buffer access within a deep learning acceler-
ator for convolution operations by maximizing the data reuse through a local register file, thereby
substituting the local register file access for the power-hungry global buffer access. To fully exploit
the merits of data reuse, this study proposes a rearrangement of the computational sequence in a
deep learning accelerator. Once input data are read from the global buffer, repeatedly reading the
same data is performed only through the local register file, saving significant power consumption.
Furthermore, different from prior works that equip local register files in each computation unit,
the proposed method enables sharing a local register file along the column of the 2D computation
array, saving resources and controlling overhead. The proposed accelerator is implemented on an
off-the-shelf field-programmable gate array to verify the functionality and resource utilization. Then,
the performance improvement of the proposed method is demonstrated relative to popular deep
learning accelerators. Our evaluation indicates that the proposed deep learning accelerator reduces
the number of global-buffer accesses to nearly 86.8%, consequently saving up to 72.3% of the power
consumption for the input data memory access with a minor increase in resource usage compared to
a conventional deep learning accelerator.

Keywords: deep learning accelerator; field-programmable gate array (FPGA); local register file;
rearrangement of computational sequence

1. Introduction

Recently, many studies have been published regarding deep neural networks (DNNs)
for application in various areas, such as in classification [1], object detection [2], speech
recognition [3], and image/video recognition [4,5]. This study addresses the problem of
executing the required tasks of a DNN with a dedicated hardware accelerator. Although
a central processing unit (CPU) or digital signal processor (DSP) can be considered for
some applications instead of the accelerator [6,7], CPUs and DSPs are not sufficiently
fast to satisfy the timing requirements for the real-time processing of heavy-duty tasks
owing to their high latency [8]. In addition, a graphic processing unit consisting of a large
number of powerful processors can be an alternative only for limited cases, e.g., when
power consumption is not a critical issue [9–11].

Recalling that the main functionality of a DNN is to perform convolution between
input data and weight(s), we present a novel procedure for executing convolutional oper-
ations using a dedicated hardware accelerator implemented on a general-purpose field-
programmable gate array (FPGA). Particularly, this paper presents a method for minimizing
the number of global buffer accesses within the accelerator by utilizing a local register file
shared across the multiply-accumulate (MAC) units of a 2D computation array.

Notably, most deep learning accelerators consume far more power on data movements
than on arithmetic operations [12–14]. In [15,16], the authors presented data reuse through
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loop unrolling, interchanging, and tiling, whereas [17–22] introduced a more specific
method of data reuse, namely, data reuse via row-, output-, or weight-stationary dataflows.
Furthermore, ref. [22] disclosed all the procedures for data reuse based on the weight-
stationary method. However, in all these studies, a significant number of non-stationary
input data pixels are not reused at a MAC unit level. Therefore, input data should be reread
from the global buffer, even though they were already read for the previous computations.

Noting that a local register file consumes much less power than a global buffer, the total
power consumption of the data movements can be significantly reduced by substituting
the proposed local register file access for the global buffer access. However, the resource
overhead of register files is greater than the global buffer overhead. Thus, it is costly to
maintain a sizeable local register file within each MAC unit. For example, ref. [17] could
only equip a small number of registers in each MAC to enable limited input data reuse.

We propose a rearranged computation sequence that allows sharing a single register
file across multiple MAC units to alleviate this limitation. Specifically, the convolution
computation along the output channel dimension is spatially mapped across the MAC
column. A local register file shared by a column of MAC units keeps a block of input data
pixels temporarily reused over pixel-wise convolution computation. Since all the MAC
columns operate on the same pixel (across the different input channels), a single input
index unit (called Input Index Controller(IIC)) controls all the local register files, reducing
the control overhead of the proposed mechanism. Our FPGA implementation and the
performance evaluation on popular DNNs validate that the proposed method incurs only
about 10% of hardware resources while reducing the global buffer access by 45% to 86%,
achieving up to 72% of power savings in data movements.

The remainder of this paper is organized as follows. In Section 2, we present an exten-
sive analysis of the spatial and temporal data reuse achievable with the two-dimensional
multiplier-accumulator (2-D MAC) array; based on this, we summarize the barriers that
need to be overcome to fully exploit the merits of data r euse. In Section 3, we present
the proposed technique for minimizing global buffer access by using a local register file
based on a novel rearrangement of the computational sequence required in a given DNN.
In Section 4, the proposed accelerator is implemented using a commercial FPGA to verify
the functionality and resource utilization of the convolutional operations employing the
proposed rearrangement. In Section 5, we present simulation results to demonstrate the
superiority of the proposed accelerator in comparison to conventional techniques [17–22].
Finally, Section 6 concludes the paper.

2. Global Buffer Access within a Deep Learning Accelerator

To minimize the global buffer access required for convolutional operations, it is
necessary to analyze the global buffer access pattern in detail. After summarizing the spatial
and temporal data reuse in Sections 2.1 and 2.2, respectively, which are partially presented in
the state-of-the-art techniques [17–22], we present the barriers in the conventional methods
that should be overcome to practically exploit both spatial and temporal data reuse in
Section 2.3, leading to the minimization of global buffer access as described in Section 3.

2.1. Spatial Data Reuse Using Two-Dimensional Multiplier-Accumulator (2-D MAC)
Array Structure

This subsection presents how data reuse can be achieved by using parallel processing
with the 2-D MAC array structure. The data reuse obtained with the 2-D MAC array can be
considered a spatial gain because the data reuse capability is determined by the 2-D MAC
array size [15,16].

To analyze the spatial data reuse using a 2-D MAC array structure, we take a simple
example, as shown in Figure 1 [22]. Figure 1 illustrates a 2-D MAC array consisting of
16× 128 MAC units, each of which performs a convolution between each input data and
weight. For simplicity, but without loss of generality, it can be assumed that the numbers of
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channels for both the input data and each weight are set to 128, with the number of weights
being 16.

Figure 1. Two-dimensional multiplier-accumulator (2-D MAC) array for convolution between 128-
channel input data and weights.

For the convolutional operation at each MAC to occur correctly, the memory control
shown in Figure 1 is provided in such a way that both the input data and weight are fetched
from the global buffer and transferred into the MAC array in accordance with the preset
operational order. In other words, the key operation of the memory control is to generate
a data sequence in accordance with the preset operational order; this is accomplished by
generating the address of the global buffer correctly. Once the input data and weight
are transferred from the global buffer into the MAC array, each MAC operator performs
multiplication, and the final output feature is generated by accumulating the multiplication
results.

The MAC unit in the ith row of the jth column of the 2-D array provides the con-
volution between the input data and ith weight, where both the input data and weight
correspond to the jth channel. The operation at each of the 16× 128 MACs occurs for each
pixel of the input data during the corresponding convolutional window.

Because each column of the 2-D MAC array represents the corresponding channel for
both the input data and weights, the jth channel input data are repeatedly used for the
convolution with each of the 16 weights in the jth column, whereas j runs from 1 to 128, as
in the example shown in Figure 1. In other words, the input data can be reused for each of
the 16 weights in each column. In particular, data reuse can be accomplished for each of
the 128-channel input data at each column for as many rows in a given 2-D MAC structure:
16 in the example of Figure 1.

As discussed above, the data reuse provided by the 2-D MAC array is available for
each column of the array, meaning that the data reuse effect is equivalent only to the case
of the 1-D MAC array with the same number of rows.

To expand the data reuse, the procedure of computing the convolution at each MAC
should be modified in such a way that data reuse can be provided for each row, as well as
for each column. To allow data reuse for a given weight along each row, the weight should
remain the same in each row. The weight value at each row is taken from the corresponding
channel because the weight should be convolved with the input data of the same channel.
For the weight to remain the same in each row, each of the 128 columns must represent a
single channel. To accomplish this, instead of performing row-wise parallel processing with
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each of the 128-channel data, parallel processing should be performed with the different
pixel input data of the same channel at each row of the 2-D MAC array. Then, the data
reuse for the input data (as well as that for the weight) can be accomplished for both the
columns and rows of the 2-D MAC array.

To involve the input data corresponding to all of the different pixels in each row,
however, is to increase the width of the output feature pixels as well. This would result in a
considerable increase in the buffer size required for storing the partial sums corresponding
to each of the output feature pixels [15], potentially imposing a serious limit on hardware
implementation [23,24]. Unless this problem is resolved, the data reuse factor cannot be set
to a sufficiently high value in all conventional methods [17–22]. Furthermore, as mentioned
earlier in this subsection, the spatial data reuse factor must be fixed depending on the size
of the 2-D MAC array. As will be shown later in Section 3, we present a new technology to
allow the data reuse factor to be arbitrarily set by introducing a local register file whose
size can be freely set.

2.2. Temporal Data Reuse Using Controllable Output Feature Pixels

In contrast to the spatial data reuse discussed in Section 2.1, this subsection presents
how to reuse a given dataset at different moments such that data reuse can be temporally
achieved. This allows for data reuse regardless of the structure and/or size of the 2-D
array [22].

To achieve temporal data reuse, after finishing the convolution of each pixel of the
input data with a given pixel of weight, the next pixel of the input data should be processed
with the present pixel of the weight instead of applying the next pixel weight onto the
next input data pixel. This means that a preset number of input data pixels will be applied
sequentially for each weight pixel. By doing so, the same weight pixel does not have to be
read again from the global buffer for processing with the next input data pixel. In other
words, each weight pixel is processed with all of the input data pixels in advance. The
number of input data pixels to be convolved with each weight pixel will later be denoted
as the “temporal data reuse factor”. Notably, the temporal data reuse factor can be set to an
arbitrary value; it is set to 16 for the procedures described in Section 3 and in our hardware
implementation introduced in Section 4.

The spatially obtained columnwise data reuse shown in Section 2.1 is predetermined
by the number of rows of the given 2-D MAC array structure. In contrast, the temporal data
reuse factor discussed above can be determined arbitrarily, regardless of the 2-D MAC array
structure. In particular, the width of the output feature pixels, which is determined by the
number of input data pixels to be processed with each weight pixel, can be set arbitrarily
as desired. This value is the temporal data reuse factor. Although it is set to 16 in both the
procedures described in Section 3 and in the example of our hardware implementation
shown in Section 4, it can be set arbitrarily, as desired.

2.3. Global Buffer Access Pattern

As summarized in Sections 2.1 and 2.2, spatial data reuse can be obtained in accor-
dance with the given 2-D MAC array structure, whereas temporal data reuse is applicable
regardless of the MAC array structure. Because the two different types of data reuse
methods are independent of each other, they can be implemented together on a given 2-D
MAC array. More specifically, it was demonstrated in [22] that both spatial data reuse and
temporal data reuse can be exploited for the input data and weights, respectively, when
implementing a convolutional accelerator with a 2-D MAC array. As mentioned earlier,
however, the width of the output feature pixels increases as either the spatial or temporal
data reuse factor is increased.

In this subsection, we analyze the global buffer read pattern when both the spatial and
temporal data reuses are simultaneously exploited. The objective is to find the input data
pixels commonly used for convolutional operations with different weight pixels. Using
the analysis given in this subsection, we suggest a novel method of exploiting both spatial
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and temporal data reuse, in which the latter allows for the reuse of both the input data
and weight values. Notably, temporal data reuse was allowed only for the weight pixels in
previous works [17–22].

In principle, each convolutional operation consists of two steps: first, to multiply the
input data pixels by the weight pixels correspondingly and then, to sum up the multiplica-
tion results. As a result of this operation, a corresponding output feature pixel is generated.
This operation should be repeated for the entire set of input data pixels. However, to apply
the method of temporal data reuse, a number of input data pixels are first multiplied by a
given weight pixel. This operation is repeated for every weight pixel. The output feature
pixels in this case cannot be obtained until the multiplication between the weight pixel and
each of the input data pixels is completed. The number of input data pixels processed with
each weight pixel, i.e., the temporal data reuse factor, is predetermined, as discussed in
Section 2.2 and set to 16 in our implementation, as discussed in Sections 3 and 4.

It can be assumed that each of the 16 weights shown in Figure 1 consists of nine (=
3× 3) pixels, as shown on the right-hand side of Figure 2. To exploit the temporal data
reuse with a width of 16, 16 input data pixels should be read from the global buffer to
be convolved with the corresponding weight pixel. Figure 2 shows how the input data
should be read to provide temporal data reuse with a reuse factor of 16. It can be observed
that each set of the 16 input data pixels, {(0,0), (0,1), . . . , (0,15)}, {(0,1), (0,2), . . . , (0,16)}, and
{(0,2), (0,3), . . . , (0,17)}, is convolved with the corresponding weight pixels, (0,0), (0,1), and
(0,2), during the periods of t0, t1, and t2, respectively. In other words, to read each set of 16
input data pixels, {(0,0), (0,1), . . . , (0,15)}, {(0,1), (0,2), . . . , (0,16)}, and {(0,2), (0,3), . . . , (0,17)},
from the global buffer during t0, t1, and t2, respectively, IIC generates the addresses of the
corresponding data.

Figure 2. Input data read pattern for convolution with each row of 3× 3 weight pixels.

In fact, Figure 2 explicitly shows which pixels of the 16 input data pixels out of the
block of 3× 18 pixels are to be read from the global buffer to be convolved with which one
of the weight pixels during that time period. The operational procedure shown in Figure 2
represents the convolution between each of the 16 input data pixels and a corresponding
weight pixel for producing 16 output feature pixels. In other words, the operational
procedure shown in Figure 2 corresponds only to the convolution for a single block of
3× 18 input data pixels to produce 16 output feature pixels. Here, we define the term input
data block to denote the number of input data pixels needed to generate 16 output feature
pixels. In general, for the convolutional operations shown in Figure 2, one input data block
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includes Nwy × (P + (Nwx − 1)) pixels, where P denotes the temporal data reuse factor
with the weight dimension being Nwy × Nwx.

Let us consider an arbitrary size of input data, for example, the case of 6× 21 input
data pixels, as shown in Figure 3. The objective is to find the input data read patterns
among the different blocks. Out of the 6× 21 input data pixels shown in Figure 3, we take
three example blocks of the input data pixels. The first block shown at the top of Figure 3
corresponds to the block of 3× 18 input data pixels consisting of three rows of {(0,0), (0,1),
. . . , (0,17)}, {(1,0), (1,1), . . . , (1,17)}, and {(2,0), (2,1), . . . , (2,17)}. The second block shown at
the center of Figure 3 corresponds to a block of 3× 20 input data pixels, consisting of three
rows of {(0,16), (0,17), . . . , (0,20), (1,0), (1,1), . . . , (1,14)}, {(1,16), (1,17), . . . , (1,20), (2,0), (2,1),
. . . , (2,14)}, and {(2,16), (2,17), . . . , (2,20), (3,0), (3,1), . . . , (3,14)}. The third block shown at the
bottom of Figure 3 corresponds to a block of 3× 20 input data pixels, consisting of three
rows of {(1,13), (1,14), . . . , (1,20), (2,0), (2,1), . . . , (2,11)}, {(2,13), (2,14), . . . , (2,20), (3,0), (3,1),
. . . , (3,11)}, and {(3,13), (3,14), . . . , (3,20), (4,0), (4,1), . . . , (4,11)}.

Figure 3. Conceptual diagram for the convolutions of the three input data blocks with the first row of
3× 3 weight pixels.

Now, let us take a closer look at the convolutional operations corresponding to each of
the three blocks of input data pixels. The input data pixels shown on the right-hand side of
Figure 3 are convolved with the first-row weight pixels. Our explanation here is given only
for the convolution with the first-row weight pixels because the convolutional operations
corresponding to the second- and third-row weight pixels are exactly the same as those for
the first-row weight pixels.

First, when the block is given in an entire rectangular shape, as in the case of the
first block of 3× 18 pixels shown at the top of Figure 3, the input data read pattern is
determined in such a way that 15 out of 16 input data pixels are used in common for the
convolution with two consecutive weight pixels if the two weight pixels are in the same
row. In particular, after the 16 input data pixels, for example, {(0,0), (0,1), . . . , (0,15)}, have
been read from the global buffer and processed for the convolution with the weight pixel of
(0,0), the input data pixels of {(0,1), (0,2), . . . , (0,15), (0,16)} should be read from the global
buffer for the convolution with the weight pixel of (0,1). Consequently, 15 input data pixels
out of 16 are repeatedly read from the global buffer. This global buffer read pattern is
repeated for every weight pixel in each row.

In contrast, for the convolution of the second or third block of input data pixels, as
shown at the center and bottom of Figure 3, respectively, the input data read pattern is quite
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different. Figure 3 shows which input data pixels are used in common for the convolution
with two consecutive weight pixels in the three different cases. Although the global buffer
read patterns vary significantly between the three cases, there are many input data pixels
used in common for the convolution with two consecutive weight pixels. In the following
section, we present how to minimize global buffer access by exploiting the analysis of the
global buffer read pattern.

Figure 4 shows the entire convolutional operation comprising all of the input data
blocks. It is assumed that the dimensions of the entire input dataset have been given in
such a way that each of the input data blocks is solely determined in the form of an entire
rectangular shape, as in the first block shown at the top of Figure 3. This condition can
be satisfied if the width of the input data pixels is 16i + Nwx for i = 0, 1, 2, . . . when the
temporal data reuse factor is 16, with the dimensions of the weight pixels being Nwy × Nwx.
In general, the condition for each input data block to be the type of the first block shown
at the top of Figure 3 can be satisfied if the width of the output feature pixels is set as a
multiple of the temporal data reuse factor. Table 1 summarizes all the indices used in the
convolutional operations discussed herein.

Figure 4. Convolutional algorithm that combines spatial and temporal data reuse.

Table 1. Index Table.

Symbols Descriptions

Ar # of rows of 2-D MAC array
Ac # of columns of 2-D MAC array
P Temporal data reuse factor

Nwx Width of weight matrix
Nwy Height of weight matrix
Nix Width of input data matrix
Niy Height of input data matrix
Nox Width of output feature matrix
Noy Height of output feature matrix

Thus far, we have observed how each of the input data pixels in a given block should
be read from the global buffer for convolution with the corresponding weight pixel. From
this observation, it has been found that some of the input data pixels are used repeatedly
for the convolution with the next weight pixel, meaning that these overlapping input data
pixels can be reused such that they do not have to be read again from the global buffer.
However, it has also been found that the pattern of the repeated input data pixels varies
depending on which input data block is to be convolved with the present weight pixel.

To add to the analysis of the global buffer read pattern within a given block of input
data pixels as discussed herein, the global buffer read pattern among the interblock op-
erations can be observed. In other words, we want to find which input data pixels out
of those read for the convolutional operations for one block of input data pixels can be
reused for the convolutional operations for the next block of input data pixels. In Figure 3,
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the input data pixels inside the yellow box, for example, are used repeatedly for both the
first and second blocks. Similarly, the input data pixels inside the blue box are used for
both the second and third blocks of input data pixels. In other words, the six input data
pixels located at the last two columns of every input data block are always identical to
those located at the first two columns of the next block, thereby indicating that they are
read repeatedly for the convolutional operations for the two blocks.

In addition to the six input data pixels, it can be observed from Figure 3 that quite a
few other groups of input data pixels are used in common for the convolutional operations
of the two different blocks of input data pixels. For example, the input data pixels inside
the purple and pink boxes are used in common for both the first and second blocks and
both the second and third blocks, respectively.

However, as can be observed, the pattern of repeated input data pixels between the
first and second blocks is not the same as that between the second and third blocks, as
denoted in purple and pink, respectively, in Figure 3. In other words, although some input
data pixels in the two different blocks are used in common, the pattern of the repeatedly
used input data pixels might vary at different blocks. In particular, although some input
data pixels are commonly used for the convolutional operations of two different blocks,
it is impossible to exploit the commonly used input data pixels for data reuse unless the
locations of the commonly used input data pixels at each of the two consecutive blocks are
fixed.

Nevertheless, if we can exploit the repeated use of input data pixels among the in-
terblock convolutional operations, we can reduce the global buffer access for the interblock
operations, as well as for the convolutions within a given block of input data pixels. In
the following section, we present a novel procedure for rearranging the convolutional
operations such that a group of input data pixels used repeatedly appears with a fixed
regularity. By doing so, we can significantly reduce the global buffer access required for
reading the input data pixels.

3. Proposed Method of Minimizing Global Buffer Access Using the Local Register File
3.1. Local Register File for Data Reuse within Each Row of the Present Input Data Block:
Intrablock Register File

As shown in the preceding section, when the temporal data reuse factor is 16, the same
number (16) of input data pixels should be read from the global buffer for the convolutional
operations with each weight pixel, as shown in Figures 2 and 3.

In the input data read pattern shown in Figure 2, notably, there is only one new input
data pixel in the present set of 16 input data pixels relative to the previous set, provided
that each of the two sets are to be convolved with each of the two consecutive weight pixels
in a given row. In other words, once a set of 16 input data pixels has been read from the
global buffer, we need to read only one more input data pixel to form the next set of 16
input data pixels unless the next set is to be applied to the weight pixel of a different row.

We claim that because 15 out of 16 input data pixels have already been read during
the previous global buffer access, these 15 input data pixels do not have to be read again if
we define proper registers near the 2-D MAC array. For this purpose, with the temporal
data reuse factor being 16, we define 16 registers for the reuse of the 15 input data pixels.
This register file, consisting of the 16 registers, is herein denoted as an intrablock register
file. The term is attributable to the fact that this register file reuses the input data pixels
needed within a given input data block. Specifically, the objective of defining the intrablock
register file is to reuse the 15 input data pixels involved in the convolutional operations
with the two consecutive weight pixels in common. With the intrablock register file, the
burden of accessing the global buffer can be considerably reduced, thereby reducing the
power consumption for global buffer access.

Figure 5 illustrates how the input data pixels are read from the global buffer (a) without
the intrablock register file and (b) with the intrablock register file. Without the intrablock
register file, 16 input data pixels should be read from the global buffer for the convolution
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with each weight pixel. In other words, 16 input data pixels should be read repeatedly
whenever required in the convolutional operations. As shown in the red color of Figure 5b,
however, the 16 input data pixels, {(0,0), (0,1), . . . , (0,15)}, are first read from the global
buffer to be stored in the intrablock register file and to be convolved with the first weight
pixel, (0,0). For the convolution with the next weight pixel, (0,1), only one input data pixel,
(0,16), is read from the global buffer because the remaining 15 input data pixels, {(0,1),
(0,2), . . . , (0,15)}, are reused from the intrablock register file. Similarly, for the convolution
with the weight pixel of (0,2), only one input data pixel ((0,17)) is read from the global
buffer because the remaining 15 input data pixels, {(0,2), (0,3), . . . , (0,16)} are reused from
the intrablock register file. The intrablock register file is introduced so that we can read
only one input data pixel from the global buffer instead of the entire 16 pixels for the
convolutional operations with each weight pixel.

Figure 5. (a) Global buffer read pattern without Intrablock Register File: 16 Input data pixels are read
whenever they are needed, (b) Global buffer read pattern with Intrablock Register File: Once 16 Input
data pixels are read, only one new input data pixel is read afterward.

Notably, the input data pixels are always read sequentially: we first read (0,0), then
(0,1), . . . , and finally (0,15) during the period of t0. Similarly, the input data pixel (0,1) is
read first from the global buffer during the period of t1. Figure 5b indicates that the new
input data pixel needed for the convolution with the next weight pixel should be stored in
the intrablock register file at the position where the first input data pixel is stored during
the previous convolution. In other words, the input data pixel (0,16) needed during the
period of t1 should be stored at the position of (0,0) used during the period of t0. Similarly,
the input data pixel (0,17) needed during the period of t2 should be stored at the position
of (0,1) used during the period of t1.

After completing the convolutional operations with each of the weight pixels in a given
row, the same procedure as described above is repeated for the weight pixels of the next
row. Although we considered the case of a 3× 3 matrix for the weight pixels in the previous
section, the proposed method of using the intrablock register file is valid regardless of the
dimensions of the weight pixel matrix. Moreover, because the convolutional operations
for each row of weight pixels are independent of each other, no input data pixel is used in
common for the convolutional operations with the weight pixels of different rows. This
implies that the intrablock register file does not have to be defined separately for each row of
the weight pixel matrix; thus, we need only one intrablock register file for the convolutional
operations unless the convolutional operations are to be performed simultaneously for
weight pixels in a number of rows in parallel, which is not our interest in this study.

For the 2-D MAC array, recalling that the input data pixels are spatially reused at
each column of the 2-D MAC array, as explained in Section 2.1, we need to define only
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one intrablock register file for each column of the 2-D MAC array. The convolutional
operations at the 16 MAC units in each column were performed in parallel. Each of the
intrablock register file outputs should be split into 16 branches to be provided as an input
to the corresponding MAC unit. In contrast, because each column of the 2-D MAC array
represents one of 128 channels, we have neither input data pixels nor weight pixels being
reused in each row of the 2-D MAC array. Thus, we need to define intrablock register files
for which the number should be the same as the number of columns of the 2-D MAC array,
that is, 128 in the example shown in Section 2.1.

Unfortunately, the data reuse based on the intrablock register file presented in this
subsection (as shown in Figure 5) is not applicable because it is generalized. Therefore, the
pattern of input data pixels being used in common varies depending on which block of
input data pixels is being processed. This problem can be resolved if every block of the
input data pixels is given in a fully rectangular shape, as shown in Figure 5, meaning that
there is no input data block given in a broken rectangular shape, as shown at the center and
bottom of Figure 3. In the following subsection, the convolutional operations between the
input data and weight pixels are rearranged in such a way that each of all the input data
blocks is given in a rectangular shape, as shown at the top of Figure 3. Then, the data reuse
method based on the intrablock register file proposed in this subsection will be generalized.

3.2. Local Register File for Data Reuse between Two Consecutive Input Data Blocks: Interblock
Register File

While the intrablock register file introduced in the preceding subsection reuses the
15 repeatedly needed input data pixels within a given input data block, this subsection
introduces another register file for reusing input data pixels needed repeatedly in the
convolution of different input data blocks.

Even with some input data pixels used in common in the convolution of two consec-
utive input data blocks, it is practically impossible to exploit the merits of reusing these
repeated input data pixels because their pattern is not consistent, as shown in Figure 3. The
objective of this subsection is to present a novel procedure for rearranging the convolu-
tional operations in such a way that the repeated input data pixels appear with consistent
regularity for all pairs of two consecutive input data blocks. Then, once the input data
pixels have been read from the global buffer for the convolution of the first block in each
pair, they never have to be read again for the second block.

Figure 6 illustrates the convolution of three input data blocks when the temporal data
reuse factor is 16 with a weight dimension of 3× 3. In particular, it shows how to rearrange
the computational sequence of convolution in such a way that the input data pixels used
in common for the convolution of two consecutive input data blocks appear with clear
and simple regularity. With the original convolutional operations shown on the left-hand
side of Figure 6, the pattern of the repeated input data pixels is not regular. In contrast,
the sequence of computing the convolution can be properly rearranged in such a way that
the input data pixels located in the second and third rows of the present input data block
become identical to those in the first and second rows of the next block, respectively, as
shown on the right-hand side of Figure 6.

Notably, the rearrangement of the computational sequence described above can be
implemented simply by exchanging the third and fourth lines of the algorithm shown in
Figure 4 with each other. This means that after the rearrangement, a group of input data
pixels in a given input data block is regularly repeated in the next input data block. In
other words, the group of input data pixels can be reused if they are stored in a register file
as defined in this subsection. This register file will be denoted as the "interblock register
file" because the data reuse in this case is applied to the convolution of different input data
blocks, i.e., two consecutive input data blocks.
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Figure 6. Pattern of repeatedly used input data pixels for the convolution of three input data
blocks (a) without rearrangement of the computational sequence, (b) with rearrangement of the
computational sequence.

Because the number of input data pixels to be read from the global buffer for the
convolution with each weight pixel is determined by the temporal data reuse factor, the
interblock register file size is determined as follows:

(Nwy − 1)× (P + Nwx − 1). (1)

In the above, P denotes the temporal data reuse factor, with a weight dimension of
Nwy × Nwx. If the temporal data reuse factor and weight matrix are set to 16 and 3× 3,
respectively, the interblock register file will consist of 2× 18 registers, as shown in yellow
and blue in Figure 6. The second and third rows of the first block are repeated in the first
and second rows of the second block at every pair of two consecutive input data blocks.

Figure 7 illustrates how the input data pixels are read from the interblock register file
as well as from the global buffer for the convolution with weight pixels, assuming that the
weight dimension is 3× 3. Notably, only the new input data pixels are read from the global
buffer because the repeated data pixels are stored in the interblock register file.

In Figure 7, the input data pixels used for the convolution at each time interval, t
′
m for

m = 0, 1, 2, . . . , 8, are denoted by either red or blue. During each time interval, three (Nwx)
sets of 16 (P) input data pixels are to be read either from the global buffer or the interblock
register file; this takes 48 (Nwx × P) clock cycles, as shown on the left-hand side of Figure 7.
Specifically, during the time intervals of t

′
0, t

′
3, . . . , or t

′
6, the input data pixels inside the red

or blue box are convolved with the first-row weight pixels, [(0,0), (0,1), (0,2)]. In general,
during the time interval of t

′
3i+j, for i = 0, 1, 2, . . . , with j being either 0, 1, or 2, the input

data pixels inside the colored box are convolved with the (j + 1)th row weight pixels, i.e.,
[(j,0), (j,1), (j,2)].
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Figure 7. Global buffer and interblock register file access pattern.

From the above discussions, it can be observed in Figure 7 that global buffer access is
needed only for the time interval of t

′
2, t

′
5, . . . , t

′
3m−1 for m = 1, 2, . . . . In addition to these

time intervals, the input data pixels are available from the interblock register file, meaning
that global buffer access can be avoided by taking the input data pixels from the interblock
register file instead of the global buffer. Consequently, using the interblock register file, the
global buffer access can be reduced by nearly 1/3 because the first two rows in every input
data block are the same as the last two rows in the previous block; as such, only the last
row out of three (Nwy) rows needs to be read from the global buffer. For the very first block,
because the interblock register file must be empty at the initial state, the input data pixels
should be read from the global buffer for the first three consecutive intervals, t

′
0, t

′
1, and t

′
2,

after which global buffer access is required only once every third time interval.
Once the computational sequence of the convolution is rearranged as discussed above,

the shape of every input data block becomes a whole rectangle, as shown in Figure 5. This
means that the irregularity of the input data repetition pattern, a critical hindrance to the
data reuse by means of the intrablock register file as introduced in the preceding subsection,
is completely resolved by the rearrangement. In other words, once the computational
sequence of convolution is rearranged, as presented in this subsection, data reuse can be
accomplished for the two rows repeated in every pair of two consecutive input data blocks,
as well as for the 15 input data pixels repeated in every row of a given input data block.
This former data reuse is provided via the intrablock register file, and the latter data reuse
is provided via the interblock register file.

To fully exploit the above-mentioned data reuse using the proposed intra- and in-
terblock register files, the output feature width should be a multiple of the temporal data
reuse factor, as explained in Section 2.3. Otherwise, we cannot avoid having some re-
maining input data pixels not included in the convolutions of the input data blocks of the
entire rectangular shape. This means that some additional convolutions are required after
completing the convolutions with respect to all of the regular input data blocks of an entire
rectangular shape. However, the number of remaining pixels is generally far less than that
included in the regular input data blocks.The exact number of output feature pixels yet to
be computed for the remaining input data pixels is, as can be observed from Figure 6, at
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most (H − (Nwy − 1))× (P− 1) where H is the height of the entire input data pixel, i.e., 6
in the case of Figure 6. In this case, to use the proposed method in the remaining input data
pixels, P is chosen as P = Nrx − (Nwx − 1) where Nrx is the width of remaining pixels. In
Section 5, we discuss how the computation of the remaining pixels affects the performance
of the proposed method.

Using the proposed method, global buffer access can be reduced in the blue area as
shown in Figures 5 and 7. In order to reuse data through the local register file, the path
that originally transmitted data directly from the global buffer to the MAC array must be
changed. Specifically, the MAC array should receive data from the local register file, and
the local register file should be able to update data from the global buffer. However, if data
is transmitted only from the local register file, the local register file cannot be used during
the update process of the local register file, and a stall may occur. To solve this problem, we
made it possible to transfer the data from the global buffer to the MAC array at the same
time when updating the data to the local register file. In other words, data read from the
global buffer can be used simultaneously in both the local register file and the MAC array.
Through this, it was improved so that the operation can be performed every cycle without
the stall caused by the local register file. Figure 8 shows the structure described above.

Figure 8. Input index controller structure to control global buffer and local register file.

3.3. Integrating the Intra- and Inter-Block Register Files

This subsection presents the integration of the two proposed local register files, i.e.,
the intra- and inter-block register files, such that only a single hardware resource needs to
be assigned to both register files.

To integrate the intra- and inter-block register files with a single hardware resource,
input data pixels needed for the purpose of the intra-block register file should be provided
from the inter-block register file in accordance with the required scheduling. Recalling that
the inter-block register file size, (N − 1)× (P + N − 1), is exactly N − 1 times larger than
the intra-block register file size, (P + N − 1), we can define N − 1 intra-block register files
if the contents in each row of the inter-block register file can be used for the purpose of
the intra-block register file. As discussed in Section 3.2 with the explanations of Figure 7,
the contents of each row of inter-block register files are exactly what is needed for the
intra-block register file. The intra-block register file size, which is set to P in Section 3.1,
can be extended to P + Nwx − 1 to match the inter-block register file size. Specifically,
the contents stored at the (Nwy − 1)× (P + Nwx − 1) registers of the inter-block register
file are to be used as the contents of the N − 1 intra-block register files, each of which is
provided from the corresponding P + N − 1 registers of the inter-block register file. In
short, the contents of each of the N − 1 rows in the inter-block register file are used as the
corresponding intra-block register file.
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4. Hardware Implementation

The objective of this section is to verify the functionality of the proposed accelerator
through hardware implementation. To verify the functionality, the proposed accelerator
employing the local register file that operates in accordance with the rearranged computa-
tional sequence is implemented as discussed in this section. The aim is to execute a simple
example code of a deep learning neural network. We implemented the accelerator with
an FPGA (XCZU9EG-2FFVB1156) mounted on an off-the-shelf evaluation board, ZCU102
(Zynq UltraScale+ MPSoC) [25], using an open hardware source, the "NVIDIA Deep Learn-
ing Accelerator" [22]. For the implementation of an accelerator for fully exploiting the merit
of data reuse, the open source code was modified in such a way that the proposed local
register file could be utilized in accordance with the procedure explained in Section 3.2.

Figure 9 illustrates a block diagram of the entire system, including the accelerator. The
entire system consisted of an ordinary personal computer (PC) and the evaluation board,
ZCU102, which comprised (1) a processing system (PS) including an ARM processor, (2)
programmable logic (PL) including the proposed local register file, as well as a convolution
engine, global buffer, and an interface for connecting the PS to PL, and (3) dynamic random
access memory (DRAM). The ARM processor controlled the accelerator in accordance
with a given deep learning application executed on an operating system (i.e., Linux in
our implementation) of the ARM processor. Specifically, the ARM processor provided the
instructions required for the configuration of the convolutional operations to the accelerator.
From these instructions, all of the required data, i.e., both the input data and weight pixels,
were transferred from the DRAM into the global buffer.

Figure 9. Entire system block diagram implemented with a PC and ZCU102.

The accelerator was implemented according to the hardware description language
code. In our implementation, we used Verilog software. Meanwhile, the deep learning
application executed on the ARM processor could be implemented with a high-level
language such as C/C++ or Python.

The instructions, which were the result of executing the application code, provided
the parameter values required for the convolutional operations at each layer of the deep
learning neural network in the accelerator. For instance, the dimensions of the input data
and weight pixels and their addresses in the DRAM were provided as the configuration
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information. Then, all the data needed for the convolutional operations were transferred
from the DRAM into the global buffer.

The ZCU102 board and desktop were interconnected via a serial port, whereas the
Tera Term/Gimp Toolkit + Terminal (GtkTerm) was used as a terminal emulator for serial
communication between the ARM processor and desktop CPU. Then, the ZCU102 board
could be monitored through serial communication to the PC monitor.

Figure 10 illustrates a block diagram of the accelerator implemented on the PL of the
ZCU102 board. Using the 2-D MAC array consisting of 16× 128 MAC units, we exploited
the spatial data reuse with a reuse factor of 16; 128-channel input data pixels were processed
in parallel along each row. The proposed local register file, in which intra- and inter-block
register files were integrated, was implemented near the 2-D MAC array. The size of register
files was chosen as 4× 20(160 Byte), which can cover both 3× 3 and 5× 5 weights with
the reuse factor (P) 18 and 16, respectively, as explained in Section 3. In (1) of Section 3.2,
the necessary register file size was obtained according to the weight size and the temporal
data reuse factor. However, since the size of the local register file is predetermined, on the
contrary, an achievable temporal data reuse factor is determined according to the weight
size. Therefore, there may be differences in performance depending on the size of the
weight, and the detailed results should be summarized in the result.

Figure 10. Block diagram of the proposed accelerator employing a 16× 128 2-D MAC array for 16
weight sets and 128 channels.

The register files are shared with MAC units locally by column, with the input indexed
by a single IIC. Therefore, the proposed shared register files can save more resources than a
per-MAC register file [17]. The accumulator shown on the right-hand side of the top part of
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Figure 10 summarizes all 128 multiplication results obtained from the parallel operations
of the input data and weight pixels. The final result of the accumulator was stored in the
DRAM. Meanwhile, to read or store any data from or to the DRAM, an advanced extensible
interface bus was used.

Figure 11 shows a photograph of the entire system and corresponds to the block
diagram in Figure 9. It can be observed that the PC desktop and ZCU102 boards are
interconnected with a serial port cable. The monitor shows the final result of the execution of
the application code, as obtained by accessing the ARM processor via the terminal emulator.

Figure 11. Photograph of the entire system consisting of the PC and ZCU102 board including the
proposed accelerator.

To verify the functionality of the implemented accelerator, we used an example pro-
gram of the LeNet model deep learning application for recognizing Arabic numbers [26].
This example LeNet code was executed on the proposed accelerator shown in Figure 10
using the entire system architecture shown in Figures 9 and 11. The application code was
first compiled specifically for the implemented accelerator. The resulting executable code
consisted of instructions (1) for transferring the configuration information for each layer of
the LeNet deep learning network and (2) for activating the accelerator itself. Consequently,
the convolutional operations required at each layer of the deep learning neural network
were performed.

Figure 12 illustrates the confusion matrix obtained from the implemented accelerator.
The Arabic numbers (0, 1, . . . , 9), shown in the vertical and horizontal axes of the confusion
matrix, denote the input and output of the LeNet DNN, whereas each entry value represents
the probability that the input value is inferred as the output value. Meanwhile, the pixel val-
ues for each Arabic number of the Modified National Institute of Standards and Technology
database [27] were used as the input data pixels for the LeNet deep learning network.

As shown in Figure 12, the implemented accelerator employing the proposed local
register file yields reliable inference probability values. Based on the results obtained from
the implemented accelerator employing the proposed local register file, the functionality of
the proposed accelerator is verified. In the following section, we will present exactly how
many global buffer accesses can be reduced by the proposed accelerator by employing the
local register file and intra- and inter-block register files.
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Figure 12. Confusion matrix of inferring Arabic numbers obtained from the implemented accelerator.

Before delving into Section 5 to detail all the merits of the proposed accelerator employ-
ing the local register file, FPGA hardware resource utilization of the proposed accelerator
is summarized here in comparison to the conventional accelerator [22]. The objective is
to summarize how much extra hardware resources are required for implementing the
proposed local register file on the FPGA.

Table 2 shows the FPGA hardware resource utilization when implementing the con-
ventional [22] and proposed accelerators on the FPGA of the ZCU102 board. It has been
found in our hardware implementations that the proposed accelerator for the deep learning
network shown in Figures 9–11 requires 81,375 units of flip-flop (FF), 72,759 units of look-up
table (LUT), 100 units of block random access memory (BRAM), and 105 units of a digital
signal processor (DSP) slice, while the conventional accelerator can be implemented with
74,965 units of FF, 65,640 units of LUT, 100 units of BRAM, and 100 units of a DSP slice.
Consequently, the extra amount of hardware resources required by the proposed accelerator
is approximately 8.6% of the FF, 10.8% of the LUT, and 5% of the DSP slice in comparison
to the conventional accelerator. Specifically, the increase in the FF utilization is due to the
local register file employed by the proposed accelerator for enhancing the data reuse, while
the increase in both LUT and DSP slice utilization is due to the control logic for controlling
the rearrangement of the computational sequence.

Table 2. Comparison of FPGA hardware resource utilization when implementing the conventional
and proposed accelerator on the ZCU102 board.

Conventional Accelerator [22] Proposed Accelerator

FF 74,965 81,375
LUT 65,640 72,759

BRAM 100 100
DSP slice 100 105

As discussed above, an increase in hardware resource utilization is inevitable due to
the local register file and its control logic. However, the proposed accelerator fully exploits
all the merits of data reuse through the proposed local register file, which is nothing but a
set of FFs that consume far less power compared to the global buffer consisting of BRAMs.
The advantages of the proposed accelerator are demonstrated in the following section
mainly in terms of the required power consumption.
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5. Results
5.1. Performance Analysis

This subsection presents the gain in global buffer access that can be obtained by the
proposed method; the functionality itself was verified as discussed in the preceding section
through hardware implementation. Specifically, the simulation results presented in this
subsection compare the gain using the proposed and conventional methods [17–22]. In
other words, we present how much more gain can be obtained in addition to the spatial
and temporal data reuse provided by the conventional technique.

For simplicity, let us first assume that the output feature width is a multiple of the
temporal data reuse factor, P = 20− (Nwx − 1) (e.g., P for 3× 3, 5× 5, and 11× 11 are 18,
16, and 10, respectively). Then, as explained in Section 3, both the intra- and inter-block
register files can be applied to every input data block because all of the input data blocks
are given in an entire rectangular shape. With the dimensions of the weight matrix being
Nwy×Nwx, the number of global buffer accesses to obtain a single block of input data pixels
is (20− (Nwx − 1))×Nwy×Nwx or Nwy× 20 when the accelerator does not or does employ
the proposed intra-block register file, respectively [22]. Notably, without the proposed
intra-block register file, each set of 20− (Nwx − 1) input data pixels must be read from the
global buffer per weight pixel, whereas only one out of the 20− (Nwx − 1) input data pixels
would have to be read per weight pixel if the accelerator employs the proposed intra-block
register file. Thus, when there is only a single input data block, the global buffer access
gain provided by the intra-block register file can be written as follows:

100× (1− 20
(20− (Nwx − 1))× Nwx

)% (2)

If the total number of input data blocks is M, the number of global buffer accesses
to obtain the entire M blocks of input data pixels is M× (20− (Nwx − 1))× Nwy × Nwx
or (M + (Nwy − 1))× 20 when the accelerator does not or does employ both intra- and
inter-block register files, respectively. Note that the size of register files limits the inter-block
data reuse. For example, if the weight size is larger than 5× 5, the inter-block register files
should be overwritten after the reading of the 4th row of a block, increasing global buffer
access by 20× Nwy ×M. However, such large weights are seldomly used in the modern
DNN structure, incurring limited harm for the proposed hardware.

Thus, when there are M input data blocks, the global buffer access gain provided by
both the intra- and inter-block register files can be written as follows:

100× (1−
(M + (Nwy − 1))× 20

M× (20− (Nwx − 1))× Nwy × Nwx
)% (3)

When the total number of input data blocks, M, is sufficiently larger than the number
of rows in the weight matrix, Nwy, which is generally the case, then the global buffer access
gain shown in (3) can be approximated as follows:

100× (1− 20
(20− (Nwx − 1))× Nwy × Nwx

)% (4)

Notably, as mentioned at the beginning of this section, the global buffer access gain
shown in (2)–(5) is valid only when the output feature width is set to a multiple of the
temporal data reuse factor. If this requirement is not met, the global buffer access gain
decreases because of the remaining input data pixels, as discussed in the last paragraph of
Section 3.2.

When the output feature width is not set to a multiple of the temporal data reuse
factor, meaning that there exist some remaining input data pixels, the global buffer access
gain with the intra-block register file only can be obtained as follows:

100× (1−
M× 20× Nwy + β

M× (20− (Nwx − 1))× Nwx × Nwy + α
)% (5)



Sensors 2022, 22, 3095 19 of 24

In contrast, the global buffer access gain with both the intra- and inter-block register
files can be determined as follows:

100× (1−
(M + (Nwy − 1))× 20 + β

M× (20− (Nwx − 1))× Nwy × Nwx + α
)% (6)

In (5) and (6), β and α denote the number of global buffer accesses required to process
the remaining input data pixels when the proposed method is used or not, respectively,
and can be computed as follows:

α = RopNwyNwx (7)

β = Rip (8)

Here, Rip and Rop are the number of remaining input data pixels and remaining output
data pixels, respectively. In addition, (2) and (3) can be obtained from (5) and (6) with α = 0
and β = 0, respectively.

As mentioned in the last paragraph of Section 3.2, the number of remaining input data
pixels is, in general, far less than that of the other input data pixels in the entire M input
data blocks. Thus, the impact of the remaining input data pixels on the overall global buffer
access gain must decrease as the input data size increases, as shown in Figure 13.

Figure 13. Global buffer access gain for the proposed accelerator.

Figure 13 illustrates the global buffer access gain provided by the proposed local
register file. It can be observed that the global buffer access gain increases as either the
weight dimension or input data size increases. In addition, we can observe that there are
local maxima whenever the output feature width is set to a multiple of the temporal data
reuse factor, that is, 20− (Nwx − 1) in this study. Furthermore, as mentioned earlier, the
impact of the remaining input data pixels diminishes as the input data dimension increases.
The global buffer access gain becomes approximately 95%, meaning that the proposed
intra- and interblock register files reduce the global buffer access down to approximately
5% for a weight dimension of 5× 5.

5.2. Evaluation on DNN Models

This subsection presents the gain when the proposed method is applied to DNN
models. The input size and weight size are different for each model or for each layer of
one model. Therefore, before evaluating the model, we would like to show the gain result
according to the approximate input size for the most commonly used 3 × 3 and 5 × 5
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weights. At the end of this subsection, we show the results when applied to DNN models,
e.g., VGG16, AlexNet, and RestNet50.

Table 3 lists the global buffer access gain and power consumption gain provided by
the proposed intrablock register file. The global buffer access gain is obtained from (5),
in which the remaining input data pixels and input data pixels within the regular input
data blocks of the entire rectangular shape are considered. The power gain is computed
under the assumption that the power consumption per global buffer access is k times larger
than that per local register file access. Because the global buffer and local register file, as
implemented on the FPGA shown in Section 4, are approximately 512 K and 20 K bytes,
respectively, the value for k is set to 6 [12] to obtain the values for the power gain shown in
Table 3. When the input data dimension is 64× 64 with a weight dimension of 5× 5, for
instance, Table 3 shows that the power gain is approximately 61.93%, thus indicating that
the power consumption for the proposed accelerator to read all the input data pixels is only
approximately 40% of that of the conventional accelerator [22]. It can also be observed that
the power gain and global buffer access gain increase as the data size increases.

Table 3. Global buffer operation gain with intrablock register file only.

3 × 3 Weight 5 × 5 Weight
# of Access Power # of Access Power

Gain Gain Gain Gain

8× 8 40.74% 33.95% 20% 16.67%Input Data
16× 16 56.46% 47.05% 64.44% 53.70%Input Data
32× 32 61.04% 50.86% 72.65% 60.54%Input Data
64× 64 62.09% 51.74% 74.31% 61.93%Input Data

128× 128 62.37% 51.97% 74.76% 62.30%Input Data
256× 256 62.45% 52.04% 74.90% 62.42%Input Data
512× 512 62.48% 52.07% 74.96% 62.46%Input Data

Table 4 lists the global buffer access gain and power gain values obtained with both
intra- and interblock register files. With the two local register files integrated within a
single hardware resource, as explained in Section 3.3, both the global buffer access gain
and power gain are significantly enhanced. If the input data size is large enough, for
example, 512× 512, the global buffer access gain becomes approximately 95% when the
weight dimension is 5× 5. Thus, the required number of global buffer accesses is reduced
to approximately 1/20, whereas the power consumption for the proposed accelerator to
read all the input data pixels decreases to approximately 21% of the conventional value.
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Table 4. Global buffer operation gain with both intra- and inter-block register files.

3 × 3 Weight 5 × 5 Weight
# of Access Power # of Access Power

Gain Gain Gain Gain

8× 8 80.25% 66.87% 84% 70%Input Data
16× 16 85.49% 71.24% 92.89% 77.41%Input Data
32× 32 86.57% 72.14% 94.12% 78.44%Input Data
64× 64 87.05% 72.54% 94.60% 78.83%Input Data

128× 128 87.28% 72.73% 94.81% 79%Input Data
256× 256 87.39% 72.83% 94.90% 79.09%Input Data
512× 512 87.45% 72.87% 94.95% 79.13%Input Data

Table 5 lists the performance gain of the proposed hardware evaluated on conventional
DNNs such as VGG16 [28], AlexNet [1], and ResNet50 [29] models. VGG16 achieves the
access gain of 86.75%, which is near the ideal gain (88.89%), thanks to its simple 3× 3
convolutions. In the case of AlexNet, the access gain is slightly degraded (= 85.65%) mainly
due to 11× 11 with a large stride; yet the degradation is minor since most weights are
either 3× 3 or 5× 5. On the other hand, ResNet50 achieves significantly lower access gain
45.10%, since about two-thirds of the convolution weights are 1× 1 limiting pixel-wise data
reuse. Still, it is shown that the proposed hardware can reduce global buffer access from
45% to 86%, resulting in significant power savings.

Table 5. Global buffer operation gain in DNN models with both intra- and inter-block register files.

DNN # of Access Gain Power Gain

VGG16 86.75% 72.28%
AlexNet 85.65% 71.38%

ResNet50 45.10% 37.58%

Lastly, we investigate the reduction in global buffer access on light-weight convolu-
tional neural networks (CNNs) such as MobileNets [30,31] and EfficientNets [32]. These
efficient CNNs consist of depth-wise separable convolution that decomposes convolution
into computation along the channels and the features. The convolution computation along
the channel is identical to 1× 1 convolution, which does not reuse feature data via the local
register file. However, the convolution computation along the feature (called depth-wise
convolution) can exploit feature data reuse via the intra- and inter-block register files for the
convolution window. Table 6 shows the global buffer operation gain for MobileNet-V2 [31]
and EfficientNet-B0 [32]. Each bottelneck layer contains one or more depth-wise layers. In
MobileNetV2, each layer contains {1,2,3,4,3,3,1} depth-wise layers, and in EfficientNet-B0,
{1,2,2,3,3,4,1} are included. The table result shows the global buffer access gain for each
bottleneck layer, and it can be seen that the gain is about 70% to 87%. Among them, in the
case of the bottleneck layer, which has a low gain compared to other layers, about 70%,
it can be seen that the reuse rate is lowered by applying stride = 2 in the first depth-wise
layer among several depth-wise layers included in each layer. Note that depth-wise convo-
lution is more data-hungry than point-wise convolution; it only utilizes one row of the 2-D
MAC array to compute convolution across the weight pixels while requesting the same
bandwidth for the feed of feature data. Therefore, the reduction in global buffer access is
particularly essential for depth-wise convolution.
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Table 6. Global buffer operation gain per depth-wise layer of MobileNetV2(left) and EfficientNet-
B0(right) with both intra- and inter-block register files.

MobileNetV2 # of Access Power EfficientNet-B0 # of Access Power
Gain Gain Gain Gain

1st DW layer 87.28% 72.73% 1st DW layer 87.28% 72.73%in Bottleneck
layer1

in MBConv1,
k3 × 3

2–3rd DW
layer 70.80% 59.00%

2–3rd DW
layer 74.01% 61.68%

in Bottleneck
layer2

in MBConv6,
k3 × 3

4–6th DW
layer 75.58% 62.98%

4–5th DW
layer 70.73% 58.94%

in Bottleneck
layer3

in MBConv6,
k5 × 5

7–10th DW
layer 77.20% 64.33%

6–8th DW
layer 86.39% 71.99%

in Bottleneck
layer4

in MBConv6,
k3 × 3

11–13th DW
layer 85.49% 71.24%

9–11th DW
layer 75.35% 62.79%

in Bottleneck
layer5

in MBConv6,
k5 × 5

14–16th DW
layer 67.58% 56.32%

12–15th DW
layer 74.68% 62.24%

in Bottleneck
layer6

in MBConv6,
k5 × 5

17th DW
layer 80.25% 66.87%

16th DW
layer 81.63% 68.03%

in Bottleneck
layer7

in MBConv6,
k3 × 3

6. Conclusions

By introducing local register files that operate based on a novel procedure of rear-
ranging the convolutional operations, we have presented a method for realizing a power-
efficient deep learning accelerator that minimizes the global buffer access by maximizing
data reuse. Compared to conventional data reuse methods [17–22], which suffer from
a limited data reuse factor, the proposed technique provides a flexible and sufficiently
large data reuse factor such that input data pixels do not have to be read repeatedly from
the global buffer. Although the merits of the proposed technique can be fully exploited
only when the output feature widths are set to multiple temporal data reuse factors, we
have demonstrated that the superiority of the proposed method is guaranteed even when
that condition is not met. For instance, with a weight pixel matrix of 5× 5, the global
buffer access gain provided by the proposed method is found to be 94.81%, 94.90%, and
94.95% for the input data dimensions of 128× 128, 256× 256, and 512× 512, respectively,
whereas the global buffer access gain in the ideal case is 96%. We have also quantified the
reduction in power consumption for memory access based on the global buffer access gain
provided by the proposed method. For instance, with a weight pixel matrix of 5× 5, the
proposed method saves approximately 79%, 79.09%, and 79.13% of the memory access
power consumption for the input data dimensions of 128× 128, 256× 256, and 512× 512,
respectively, thereby indicating that the proposed accelerator consumes only approximately
1/5 of the memory access power compared to most conventional accelerators [17–22].
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