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Abstract: Diabetes mellitus is a serious chronic disease that affects the blood sugar levels in individu-
als, with current predictions estimating that nearly 578 million people will be affected by diabetes by
2030. Patients with type II diabetes usually follow a self-management regime as directed by a clinician
to help regulate their blood glucose levels. Today, various technology solutions exist to support
self-management; however, these solutions tend to be independently built, with little to no research
or clinical grounding, which has resulted in poor uptake. In this paper, we propose, develop, and
implement a nudge-inspired artificial intelligence (AI)-driven health platform for self-management of
diabetes. The proposed platform has been co-designed with patients and clinicians, using the adapted
4-cycle design science research methodology (A4C-DSRM) model. The platform includes (1) a cross-
platform mobile application for patients that incorporates a macronutrient detection algorithm for
meal recognition and nudge-inspired meal logger, and (b) a web-based application for the clinician
to support the self-management regime of patients. Further, the platform incorporates behavioral
intervention techniques stemming from nudge theory that aim to support and encourage a sustained
change in patient lifestyle. Application of the platform has been demonstrated through an illustra-
tive case study via two exemplars. Further, a technical evaluation is conducted to understand the
performance of the MDA to meet the personalization requirements of patients with type II diabetes.

Keywords: diabetes; self-management; nudge theory; co-design; development; digital health plat-
form; mHealth

1. Introduction

Diabetes (diabetes mellitus) is a rapidly growing chronic disease that is known to affect
individuals typically over the age of thirty, all around the world [1]. In 2017, 425 million
people were affected by diabetes [1]. This number increased to 463 million in 2019 and
is predicted to continue increasing, to reach 578 million by 2030 [2]. In Australia, as of
2017-18, 1 in 20 Australians (1.2 million individuals) was living with diabetes and this
figure is expected to only grow [3]. The current growth trend estimates that up to 3 million
Australians over the age of 25 will have a form of diabetes by 2025—with 85% of all diabetes
being type II diabetes [4].

The rise in diabetes can be credited to a combination of factors, which include a
sedentary lifestyle, poor diet, lack of regular exercise, and stress [5]. With continued
poor management, the complications caused by diabetes can worsen and can lead to
severe health consequences [5]. Diabetes can be an unpleasant chronic condition, which
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only worsens if left unchecked and may require further invasive, ongoing, and expensive
medical attention [5].

Treating diabetes and its consequences, when there is a clear absence of any effective
cure, means to maintain healthy appropriate blood sugar levels by concentrating on ad-
hering to a balanced diet, exercising regularly, ensuring timely intake of medication, and
undergoing regular checkups with a physician [5]. As diabetes is a chronic disease, there is
no general cure and thus, self-management becomes a key aspect in living with diabetes.
A good self-management regimen can guide patients to improve their diabetes and stay
away from avoidable complications that can develop due to poor and uncontrolled dia-
betes [6]. In some cases, a well-structured and personalized regimen can even effectively
help permanently reverse type Il diabetes [6].

Self-management regimens for patients with diabetes generally involve monitoring
blood glucose levels and blood pressure daily and keeping these within the target ranges;
eating a healthy diet focusing on foods with a low glycemic index (GI); engaging in regular
physical activity; reducing weight if it is above the recommended range; and quitting
smoking [5]. For example, increased physical activity alone is known to contribute to
30-50% reduction in the development of type II diabetes [7]. Though self-management
regimens can produce positive outcomes in managing diabetes, a survey conducted with
over 100 patients with diabetes suggested that a technological-driven solution may be a
driver for improved diabetes self-management [8].

While there is currently a large variety of diabetes self-management solutions available
in the relevant app stores (e.g., Google’s Play Store and Apple’s app Store), they typically
vary in core diabetes self-management feature sets and, more importantly, lack advanced
features, such as a nutrition system that tracks diet as well as provides appropriate diet
recommendations based on a clinician-set plan. Nutrition management is an important
part in self-managing diabetes, yet many solutions only offer basic nutrition management
functionality, such as logging [9]. This is potentially putting individuals at risk, as the
diet outcomes of the developed solution are not curated or validated by a clinician and
the solution is generalized for all individuals, disregarding the cultural or ethnic nuances,
which are critical in supporting the diversity in the user population.

This identified variability in the core features between each of the developed solutions
is found to result in poor usability and effectiveness [10]. To improve usability issues in dia-
betes self-management solutions, studies have suggested that solutions should implement
behavioral intervention principles [11]. Implementing behavioral interventions stemming
from nudge theory can affect dietary and self-management behavior in a positive way [12].
While evidence supports the importance of implementing behavioral interventions in self-
management systems for a sustained change in user behavior, current developed systems
are yet to incorporate this in their solutions.

To address the identified key voids in the diabetes self-management solutions, this
paper proposes, develops, and implements a nudge-theory-inspired personalized diabetes
self-management platform for patients with type II diabetes. In this paper, we present the
implementation of this platform, which has been co-designed with clinicians and patients
with type II diabetes, ensuring that the features of the platform provide for personalized
self-management and the platform is fit for purpose. The co-design process identified that
a holistic diabetes self-management platform is required to ensure that we address the
gaps found in the current literature, as well as the plethora of diabetes self-management
solutions currently available. Since type II diabetes directly correlates with poor lifestyle
and nutrition management [5], to develop a holistic solution, the proposed self-management
solution needs to contain ways to manage a patient’s nutrition, fitness, blood sugar levels,
and medication. Further, the proposed holistic solution needs to incorporate some form
of communication pipeline with a clinician to ensure the solution is clinically sound. This
study proposes a diabetes self-management platform that contains the following: (a) A cross-
platform mobile application (diabetes self-management mobile app) that is personalized
to the patient. The patient will be using the app to self-manage their type II diabetes
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by logging their blood glucose readings, fitness activities, and nutrition intake and any
medication that they may be taking; (b) A clinician web portal that will allow the clinician
to view how the patient is progressing with their self-management regimen and curate a
personalized patient-specific diet recommendation list. The curated recommendations are
then presented to the patient through the diabetes self-management mobile app. This is
identified as a nudge to improve the patient’s diet intake, which improves self-management
of the patient’s diabetes. Further, a macronutrient detection algorithm (MDA) has been
implemented into the diabetes self-management platform to better understand what the
patient is consuming based on meal images. MDA is able to analyze the food images
provided by the patient at the time of logging and presents the macronutrient information
of the food item to the patient. By focusing on a nudge-inspired nutrition management
system, over time, we aim to have a sustained change in the patient’s behavior and overall
improvement of self-management.
In summary, the paper makes the following contributions:

e  Presentation of a holistic diabetes self-management platform that has been co-designed
with patients and clinicians to ensure the platform is fit for purpose. Through the
co-design process, it was identified that a self-management platform requires a cross-
platform mobile app that is personalized to the patient’s cultural nuances and a clini-
cian web app that allows for an improved patient—clinician communication pipeline.

e  The development and implementation of a macronutrient detection algorithm (MDA)
that uses Al-driven image analytics for nutrition management and behavior inter-
vention through the incorporation of nudge theory. The platform aims to improve
self-management among patients and enable them to undergo a sustained behavior
change. An application of the platform has been demonstrated through an illustrative
case study. Further, a technical evaluation is conducted to understand the performance
of the MDA to meet the personalization requirements of patients with type II diabetes.

The rest of the paper is organized as follows. Section 2 reviews the related work, while
Section 3 provides an overview of nudge theory, and Section 4 is about the methodology.
Section 5 details the architecture of this platform, while Section 6 provides the details
on the platform implementation and evaluation of identified deep learning models for
platform personalization. Section 7 discusses the application of the personalized diabetes
self-management platform in use through an illustrative case study approach. Section 8
provides a discussion on the findings, with the conclusion and future works.

2. Related Work
2.1. Current mHealth Applications

In Australia, it is estimated that 84% of all adults and 99% of 18-29-year-olds own and
have access to a smartphone [13]. Accessibility of smartphones has played a vital role in
developing mHealth mobile applications that promote self-management of diabetes [14].
In modern mobile devices, running operating systems such as Google’s Android OS
and Apple’s iOS, developers can leverage the plethora of the onboard sensors to better
understand the user context, and extract useful information [14].

Across the respective iOS and Android application stores, it is estimated that there are
upwards of 300,000 active mHealth apps [15]. For many of the advanced smartphone users,
mHealth applications can be seen to benefit by assisting them with self-management of
their chronic disease [16]. However, due to the open nature of the app stores, the mHealth
apps are developed and published by individuals and/or third-party teams [16]. This
raises questions around how the mHealth apps manage patient health data and any legal
liabilities of damages caused by the app [10].

Additionally, due to the lack of regulations and support from authoritative bodies,
clinicians find it difficult to discuss mHealth options that patients can incorporate into
their clinically approved diabetes self-management routines [16]. This has led many
commercially available mHealth apps to provide diabetes self-management capabilities,
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without any medical or research rigor, which ultimately could place the patient at risk of
an unexpected complication [9,17].

While type II diabetes correlates with poor lifestyle and nutrition management [5], it
is found that many of the identified self-management mobile apps found in the market lack
advanced nutrition management features. While there are many apps that partially cover
the logging features blood glucose management, fitness tracking, and nutrition, none of
them provides a solution that covers all the vital features to allow for clinically sound self-
management [9]. Further the current suite of apps lacks various personalization features,
such as a nutrition recommendation system that allows for diet recommendations from a
clinician-managed list [9]. The apps that take the generalized approach and provide only
the basic functionality create the possibility of adverse complications in the user as they may
reach a state of hyper- or hypoglycemia due to poor lifestyle and nutrition management.

2.2. Nutrition Recommendation

Managing nutrition is a one aspect of diabetes self-management. However, poor
dietary habits and an inactive lifestyle are the major factors behind the rapid growth of
type Il diabetes all around the world [1,2,18]. While studies suggest that socioeconomic
factors such as low income and less education can contribute to an individual developing
type II diabetes, a well-balanced lifestyle, which includes eating not only the right type of
food but also the appropriate portion size, as well as partaking in some regular physical
activity, can contribute to lowering the chances of developing type II diabetes [5,18,19].

Recommendation systems, fundamentally, can be defined as systems that find items
that are relevant to the user based on previous decisions that the user has taken [20].
While previous decisions can be used for recommendations, modern recommendation
systems also have the ability to predict the preferences of unrated items and continue to
recommend new items to the user [21]. While there are many nutrition recommendation
systems present, such as those mentioned in [22-24], they can be bundled under certain
overarching categories.

The categories are as follows:

e  Collaborative Filtering Recommender (CF) Systems: CF systems are known to be
one of the most researched recommender systems [21]. This system uses a nearest
neighbors approach, where it identifies other users who have a similar taste in the
recommendation items as the user and recommends items that the neighbors like [25].
For this system to work, the user needs to have rated some of the existing items so the
CF system can learn what the user likes and does not like.

o  Content-based Recommender (CB) Systems: CB systems analyze the profile metadata
of a user (likes, dislikes, etc.) to create a criterion, which is then used to find items that
fulfill the criterion [20,21]. Usually, this method involves a text-mining algorithm that
allows the system to identify key terms to match with the criterion [20].

o  Knowledge-based Recommender (KB) Systems: KB systems use knowledge about the
user and items to pursue recommendations based on reasoning related to whether
the items meet the requirements of the user [26]. An example in relation to nutrition
would be already having information such as what dishes the user likes/dislikes, what
ingredients the user likes or dislikes, known allergies, etc.

o Deep Learning Recommender (DL) Systems: DL systems can capture nonlinear and
nontrivial relationship between the user and the item, which may not be as quickly
identifiable through a CB, CF, or KB system [27,28]. DL systems are the newer rec-
ommender system in this list, as a survey suggests exponential growth in research
publications around DL recommender systems [27].

e  Hybrid Recommender (HR) Systems: HR systems are based on the combination of the
above-mentioned techniques. Studies have found HR systems to be the preferred
approach as these systems could allow one system to cover the disadvantages of the
other system [18,29]. For example, a well-known problem with the CF system is a
“cold-start” problem [30]. This problem highlights the lack of information about the
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user unless the user starts using the system so that over time the system improves its
recommendations. A way to overcome the cold-start issue is by pairing the CF system
with the KB or CB system. Given the nutrition space, one can see that now there
is some foundational information inherited from the user (through CF/KB system
strategies) even before the user is required to use the system to log and rate meals.
This allows for improved recommendations from the very beginning.

A survey conducted by Abhari et al., in 2019, looked specifically at nutrition recom-
mendation systems, and using the PRISMA framework, they were able to identify 25 articles
that implement various types of NR systems [29]. The survey identified that hybrid and
knowledge-based recommender systems are the popular recommendation system types,
with the collaborative recommendation system being the least popular type [29]. This
study also highlights that the K-Means clustering algorithm, a deep learning recommender
system, is not as widely used as the rule- or ontology-based algorithms [29]. Mobile applica-
tions were seen to be the platform with the highest percentage of nutrition recommendation
systems, at 28%, followed by web applications, at 20% [29].

Research has highlighted that having a balanced diet is a critical factor when it comes
to successful diabetes management [5]. Hence, it is crucial to have a strong recommendation
system in place that can lead to improved self-management. Currently, while there are
many stand-alone recommendation systems available, they are yet to be adapted to the
health context (e.g., diabetes self-management). If they were to be adapted to a health
context, a study highlights the importance of using an iterative design cycle that will allow
the developers to better understand the domain and come up with an accurate evaluation
process that will consider data security, privacy, ethical implications, etc., and understand
the inception—which refers to methods used to conceive the recommender system in a
health context [20]. For example, a diabetes self-management nutrition recommendation
system needs to consider things such as blood sugar level, fitness history, and medication
before considering the “normal” factors for a nutrition recommendation system, which
would be calories, carbs, fat content, etc.

Another study covering recommender systems in the healthy food domain highlights
that, even though there are some papers that theorize promoting a healthy lifestyle through
food recommendation systems to help tackle health problems and suggest a change in
eating behavior, these solutions are yet to be developed [21].

2.3. Behavioral Intervention

While the above identifies some of the functionality of what is expected in a diabetes
self-management mHealth app, research suggests that to have an ongoing sustained change,
the mHealth app needs to incorporate behavioral intervention techniques [31]. While
changes influenced by these interventions are not always drastic, they have consistently
produced positive outcomes in studies [8,32]. Table 1 contains a collection of lifestyle-related
studies with nudging interventions in place with their respective outcomes.

Table 1. Nudge-theory-related studies.

Author(s), Year Study Design Sample Size  Duration Intervention(s) Outcome
Group 1: Usual care. Reduced HbAlc.
Group 2: Coaching only. Reduced physician visits.
_ Group 3: Coaching and patient ~ Unknown effect on
Charlene et al. 2018 [33] eRCT n=213 2 years care provider portal (PCPP). diabetes, distress,
Group 4: Coaching, PCPP with depression, blood pressure,
decision support. and lipid values.
Participants were more
Just-in-time notifications and active.
Saponaro et al. 2021 [34]  Pilot study n=33 2 weeks messages (smartphone + Fitbit). ~Nudges worked better

Fitness activity suggestion. when participants were at

work versus home.
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Table 1. Cont.

Author(s), Year Study Design Sample Size  Duration Intervention(s) Outcome
Recommendation Material 1
(RM1):
General advice covering easy,
attractive, social, and timely .
Daitaro et al. 2020 [35] - - - (EAST) framework. RM 2 had higher uptake of
. . the CRC test.
Recommendation Material 2
(RM2):
Personalized patients’ risk
against potential risk factors.
Overall improved
Once-a- day and once-a-week adherence to exercise in
Elad et al. _ messages created by the RL diabetic patients.
2017 [36] Study n=27 26 weeks algorithm and pushed to the Reduced HbAlc.
mobile app. Increased activity and pace
of walking.
Three weeks of no nudge
(baseline).
Four weeks of 8 generic ioh . dh
rescriptive suggestions from a High suggestion adherence.
Rabbi et al. p High user satisfaction.
n=16 14 weeks list of 42. R
2015 [37] Low-effort suggestions had
Seven weeks of targeted hi . ~
. igher actionability rate.
suggestions.
Prioritized low-effort
suggestions.

Patients with diabetes have been known to feel unmotivated when it comes to the
self-management of their diabetes, and this lack of motivation itself is known to be one
of the main reasons behind an individual’s diabetes worsening over time [38]. When
behavioral intervention methods, such as nudge theory, are used for patients with diabetes,
the patients tend to demonstrate improved glycemic control over the long term, compared
to patients that were not exposed to any behavioral intervention techniques [31,39—41]. An
mHealth diabetes intervention solution that implements such a behavioral intervention
method can help in decreasing the frequency of visits to the physician’s office and general
practitioner and improve medical adherence [33].

2.4. Summary of Gaps

This section is a summary of the gaps identified in existing diabetic self-management
solutions. A study was conducted in which we reviewed some of the leading iOS and
Android diabetic self-management applications [9]. As a part of this study, we searched the
respective app stores using keywords such as “diabetes” and “self-management”, filtered
based on total downloads and ratings, and identified 10 applications. These applications
were then screened to view the feature set they provided, as well as to find out if the
applications were backed by any research.

Table 2 contains information related to the identified applications, which are:
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Table 2. Diabetes self-management app comparison.

Name Research Feature Set
Medication BIOO?B%;])H cose Fitness Nutrition Clinical BI
[72) = o0 %
d L]
% 3 5§ . = 3 5y 3 g £ E
s = ©] < I s o g <2 £ 8 Z
] 8 ) g o] Y = = = 3] - = =
g o S o e 5§ £ £ = o ) g & g >
5 s . T =< £ n a2 2 2 g L % = g o g o &
I = 3] = m 9 ] =] =] = o] © <1 @] ] E
£ ®E 2L & » % g T §& §F H 0o & & g = g ¢ @ =
¢ g 2 g T ¥ =2 £ 2 g N T oc S s €& g 8 Y % & B
= 2 5 8 °’ T B §E 24 ® ¢ =3 £ S =2 ¢ 03 = & Z
T FSE 2 22 5 &8 F £ g £ Es § £ § 0% o
~ - E w 5 g 0 » ¥ A 5 O B E E © T = 5
S @ E S o o = S ~ 2 =] = O = = = Z s O 5
= & 3 & g g5 W g T Z £ £ & g 37
s @] O o ) < s 5 ) 2 3 5
3 2 = = g z z & < E &
< k] o 5 3] -
» n &~ c
<
MySugr [‘4/2] X v X v v v v v X X X v X v X X X X X X X
Bloofosgugar X X v X v v v X v X X X %X X %X %X X X %X X X X
Glucose
Tracker & X X v X v v v v v - X X - X X X X X X X X X
Diabetic Diary
Diabetes:M X X v - v v v v v X X X v v v X X X v v v X
Glucose Buddy
Diabetes X X v X v v v X v v v - v - v v X X v X X X
Tracker
One drop v
diabetes [43] X v - v v v v v - - - v v v v - X v X X X
management -
Blood sugar
monitor by X X X X X v v v v - X X v v v v X X X X X X
Dario
BloodGlucose o, L U U x X X v X vox X X x X X X
Tracker
ForDiabetes:
diabetes self- % X v X v v v v v - _ _ _ X X X X X X X X X
management
app
Glucose—
blood sugar X X X - v v v v X X X - X %X x X X x x X X
tracker (i0OS
only)

Research, Published: Does the application have any publications associated with it?

Research, Theory: Does the application have any theory associated with it (e.g.,
grounded theory)?

Feature set: Does the application have said feature?

The three symbols in Table 2 indicate the following: tick (v'): the described item exists
or is complete; cross (X): the described item does not exist or is incomplete; and strike (-):
the feature is partially present or uses an external application to cater for this.

While type II diabetes is connected with poor lifestyle and nutrition management,
most if not all of the current diabetes self-management applications cater for the above-
identified areas completely. However, there are clear gaps in the areas of clinical support,
nutrition, fitness logger, and behavioral intervention (BI). Furthermore, the identified ap-
plications lack research grounding and rigor. It is possible that not using appropriate
theories and evaluation strategies could have added to the poor fit and tarnished the
final developed solution. Due to this, some of the diabetes self-management applications
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could be deemed not fit for purpose and may fail to help patients better self-manage their
diabetes. It can also be observed that none of the applications has a nutrition recommender
feature. Improved nutrition management allows for improved glycemic control, which is
crucial when ensuring the patient does not reach a state of hyper- or hypoglycemia [1,2,18].
Behavioral Intervention features are also poorly covered by these applications. With many
research studies providing evidence supporting the benefits of implementing behavioral
interventions as a part of a diabetes mHealth solution, the majority of the applications
developed and available in the relevant app store [9] fail to address implementing behav-
ioral interventions techniques that stem from tried-and-proven methods, such as nudge
theory [44].

In contrast, this paper proposes a co-designed holistic diabetes self-management
platform that will contain fundamental features that span blood glucose levels, nutrition,
physical activity, medication, clinical services, and personalized features (e.g., nutrition
recommendation, fitness recommendation, calories burned predictor) and is built using
a methodology that ensures communication with stakeholders, implements theories that
help identify key characteristics and evaluation metrics, and puts in place behavioral
intervention (nudge theory) to ensure the patients stick to their self-management plans in
the long term.

3. Behavioral Intervention: Nudge Theory

Nudge theory is a collection of behavioral intervention methods that was suggested
by [44]. Thaler and Sunstein describe nudge to be “any aspect of the choice architecture that
alters people’s behavior in a predictable way without forbidding any options or significantly
changing their economic incentives”. “Nudging” is not new as it builds on prior identified
theories in the psychological and sociological space dating back more than a century [45].

However, there are two distinct features that are at the root of every valid nudge idea:

1.  As pointed out by Thaler and Sunstein, nudges derive knowledge from “behavioral
economics and social psychology to explain why people behave in ways that deviate
from rationality” [44,45];

2. The political philosophy—libertarian paternalism, where individuals are “actively
guided in their best interest but they remain at liberty to behave differently” [45].

When a deeper look is taken at the aforementioned features, it can be seen that nudging
is an intervention method that does not “forbid” items but rather aims to subtly suggest
otherwise, without the individual actively thinking about it. Thaler and Sunstein provide
an example of ways in which one can think of a nudge in relation to dietary choices, where
they suggest that “placing fruits at eye level counts as a nudge. But banning junk food
is not” [44]. These further highlight that nudges are not a forced mandate that must be
followed but rather an appealing alternative suggestion.

From a public health standpoint, the lack of self-management among patients with
diabetes has placed a burden on the health systems [4]. Yet patients disregard the health
warnings and continue to make poor short-lived dietary decisions without considering
the larger picture [46]. There has been research undertaken that looks into nudge theory
and how it can affect dietary/self-management behavior [45-47]. A systematic review
conducted by Arno and Thomas that aimed to “identify the efficacy of nudge theory
strategies in influencing adult dietary behavior” concluded that there was on average a
15.3% increase in healthier dietary or nutritional choices made by the participants across
42 studies and that nudge strategies were successful in improving individuals” dietary
choices [46].

With research suggesting that technological self-management intervention is already
being refused by patients [48], there is still potential that can be used to leverage the
current research conducted in the space of nudge theory to encourage individuals to better
manage their diabetes. While there has been research into nudging individuals to make
better dietary choices, there is still a clear lack of solutions where nudging is applied to a
holistic diabetes self-management solution to better promote among individuals improved
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self-management of their diabetes rather than a specific outcome. The above being said, a
systematic review conducted by Kwan et al. [49] looked at “nudge theories and strategies
used to influence adult health behavior and outcome in diabetes management”, and the
study highlighted five types of nudging techniques used by the reviewed papers:

1. Framing: The presentation of a subject matter in order to subtly influence an individ-
ual’s choice and behaviors [49];

2. Reminders: Use of smartly constructed reminders [49];

3. Gamification: Using the principle of gameplay mechanics to influence behavior [49];

4. Social modeling: E.g., running group sessions where individuals learn from each
other’s experiences [49];

5. Social influence: Use of external factors as a point of influence, e.g., a weekly summary
of the patients’ performance, in relation to a group of individuals [49].

The aforementioned systematic review concluded with the message that nudge theory
can cause a positive impact on diabetes intervention, but the authors highlighted that each
of the nudging techniques only works in parts [49]. For example, the review suggests that
the studies that used reminders as their primary nudging method performed well when
it came to medical adherence but proved ineffective in improving the patient’s diet. In
contrast, framing was recognized to be the most successful method to influence the patient’s
diet but it failed to affect their physical activity habits. This outcome of this systematic
review reveals the need for a personalized solution that takes a mixed nudging approach to
best address the area of diabetes self-management. Using a personalized nudging approach
(different types of nudges based on what requires nudging, e.g., diet = framing, medication
adherence = reminders) that can take advantage of various contexts and provide personal-
ized nudging at the appropriate time, coupled with personalized recommendations, can
potentially help to improve a patient’s self-management outcome.

4. Adapted 4-Cycle Design Science Research Methodology for Design of a Diabetes
Self-Management Platform

To ensure the diabetes self-management system proposed is designed and developed
in a responsible manner, the solution was co-designed and co-developed using the adapted
4-cycle DSRM (A4C-DSRM) for the diabetes self-management platform [9]. A4C-DSRM
is an adaptation of the original 4-cycle design science research methodology (DSRM) [50].
The DSRM revolves around the aim of bundling multiple sociotechnical artifacts, spanning
software, process, computer algorithms, and systems, with the goal to improve and/or
solve the problem at hand [50]. The A4C-DSRM, while retaining the 4-cycle structure, has
been adapted to the diabetes self-management space with Australia’s healthcare system
in mind, while also emphasizing on the involvement of clinicians and the patients, which
allows for the co-design and development process to occur. By incorporating both a clini-
cal/healthcare professional perspective and a patient context, specifically in the diabetes
self-management space, the adapted DSRM allows for an accurate list of patient needs
with a clinician backing. Further, due to the co-design cycle found in the A4C-DSRM, this
methodology ensures that the implemented features are fit for purpose. The patients will be
involved during the evaluation stage of the development and due to the iterative nature of
A4C-DSRM, the system will be modified based on patients’ feedback until the requirements
are met.

To ensure the co-designed and developed system is fit for purpose, an adapted task
technology fit (ATTF) is followed. The ATTF model was also developed by [9], but it is
an adaptation of the original task technology fit model (TTF) [51], which is a well-known
theory that is used to guide the fit-for-purpose evaluation of information systems. TTF
follows a fit-viability model, which allows researchers to understand and measure the
readiness of the organization for technology adoption and the capabilities of the systems to
optimally perform the required task [51].

In the ATTF model found in [9], the external factor identifies that the Australian
healthcare system is an entity that has the ability to affect all organizational and individual



Sensors 2022, 22, 4620

10 of 24

factors. Organization factors identify influences caused by clinics and hospitals, while
individual factors are specific to the healthcare professionals and patients that will be in
contact with the system in one way or the other. By understanding all the factors that will
affect the system at hand using the ATTF model, we are able to measure the “fit” of the
system by matching the original identified requirements with the functionalities that the
system contains. This will ultimately indicate not only the translation of said requirements
but also the performance factors, such as timeliness, reliability, and accuracy.

5. Diabetes Self-Management Platform Architecture

The diabetes self-management platform aims to be a personalized holistic self-
management platform that covers the needs of both the patient and the clinician. To
identify the requirements and development of this platform, the patients and clinicians
were involved to better understand the problem. From a high-level, the platform is
divided into two user interactable parts: first, it is a cross-platform mobile app, and
second, it is a clinician web app. They both interact with various middleware components.
The platform architecture found in Figure 1 highlights the detailed overview of the
structure and the processes within the diabetes self-management platform. The platform
architecture can be detailed as follows:

Diabetes Self-Manag t Platform
‘, } Mobile App
A 4l D Patient Profile Manager Logging Functionality
<«
Patients with Type Il Diabetes I Blood Sugar Level I Fitness
Patient Assigned Clinician
’ Medication ‘ [ Nutrition
P lized Nutrition MDA
Manager <
Meal Search Al-based Image Analytics
] ~
|
& @ ) %
A

Middeware v
A l D: External Services API

e Lo e &

Clinician Web App

x 3 = Visualization Engine Patient nutrition manager
A 3 = — ®
Assigned Clinician

Admin Manager [ Patient Profile Manager

Figure 1. Diabetes self-management platform architecture.

5.1. Diabetes Self-Management: Mobile App

The diabetes self-management platform’s mobile app contains various components
that were identified by the patients and clinicians as a requirement during the co-design
cycle of the A4C-DSRM. The following provides greater information on what is described
in the diabetes self-management mobile app section of Figure 1.
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Patient Profile Manager allows access to crucial patient information, such as name, age,
phone number, and any allergies, and it also contains information about the assigned clinician.

Logging Functionality highlights the set of items that the patients need to log in the
app. The proposed diabetes self-management app logs the following: blood sugar levels
(logged via a Bluetooth glucometer or manual entry), fitness activities participated in
(manual entry), medication that has been consumed (manual entry), and any meals or
snacks that were consumed (entry through Meal Search, MDA, or Personalized Nutrition
Recommendation manager).

Personalized Nutrition Recommendation contains the clinician’s personalized nutrition
recommendation list for the patient. As a part of this, through the clinician web app, the
clinician is able to curate a list of meal and snack recommendations personalized for each
patient. The patient is able to view this list within the mobile app and is able to log that
meal or snack if they have consumed it.

Meal Search allows the user to search the name of a meal or snack item that they would
like to add to their log. While doing so, the meal search functionality returns the nutritional
composition information of the searched meal before the user is able to log it.

Macronutrient Detection Algorithm (MDA) is the diabetes self-management platform’s
ability to handle image-based meal logging by leveraging Al-driven image analytics. Here,
we describe how the MDA is implemented inside the diabetes self-management platform’s
mobile app.

This algorithm is spilt into various parts, the first being image classification (getim-
age and predict) and second is the nutritional composition of the item (getnutrition); see
Algorithm 1: MDA Pseudocode. Food classification uses the deep neural network model
to perform recognitions, and the output is run through an external API for nutritional
composition information.

Algorithm 1. MDA Pseudocode

1: input: meal image img

2: output: nutrition information of meal image res
3: function getimage

4: pass in: nothing

5: img < picked image from gallery

6: pass out: img

7: endfunction

8: function predict

9: pass in: img

10: 0 <+ NULL

11: recognitions <— Deep Learning Model (img)
12: for each r in recognitions do

13: if o = NULL then

14: o< r

15: else

16: if r.confidence > o.confidence then
17: o4 r

18: endif

19: endif

20: endfor

21: pass out: o

22: endfunction

23: function getnutrition

24: pass in: name

25: res < send request to API for info

26: pass out: res

27: endfunction

28: begin

29: img < getimage

30: prediction < predict(img)

31: if prediction # NULL

32: res <— getnutrition(prediction.name)
33: endif

34: return res

35: end
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5.2. Diabetes Self-Management: Clinician Web App

The diabetes self-management platform’s clinician web app contains various com-
ponents that were identified by clinicians as a requirement during the co-design cycle of
the A4C-DSRM. The following provides greater information on what is described in the
diabetes self-management clinician web app section of Figure 1.

Patient Profile Manager provides a person the ability to view all of the patient logged
information. This includes blood glucose readings, fitness activities, medication, and
nutrition intake.

Admin Manager also allows the clinician to view basic patient information, such as
name, age, and allergies, but is also able to perform admin duties, such as creating new
patient accounts and resetting passwords.

Visualization Engine provides a person the ability to view information as a visualization,
general statistics, and uploaded meal images.

Manage patient nutrition recommendation allows the clinician to curate a list of meal and
snack recommendation personalized for each patient.

5.3. Middleware

The middleware section in Figure 1 identifies all the relevant components that handle
requests from the mobile app and the clinician web app. The API manages all the requests
that are created by the diabetes self-management platform. As a part of the middleware
setup, all of the requests are authenticated. The API is able to make the necessary calls to
the database, where all the user-logged information is stored. The external services API
component is a placeholder to highlight services that are used to retrieve information that
is offered by an external entity. An example is the USDA FoodCentral API [52], where we
are able send requests to get the nutritional composition information of food items.

6. Diabetes Self-Management Platform Implementation and Evaluation

This section describes the implementation of the diabetes self-management platform.
This includes the diabetes self-management mobile app, the diabetes self-management
clinician web app, and also the middleware. We then evaluate the performance of the
MDA by using three state-of-the-art deep learning models to assess how well it performs
with varying cuisines that were identified during the co-design as a key requirement for
supporting personalization of the diabetes self-management platform.

6.1. Diabetes Self-Management Platform: Mobile App Implementation

The diabetes self-management platform mobile app is the front end with which the
patients will interact. The diabetes self-management mobile app is built using the Flutter
SDK [53], which makes it a cross-platform app that can be used in both iOS and Android
devices. The patient is required to log in to their personalized user account, which is created
by an assigned clinician. The login process is authenticated by the APL The diabetes self-
management mobile app contains various features that allow the patient to interact with
the app and track their progress in regard to their blood sugar readings, any medication
they have been taking, meals they have been consuming, or even any fitness activities in
which they have taken part. In Figure 2, some of the described features from the diabetes
self-management mobile app are displayed. In addition to the above, the diabetes self-
management mobile app implements a macronutrient detection algorithm that leverages the
use of Al-driven image analytics and other services not only to help the patient better
understand the meals they are eating but also to improve the meal logging process by
making it simpler.
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Blood Glucose

What is diabetes? &

Diabetes is a serious complex condition which can
affect the entire body. Diabetes requires daily self care
and if complications develop, diabetes can have a
significant impact on quality of life and can reduce life
expectancy. While there is currently no cure for
diabetes, you can live an enjoyable life by learning

Tablet about the condition and effectively managing it
o 08:43 AM y managing
How diabetes affect the
body?
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Ingredients
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Water: 2659
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Phosphorus, P: 305 mg
Potassium, K: 306 mg ° °
Sodium, Na: 307 mg

Zinc, Zn: 309 mg

Covoer. Cu: 2T

Figure 2. Screenshots of the diabetes self-management app.

6.2. Macronutrient Detection Algorithm (MDA)—Implementation and Evaluation

As highlighted in the literature, nutrition management is a large part of type Il diabetes
self-management, which has not been addressed by current solutions [10,17]. The diabetes
self-management platform offers a few ways for patients to log their nutrition-related
information: (a) Meal Search; (b) MDA; and (c) Personalized Nutrition Recommendation. MDA
is the diabetes self-management platform’s ability to handle image-based meal logging by
leveraging Al-driven image analytics.

Food classification uses a deep neural network that is a pretrained convolutional
neural network (CNN) food classification model named food_v1 [54]. This model has
MobileNet v1 as the backbone CNN, and this is trained to identify more than 2000 dishes
from images [54]. The model with the pretrained images is then stored on the mobile device
to be uploaded for use when necessary.

The model and the list of label map classes are taken and placed within the assets
folder of the diabetes self-management mobile app. When the patient goes into nutrition
management portion of the app, the model is loaded for use.

e  The pretrained model is converted to a mobile-device-compatible TensorFlow Lite
(tflite) model and deployed on the mobile app along with the list of classes that the
model can classify correctly.

e  The model is configured to return three predictions of what it believes the item to be,
where the structure of the object includes the label, the confidence, and the class index.

e  The result is sorted based on the confidence and provided what the model thinks is
the item. To handle incorrect classifications, the Add Meal page allows the user to
manually edit the item identified.

To understand the macronutrient information of this item, we take the identified item
and pass it through the external API [52]. This allows for the classified item to be translated
into an item with nutrition information attached, such as ingredients and the macronutrient
information. In Figure 3, we can see a functional use case of how the MDA is used from
within the diabetes self-management mobile app. Firstly, from the Meal & Snack section
of the app, the user is able to press the add icon located in the bottom-right corner; from
here the user is able to select the image of a meal that they have consumed or are about to
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consume; after some background processing, the user is presented with the ingredients and
the nutrition composition of the meal; if the user was only looking to better understand the
ingredients or the nutritional composition of this item, they are able to simply go back and
select another item; however, the user can also continue and add this meal to their log as a
meal that they have consumed. This logged meal, along with the selected and analyzed
image, is stored in the database by the AP]I, as this will be presented to the clinician through
the clinician web app for further analysis and discussions with the patient.

Magnesium, Mg: 304 mg

Phasphorus, P: 305 mg

Potassium, K: 306 mg

Figure 3. Adding biryani (an Indian meal) through an image with the MDA. (1) Adding an item into
the meal & snack page; (2) Select meal image for processing; (3) View meal nutritional composition
and add to log if necessary.

The MDA was identified as a requirement through the co-design process, where it
was highlighted that the patients wanted to better understand the meals they were having.
Clinicians from the same process felt that this would be a valuable addition to the diabetes
self-management app.

This image analytics component also implements features of nudge theory where we
nudge the user to make informed choices. Once the photo is processed, the user is met
with details regarding the meal they are considering or they have consumed already. The
nudge here is that the user may choose a healthier option when they realize that the meals
they are viewing are higher in certain macronutrients, such as fats, than they first expected.
With this, over time, they will be more knowledgeable about their diet and that may help
them subconsciously alter their behavior in how they choose certain meals to consume.

For this evaluation, the dataset found in Table 3 is used. We have outlined various meal
images, found online, from three specific cuisines—European, Indian, and Mediterranean.
These three specific cuisines were identified by the clinicians during the co-design process
as a part of our methodology. These three cuisines were identified as the most common
patient diet demographic in their clinics in Melbourne, Australia. By testing the model
against specific cuisines, we are also evaluating the performance of the model when
put against dishes from various cultures and understanding the bias of using limited or
targeted training data, as this highlights the current model support for personalization of
meals recommended.



Sensors 2022, 22, 4620

15 of 24

Table 3. Meals from various cuisines used for model evaluation.

Meals
European Indian Mediterranean
Burger Biryani Dolmas
Chicken Burger Butter Chicken Falafel
Donut Daal Greek Salad
Grilled Cheese Dosa Paella
Chicken Parmigiana Idli Pasta Fettuccini
Cheese Steak Naan Pasta Napoli
Roast Chicken Paani Puri Pita
Sandwich Papadum Margherita Pizza
Sausages Mutton Curry Ratatouille
Steak Vada Risotto

For this technical evaluation, three models were identified as a good fit for this mobile
meal classification scenario. The selection criteria for the model were that it needs to be
based on a notable architecture and is of a small footprint to be run using the tflite processor:

e Food_v1 [54]

a. Model based off the Mobilenet v1 architecture
b.  Trained on 2000+ images, on various dataset

e  Monk_v1 Classifier [55]

a. Model based off the Gluon VGG13bn architecture
b. Trained on the Food101 dataset

e  Pretrained YOLOvV3s [56]

a. Model based off the Efficientnet-B4 classification model
b. Self-collected dataset

The models were measured based on the following performance indicators:

o Correctness: A score of 0, 0.5, or 1 was provided based on the correctness of the
prediction. This indicator helps better understand the skill of the model in predicting
different meals accurately.

a. E.g., If a model predicted “Napolitana Pizza” instead of “Margherita Pizza”, it
was given a score of 0.5 as it was able to identify that the item was pizza.

b.  If incorrect, the model was given a score of 0.

C. If correct, the model was given a score of 1.

e  Confidence: In deep learning models, confidence defines the probability of the classifi-
cation for various classes. In our study, this indicator is used to verify the confidence
of the model for a given cuisine.

e  Speed: Model prediction speed. This indicator highlights the prediction time of a
model in a mobile device.

For the evaluation, each of the model was loaded into the mobile device one by
one. Once loaded, the model was provided with the list of European meals, followed by
Indian and Mediterranean meals. By doing so, we were taking pretrained models, with
potential biases in their training data, and testing these models against a self-compiled
dataset of food items from the clinician-suggested ethnic group diets to see the how well
the models perform. This will highlight how well each model performs when given a
variety of different food options, which may be different from the items on which the
model is originally trained. It is also important to note that the performance indicators also
highlight how well these models perform in a mobile device environment, as the models
were converted into a tflite format. We are evaluating the models against specific ethnic
group diet items as suggested by clinicians and using mobile device centric performance
indicators, and the current literature lacks this information. This evaluation is specific to
the personalization aspect of the diabetes self-management platform, which requires us
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to evaluate each of the models with the criteria mentioned above. Each of the results are
logged and are visualized in Figure 4.

Total Average Outcomes of Models Total Average Outcomes of Model (Indian Cusine)
0.5731 0.573
Speed (s) 0.681 Speed (s) 1.083
0.501 0.503
0.595 0.619
Confidence 0.66 Confidence 0.46
055 0.46
06 0.45
Correctness 032 Correctness 01
0.22 []
0.00 0.10 0.20 030 0.40 0.50 0.60 0.70 0.80 0 0.2 04 0.6 08 1 12
Food_v1 Monk_v1 Classifier - VGG Pretrained YOLOv3s Food_v1 Monk_v1 Classifier - VGG Pretrained YOLOv3s
Total Average Outcomes of Model (European Cusine) Total Average Outcomes of Model (Mediterranean Cusine)
0.633 0.5132
Speed (s) 0.454 Speed (s) 0.506
0.495 0.505

051 0.656

Confidence 0.79 Confidence 073

Correctness 03 Correctness 0.55

04 0.25

0 01 02 03 04 05 0.6 0.7 08 0.9 0 0.1 0.2 03 0.4 05 06 0.7 08

Food_v1 Monk_v1 Classifier - VGG Pretrained YOLOv3s Food_vi Monk_vi Classifier - VGG Pretrained YOLOv3s

Figure 4. Visualizations of the model comparison outcomes.

Through technical evaluation, we are able to see that the Food_v1 model was the most
consistent in providing correct classifications. By analyzing the correctness metric, it was
identified that the Food_v1 model was able to provide up to 60% accurate classifications
across all of the cuisines, while Monk_v1 and Pretrained YOLOv3s were only able to
produce 30% and 40% accuracy, respectively. The evaluation also highlighted that the
models preform vastly differently depending on the type of dataset that is being use for the
evaluation. For Indian cuisine, the Food_v1 model was able to classify 45% of the meals
correctly, while Monk_v1 and YOLOv3s were able to classify 10% and 0% respectively.
In contrast, the European and Mediterranean cuisines datasets were better classified by
all of the models. Food_v1 was able to get 70% of the European dishes and 65% of the
Mediterranean dishes correct. Monk_v1 was able to get 30% of the European and 55% of
the Mediterranean dishes correct. Pretrained YOLOv3s was able to get 40% of the European
dishes correct and 25% of the Mediterranean dishes correct.

Food_vl1 is the chosen model for the Phase I implementation of the diabetes self-
management platform due to its all-round performance compared to other identified image
classification models running on a mobile device.

6.3. Diabetes Self-Management Platform: Clinician Web App

The login-based Clinician Web App allows for the assigned clinician to view how their
patients are progressing with their diabetes self-management. The web app is a single-
page application (SPA) created using Vue.js [57]. The clinician can view all patient-logged
information, which includes blood sugar levels, meals, fitness, and medication. This allows
the clinicians to better understand how their patient’s diabetes self-management journey



Sensors 2022, 22, 4620

17 of 24

is progressing. The clinician is also able to add or update the personalized nutrition
recommendation items through the clinician web app for the patient to view. Figure 5A,B
shows sample screenshots of the clinician web app. Figure 5A displays the list of the latest
blood-sugar-level readings of a given patient, which is also visualized through a chart.
Figure 5B is a list of the latest meal items this patient has consumed.

Blood Glucose
AL
—
\
\\ /
T ———
- .
56 04:52 pm - Friday, September 17th 2021
76 03:07 pm - Friday, September 17th 2021
a6 12:42 pm - Friday, September 17th 2021
106 12:43 pm - Friday, September 17th 2021
86 12:43 pm - Friday, September 17th 2021
66 10:30 pm - Thursday, September 16th 2021
16 01:00 pm - Thursday, September 16th 2021
26 09:59 am - Wednesday, September 15th 2021
36 01:22 pm - Tuesday, September 14th 2021
56 01:23 pm - Tuesday, September 14th 2021
a6 01:22 pm - Sunday, September 12th 2021

D localhost:
Meals
RECOMMENOED 40D MEALS
KONA SALMON POKE Meal 06:10 am - Frday, January 24th 2020
CHICKEN TIKKA STREET WRAP, CHICKEN Meal 02:30 pm - Thursday, September 16th 2021
RAVA IDLI MIX Meal 10:37 pm - Thursday, September 16th 2021
Salmon salad Meal 04:58 am - Friday, September 17th 2021
Comnuts Meal 05:00 am - Friday, September 17th 2021
Water, tap Meal 05:01am - Friday, September 17th 2021
3 MUSKETEERS Bar Meal 05:55 am - Frday, September 17th 2021
DOSA MIX Meal 07:44 am - Friday, September 17th 2021
Whopper (Burger King) Meal 03:11 pm - Friday, September 17th 2021
Salmon salad Meal 03:11 pm - Friday, September 17th 2021
Chicken curry with rice Meal 04:55 pm - Friday, September 17th 2021
CHICKEN BIRIYANI WITH BASMATI RICE Meal 02:55 pm - Friday, October 1st 2021
Seafood salad Meal 01:33 pm - Wednesday, April 13th 2022
Biryani with vegetables + chicken Meal 01:37 pm - Monday, April 18th 2022
Hamburger (McDonalds) Meal 06:24 am - Tuesday, April 19th 2022
HAMBURGER hgigiijghhhhghh Meal 02:38 am - Wednesday, Aprl 20th 2022

(B)

Figure 5. (A) Clinician web app—monitor patient blood glucose page; (B) Clinician web app—
monitor patient nutrition intake page.
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6.4. Middleware

Both the diabetes self-management mobile app and the clinician web app are connected
to a backend API. This API is built using Node]JS [58], which was designed and developed
to be fast, robust, and secure. The API is responsible for handling the requests from the
frontend solutions, making sure everything is secure, and communicating with the database
and external APIs. For security, the API has been set up to use Json Web Tokens (JWT) [59]
as an authentication middleware, with an Argon2 [60] hashing algorithm to handle storing
of sensitive data, such as passwords. The API is set up to only produce authentication
tokens with an 8-h expiration for the diabetes self-management mobile app and a 30-day
expiration for the clinician web portal. Once the tokens expire, the users will require to log
in again to use the platform. Through the API, the USDA FoodCentral API [52] is used to
obtain the nutrition composition information.

7. Application of the Personalized Diabetes Self-Management Platform in Use

The use-case-based illustrative evaluations presented in this section are developed
from Yin’s [61] use-case-based evaluations. This illustrative case study approach allows
for the demonstration of the use cases supported by the proposed platform. The use
cases described below are developed to illustrate the features of the co-designed diabetes
self-management platform.

7.1. Use Case 1: Patient—Clinician Pipeline and Nutrition Recommendation

Jayden is a business executive who was recently diagnosed with type II diabetes.
Jayden is of a European background who has no allergies. He was a prediabetic for a
while, but during the last GP visit, the clinician confirmed that he in fact needs to take his
condition seriously. When working with a dietician, Jayden was instructed to follow a
balanced meal plan and partake in regular exercise. He was also asked to check in with
his assigned clinician once a month. However, due to Jayden’s work arrangements, he
is always traveling for events and meetings, which makes it difficult for him to check in
with his clinician and discuss progress. More importantly, he finds it difficult to ensure he
maintains a balanced diet on a consistent basis.

By using the diabetes self-management platform, Jayden is able to work with his
dietician and come up with meal options that are accessible while he is travelling. The
dietician can enter the meal options into the clinician web portal, where recommendations
are assigned to Jayden, who is then able to view them on his mobile app when he is out
traveling, allowing him to make informed decisions. The assigned clinician is also able
to view how Jayden is progressing with his diabetes self-management, through the web
portal, which allows for a more accurate insight into Jayden’s progress when the time
comes for a formal checkup.

7.2. Use Case 2: Nudge-Inspired MDA

Younis is a brick layer who was diagnosed with type II diabetes three years earlier.
Younis is of a Mediterranean background who follows a strict halal diet. Younis has worked
with a dietician in understanding what type of meals he should be having and in what
portion. However, over the course of his condition, Younis has gained weight and his
diabetes has worsened. Younis lacks vital diabetic-related health literacy and has found
a lot of the information regarding nutrition management overwhelming and difficult to
follow. Due to this, he struggles identifying if the meal he is having is good for him and if
the portion is correct.

The diabetes self-management mobile app provides an advanced meal logging func-
tionality where the patient can log their meals from a recommendation list, from a search,
or by simply taking a photo of their meal. When a picture of a meal is taken and logged,
the diabetes self-management mobile app uses the MDA to identify the meal and what
macronutrients this meal contains. The diabetes self-management mobile app is personal-
ized to each of the patients, and as a part of the context, it understands that Younis follows
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a strict halal diet. Due to this integration, the diabetes self-management mobile app will
display a warning if Younis is looking at a meal that has ingredients that are against halal
dietary standards. Further, all the images logged are also available for the clinician to view.
The clinician will be able to answer any meal-portion-related queries that Younis may have,
with examples of meals that he has had. This translates to Younis being able to better
understand what a balanced nutrition management plan needs to look like for him and
nudges him to re-evaluate his diabetes self-management regime.

8. Discussion and Conclusions

This diabetes self-management platform is significantly different to most (if not all) of
the current existing solutions that were identified earlier in the literature, as this platform
was designed and developed with clinicians” and patients’ inputs throughout the lifecycle
of the research using the A4C-DSRM. By getting both user group inputs, we can design
and develop something that is clinically sound, fit for purpose, as well as personalized and
patient centered. For the platform containing the patient—clinician pipeline, it is crucial to
ensure that the platform continues to be safe to use and patients feel they are able to make
progress in their diabetes self-management journey.

In the proposed diabetes self-management platform, there were a few instances where
nudges are present.

Firstly, with the implementation of the Personalized Nutrition Manager (see Figure 1),
the assigned clinician is able to add and curate a list of meal options to the individual. This
is always available in the diabetes self-management mobile app for the patient to access
at any point in the day. By having a prepopulated list of meals readily available on their
mobile device, the patient is more aware of what right kind of meals they should be eating
and is inadvertently nudged to do so.

Secondly, through the implementation of the MDA, patients are able to log meals that
they are about to consume through an image. However, the MDA can also be used to view
the nutritional composition of the meals the patient is about to eat. Hence, whenever the
patient logs a new meal item through the MDA, they are aware if the meal they are having
is healthy or not. By showing this information, the patient is able to better understand
the meal before they eat it and by doing so, they are nudged to eat healthier and make
better decisions.

Thirdly, the patient—clinician communication pipeline also acts as a form of nudge.
This is because the clinician is able to view all of the patient-logged information through the
clinician web app, which includes the meals the patient has eaten. If the patient opts to use
the MDA, the clinician will also be able to view the image of the meal the patient is having.
This means clinicians will be able to have more honest conversations with their patients
about their meals and so the patients are nudged to make improved nutrition choices.

The exemplars from the use-case-based illustrative evaluations further demonstrate
some of the reasons behind the need for a personalized diabetes self-management platform.
Jayden, from the first use case, highlights some of the common problems that the diabetes
self-management platform solves. Jayden is instructed by his GP to take his prediabetic
condition more seriously as it is worsening and his dietician recommends that Jayden follow
a balanced meal plan along with regular exercise. However, due to his work arrangement,
for Jayden to follow a balanced mean plan is difficult. Some problems he may face is that
over time his meal plan may become out of date as he has not been able to go in for a
meeting with his dietician or he may even lose his diet sheet, which has crucial information
about how Jayden can continue to improve his condition.

Given the popularity of and people’s reliance on smartphones [13], these provide the
opportunity where busy individuals, such as Jayden, are always able to access their meal
plans compiled by their dieticians. This ensures that, for example, whenever Jayden has his
smartphone readily available, he also has with him the nutrition recommendation list from
his dietician readily available. This allows Jayden to make informed decision when it comes
mealtimes. Current procedures where clinicians have the patients follow static diet sheets
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and have the patients carry the diet sheets with them while traveling to ensure they make
the right decisions leaves room for unfortunate situations and challenges to arise, such as
a patient losing the diet sheet or missing an appointment, so the diet sheet is no longer
valid. Hence, the diabetes self-management nutrition recommendation system is designed
so that it can also be easily updated by the clinician using the accompanied web portal,
which means that Jayden can have a teleconsultation appointment with his clinician and
the updates made to his meal plan resulting from that appointment are instantly available
on his mobile app once the clinician has processed them on the web app.

The second use case, of Younis, highlights the importance of building a diabetes
self-management platform that is accessible for everyone. Younis is a tradesperson who
struggles with his diabetes. Over the course of his self-management journey, his diabetes
has only worsened. Younis has said that he struggles in identifying if the meal he is having
is good for him and finds diabetic-related health literacy difficult to follow. Through
Younis's case study, it is clear that the current structured self-management regime is flawed
for his use case. As Younis highlighted, this could be due to him not being able to better
understand what his nutrition needs to look like. Through the diabetes self-management
platform, Younis will be able to take advantage of the advanced Al image analytics features,
which will allow him to take an image of what he is having throughout the day and see
the approximate nutritional composition of the said items so Younis can better understand
his diet.

The image analytics engine also saves on the platform the images Younis has taken.
These images are accessible by his assigned clinician. By having incorporated the image
analytics engine, we are allowing for individuals such as Younis to better understand their
meals but at the same time, we are having the clinicians better understand what their
patients are consuming. The clinician can view the images and improve their nutrition
recommendation targeted toward Younis as they better understand the type of meals Younis
likes and are able to have conversations with Younis about his diabetes self-management
journey and use Younis’s past meal images to reinforce positives and negatives since they
last met. This also allows for Younis to better understand what he should be improving on
in his diet, as the conversations that the clinicians are starting are backed by Younis’s own
past meals. This will help Younis validate and understand which meals he is having are
good versus which need attention.

Research has suggested that teleconsultations with clinicians have risen substantially
after the outbreak of the COVID-19 pandemic [62]. The diabetes self-management platform
is able to provide better support in such crucial situations. Regardless of the situation, if
the patient is able to attend a teleconsultation appointment with their assigned clinician,
the diabetes self-management platform ensures that the clinician is presented with all the
up-to-date information as logged by the patient through their diabetes self-management
mobile application, allowing for the clinician’s decision-making to be backed by historical
patient data rather than just verbal claims by the patient. This helps improve patient-
clinician communications as patient claims are now accompanied by patient data, which
ultimately helps the clinician better understand how the patient is progressing in their
diabetes self-management journey and work with them to improve it. Use cases presented
in Section 7 further provide an insight into how the diabetes self-management platform
can be beneficial for the patients and clinicians. However, while the case-study-based
illustrative demonstration validates the features of the diabetes self-management platform,
we are yet to conduct a pilot study using patients. While this can be seen as a potential
limitation of the study, the platform is still in its development stages. We are currently
working with a prominent hospital in Melbourne, Australia—to obtain an ethics approval
so we can run a pilot study as a part of the next phase of this study.

The model used as a part of the MDA is Google’s AlY, Food_v1 CNN model [54]. This
model is able to identify 2000+ dishes as per its training dataset [54]. While the model
classifies within its trained dataset quite well, it is observed that the dataset used by Google
to create the model is skewed to meals that are available in North America [54], which



Sensors 2022, 22, 4620

21 of 24

makes this model effective for diet options available in North America but may not translate
to its use by Australia’s multicultural population, with its diverse food options [63]. This
was seen during the technical evaluation (see Figure 4), where Food_v1 achieved a 70%
accuracy for European meals but only 45% accuracy for Indian meals. Monk_v1 and
YOLOV3s also gave similar results, where European dishes were better classified compared
to Indian dishes. This highlights the discrepancy when it comes to model training data,
where more generic datasets fail to address diversity in meals. By creating a model that is
highly performant in predominantly European/Western cuisine, but not in other cuisine,
we are creating a rigid and generic model that does not respond to meals from other cultures.
The evaluation also captured that the model found it difficult to pick up differences between
similar-looking dishes in the absence of a relevant context. For example, an Indian dish
called “vada”, which looks similar to a donut/bagel, was identified by the model as such. If
the model is able to understand the user context, where the person processing the image has
a preference toward Indian diet, we may be able to make better classifications and prioritize
different variants of models based on the relevant preferences rather than defaulting to a
generic model. The model may also need to be merged with other model architectures and
training dataset to achieve improved classifications overall.

By integrating the user context with the deep learning model, we might be able to
provide more personalized results, which brings the potential of building an advance
Al model and integrating the patient context defined in the diabetes self-management
solution. By doing so, we are giving the model a chance to understand not just the nutrition
aspect but also other contexts made available through patient logging, for example, their
blood sugar levels and fitness habits. This will allow models as such to provide a greater
level of insight into how the patient is progressing with their diabetes self-management
journey, provide context-aware nudging as a part of the intervention strategy, and also be
able to make improved nutrition recommendations based on the patient’s current context
(e.g., calculating effects on blood glucose levels based on a meal’s nutrition composition),
allowing for more personalized care.

Going forward, we will continue to design and develop a nutrition recommendation
system that will attempt to be more context aware and ultimately provide more personalized
care to the patient. We will also be focusing on running a clinical trial on a targeted cohort of
patients with type II diabetes from the Indian, Mediterranean, and European backgrounds
to help us better understand the impacts of the personalized diabetes self-management
platform. Any policy-related implications that will help further the development of the
research will be studied.
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