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Abstract: Background: Non-alcoholic fatty liver disease (NAFLD) is a wide spectrum condition
characterized by excessive liver fat accumulation in people who do not abuse alcohol. There is no
effective medical treatment for NAFLD; therefore, most important recommendations to reduce liver
steatosis are diet and lifestyle, including proper physical activity. The aim of our study was to analyze
the fatty acids and eicosanoids changes in the serum of patients who consumed high-fiber rolls for
8 weeks. Materials and Methods: The group of 28 Caucasian participants was randomly divided
into two groups, those who received 24 g of fiber/day—from 2 buns of 12 g each (n = 14), and
those who received 12 g of fiber/day—from 2 buns of 6 g (n = 14). At the beginning and on the last
visit of the 8-week intervention, all patients underwent NAFLD evaluation, biochemical parameter
measurements, and fatty acids and eicosanoids evaluation. Results: Patients who received 12 g of
fiber had significantly reduced liver steatosis and body mass index. In the group who received 24 g
of fiber/day, we observed a trend to liver steatosis reduction (p = 0.07) and significant decrease in
aspartate aminotransferase (p = 0.03) and total cholesterol (p = 0.03). All changes in fatty acid and
eicosanoids profile were similar. Fatty acids analysis revealed that extra fiber intake was associated
with a significant increase in monounsaturated fatty acids and decrease in saturated fatty acids.
Moreover, both groups showed increased concentration of gamma linoleic acid and docosahexaenoic
acid. We also observed reduction in prostaglandin E2. Conclusions: Our study revealed that a
high amount of fiber in the diet is associated with a reduction in fatty liver, although this effect
was more pronounced in patients in the lower fiber group. However, regardless of the amount
of fiber consumed, we observed significant changes in the profile of FAs, which may reflect the
positive changes in the lipids liver metabolism. Regardless of the amount of fiber consumed, patients
decreased the amount of PGE2, which may indicate the lack of disease progression associated with
the development of inflammation.

Keywords: fiber; fatty acids; eicosanoids; NAFLD; SCFA

1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is a wide spectrum condition characterized
by excessive liver fat accumulation in people who do not abuse alcohol [1]. NAFLD
can range from simply fat accumulation in the liver (more than 5% of liver weight) by
inflammation to fibrosis and cirrhosis, which are the causes of liver failure [2]. NAFLD is
also a part of metabolic syndrome, which increases the risk of other metabolic diseases.
The prevalence of the disease is estimated at 30% among US adults and is an emerging
health problem worldwide [3]. The most effective treatment of NAFLD is lifestyle changes,
including proper physical activity and diet reduction [4].
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Recent studies indicate that one of the most effective treatments for NAFLD is weight
reduction achieved by caloric restriction [5]. Fiber consumption reduces appetite and the
frequency of eating by the indirect regulation of orexigenic hormone—ghrelin. Proper
amount of fiber intake, along with a low-energy diet, is linked with weight loss and NAFLD
regression [6]. The results of a systematic review meta-analysis focused on the relationship
between prebiotic supplementation and anthropometric and biochemical parameters in
NAFLD patients showed that fiber supplements can improve anthropometric, metabolic,
and liver-related biomarkers such as body mass index (BMI), insulin, homeostasis model
assessment for insulin resistance (HOMA-IR), aspartate aminotransferase (AST), and ala-
nine aminotransferase (ALT) [7]. Regression of NAFLD reflects in metabolic pathways,
which is associated with fatty acids and their derivatives changes [8]. Our research team
discovered that reduction in liver steatosis is connected with a significant increase in eicos-
apentaenoic acid (EPA), docosapentaenoic acid (DPA), docosahexaenoic acid (DHA) and
a decrease in palmitoleic acid [9]. Moreover, it seems that fatty acids profile in blood is a
good predictor of liver changes, and the potential markers of liver steatosis are oleic acid,
vaccenic acid, EPA, DHA, and DPA [10]. The fatty acid derivatives (eicosanoids) responsi-
ble for the initiation/reduction of inflammation are also associated with various NAFLD
stages [11]. The most promising markers of steatosis progression are high-inflammatory cy-
tokines, 9-hydroxyloctadecadienoic acids (9-HODE), and 13-hydroxyloctadecadienoic acids
(13-HODE) [12]. The aim of our study was to analyze the fatty acids and eicosanoids
profiles in the serum of patients who consumed high-fiber rolls for 8 weeks.

2. Materials and Methods
2.1. Design of the Study

The study (ClinicalTrials.gov Identifier: NCT04520724) was conducted in 2019, be-
tween July and November. All participants were enrolled to the project from the Sonomed
Medical Centre in Szczecin, Poland. Inclusion criteria: FibroScan® (CAP > 234 dB/m),
age > 18 years. Exclusion criteria: infection with HBV (Hepatitis B Virus), HCV (Hepatitis
C Virus), HAV (Hepatitis A Virus), body mass index (BMI) > 35 kg/m2, changes in physical
activity during the study, alcohol consumption (>30 g in men and 20 g in women per day),
autoimmune disease, drug use, probiotic supplementation, NSAIDs use (14 days before
and during the study), common infection (e.g., cold). Patients underwent 3 visits, first at the
baseline, second after 30 days, and third after 60 days. At the baseline and in the last control,
FibroScan® was performed. A group of 28 Caucasian participants were included, and 58%
were men. Patients were randomly divided into two groups: those who received 24 g of
fiber—from 2 buns per 12 g (n = 14), and those who received 12 g of fiber—from 2 buns
per 6 g (n = 14). In all visits, biochemical parameters and blood for serum were collected.
All biochemical procedures were performed at the laboratory in the Independent Public
Regional Hospital in Szczecin. The study protocol was approved by the ethics committee of
the Pomeranian Medical University (Szczecin, Poland, KB-0012/131/19) and conformed to
the ethical guidelines of the 1975 Declaration of Helsinki. The volunteers provided written
informed consent before the study. There was no difference in age, gender distribution, or
biochemical parameters at baseline between groups.

2.2. Dietary Guidelines for Patients

All patients underwent a 30-min conversation with a licensed nutritionist about the
principles of the Mediterranean diet, according to the Mediterranean Diet Foundation.
Moreover, all participants were instructed to eat two high-fiber buns (6 g or 12 g per buns)
each day during the study. No specific changes in diet (excluded the high-fiber buns) and
physical activity were performed during the study.

2.3. Fatty Acids (FAs) Analysis

A total 0.5 mL of serum was added to 3 mL of Folch mixture [13] (2:1; v:v; chloro-
form (Merck KGaA, cat no. 34854): methanol (Merck KGaA, cat no. 1.06018)), 100 µL of
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Butylated hydroxytoluene (Merck KGaA, cat no. B1378), and 100 µL of internal standard
(C21:0 (Merck KGaA, cat no. 51535), 2 mg/mL). Then, the solution was vortexed for
20 min to extract the lipid phase. Next, samples were centrifuged at 15,000 rpm for 15 min.
Supernatant was saponified with 1 mL of 2 M KOH (Merck KGaA, cat no. H1758) methanol
solution at 70 ◦C for 20 min and then methylated with 2 mL of a 14% solution of boron
trifluoride in methanol (Merck KGaA, cat no. B1252) under the same conditions. A total
2 mL n-hexane (Merck KGaA, cat no. 270504) and 10 mL of saturated NaCl (Merck KGaA,
cat no. S3014) solution were added. For gas chromatography analysis (GC), 1 ml of hexane
phase was collected. GC was performed using Agilent Technologies 7890A GC System
(Agilent (Technologies, Santa Clara, CA, USA) with a SUPELCOWAX 10 Capillary GC
Column (15 m × 0.10 mm, 0.10 µm; Supelco, cat no. 24343). The temperature conditions
were as follows: initiating temperature 40 ◦C for 0.5 min; then, increased by 25 ◦C/min
up to 195 ◦C for 0 min, by 3 ◦C/min to 205 ◦C for 0 min, and by 8 ◦C/min to 250 ◦C for
0.5 min (total analysis time was 16.158 min). Hydrogen was the carrier gas with gas flow
1 mL/min. FAs were identified by comparing their retention times with standards (Food
Industry FAME Mix (cat. no 35077) (Restek)) [14].

2.4. Eicosanoids Analysis

Eicosanoids were extracted from the serum using solid-phase extraction RP-18 SPE
columns (Agilent Technologies, Wokingham, UK, cat. no 60108-304). A total 0.5 mL of
plasma was precipitated with 1 mL of acetonitrile (Merck KGaA, Darmstadt, Germany, cat
no. 20060.320). Then, 50 µL of internal standard (Prostaglandin B2, 1 µg/mL (Cayman, cat
no. 11210)) was added and samples were incubated for 15 min at −20 ◦C. Samples were
centrifuged at 10,000 rpm for 10 min and the supernatant was collected. An amount of
4.5 mL of 1 mM HCl was added and the pH was adjusted to 3 by adding 1 M HCl. The SPE
columns were activated with 3 mL 100% acetonitrile and 3 mL 20% acetonitrile in water. The
samples were loaded and double washed with 3 mL 20% acetonitrile in water. Eicosanoids
were eluted with 1.5 mL of methanol and ethyl acetate (1:1; v:v), dried under a vacuum,
and dissolved in 100 µL of 60% methanol in water with 0.1% acetic acids. Eicosanoids were
analyzed using high-performance liquid chromatography (HPLC). The HPLC separations
were performed using an Agilent Technologies 1260 liquid chromatograph (Technologies,
Santa Clara, CA, USA) with diode array detector (DAD, model G1315CDAD VL+). The
separation column was Thermo Scientific Hypersil BDS C18 column (100 × 4.6 mm 2.4 µm,
cat no. 28102-154630) with 20 ◦C of separation temperature. The HPLC condition were as
follows: the mobile phase was composed of a mixture of solvent A (methanol: water: acetic
acid; 50:50:0.1; v:v:v) and solvent B (methanol: water: acetic acid; 100:0:0.1; v:v:v). Solvent
B in the mobile phase was 30% at 0 to 2 min of separation, increased linearly to 80% at
33 min, was 98% between 33.1 and 37.5 min, and was 30% between 40.3 and 45 min, with a
flow rate of 1.0 mL/min. The injection volume was 60 µL. The DAD detector monitored
peaks by adsorption at 235 nm, 280 nm, and 210 nm [14].

2.5. Statistical Analysis

The statistical analysis was performed using the “R 4.0.3” software. The normality
of continuous variables distribution by means of Shapiro–Wilk test was evaluated and
non-parametric tests were used. Data are presented as medians and interquartile ranges
(IQR). Mann–Whitney U test was used to analyze the differences between the groups. In
order to estimate the correlation between outcomes of interest, Spearman’s correlation test
was used. The values of p < 0.05 were considered statistically significant.

3. Results
3.1. NAFLD and Stiffness Status Evaluation

Patients who received 12 g of fiber showed significantly reduced liver steatosis in
FibroScan measurements (CAP 324 dB/m (70 dB/m) vs. CAP 269 dB/m (66.25 dB/m),
p = 0.02); there was a trend to reduce stiffness status in the liver (VCTE 5.7 kPa (2.17 kPa)
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vs. VCTE 5 kPa (1.35 kPa, p = 0.06). In the group who received 24 g of fiber, we noticed a
trend to liver steatosis reduction (CAP 295 dB/m (93 dB/m) vs. CAP 274 dB/m (66 dB/m),
p = 0.07); the stiffness status did not have a significant change (VCTE 6 kPa (2.4 kPa) vs.
VCTE 6 kPa (1.5 kPa), p = 0.7).

3.2. Biochemical Parameters

Patients who received 12 g of fiber significantly reduced their body weight. In the group
where participants received 24 g of fiber, we observed significant reduction of the total cholesterol
of total cholesterol and AST. We also noticed a decreasing trend in ALT, LDL, and fasting insulin
and an increasing trend in HDL. The results are presented in Table 1.

Table 1. Differences between biochemical parameters before and after 8 weeks of high-fiber
buns intervention.

Parameters
Intervention with 12 g

p
Intervention with 24 g

pMedian IQR Median IQR Median IQR Median IQR

Fasting glucose (mg/dL) 95 14.1 90 33.5 0.66 91.6 15.4 97.9 10.6 0.94
Total cholesterol (mg/dL) 195.2 53.2 178.2 27.5 0.18 210 51.6 197.3 47.7 0.03 ↓

HDL (mg/dL) 45.2 12 42.8 16.1 0.58 47.1 6.4 48.7 6.5 0.07
LDL (mg/dL) 127.9 57.7 110.4 41.8 0.33 138.9 31.9 129.7 46 0.09
TG (mg/dL) 164.1 95.3 119.7 165 0.14 169.6 152.3 161.6 113.2 0.11
ALT (U/L) 38 19 38 19 0.94 41 21 31 18 0.06
AST (U/L) 26 12 30 11 0.68 26 8 23 6 0.03 ↓

GGTP (U/L) 32 10 35 16 0.23 28 12 24 14 0.12
Fasting insulin (uU/mL) 19.3 20.7 16.9 13.6 0.66 33.7 94.9 37.6 31 0.09

Age (years) 47 12.8 - - - 47.5 14.7 - - -
BMI (kg/m2) 29.1 3.8 28.7 5.2 0.04 ↓ 28.2 10.5 28.9 9.7 0.54

↑- significant increase, ↓ significant decrease.

3.3. Fatty Acids and Eicosanoids Analysis

Eight-week high-fiber buns intervention revealed changes in fatty acids and their
derivatives in both groups. We can notice a significant reduction in saturated fatty acids
and an increase in monounsaturated and polyunsaturated fatty acids. Moreover, the group
that received 24 g of extra fiber had increased levels of DHA. Results of fatty acids analysis
are presented in Table 2.

Table 2. Fatty acids profile before and after 8 weeks of high-fiber buns intervention.

Fatty Acid (%) Intervention with 12 g
p

Intervention with 24 g
pMedian IQR Median IQR Median IQR Median IQR

C13:0 Tridecanoic acid 0.20 0.05 0.20 0.08 0.53 0.22 0.06 0.23 0.09 0.45
C14:0 Myristic acid 1.24 0.67 1.30 0.30 0.35 1.27 0.30 1.11 0.43 0.76

C14:1 Myristolenic acid 0.05 0.06 0.06 0.04 0.0001 ↑ 0.05 0.03 0.07 0.04 0.001 ↑
C15:0 Pentadecanoic acid 0.16 0.07 0.19 0.03 0.15 0.14 0.05 0.15 0.05 0.58

C16:0 Palmitic acid 3.46 2.08 29.27 1.89 0.001 ↓ 31.45 2.56 29.98 1.86 0.02 ↓
C16:1 Palmitoleic acid 1.03 0.43 1.64 0.99 0.001 ↑ 1.15 0.49 1.20 0.90 0.001 ↑

C17:0 Heptadecanoic acid 0.25 0.04 0.26 0.05 0.3 0.24 0.05 0.25 0.07 0.07
C17:1 Heptadecanoic acid 0.06 0.02 0.08 0.03 0.0001 ↑ 0.06 0.02 0.07 0.06 0.0001 ↑

C18:0 Stearic acid 21.39 3.98 19.12 3.63 0.03 ↓ 21.76 5.53 19.78 5.61 0.019 ↓
C18:1n9 Oleic acid 12.44 4.57 14.50 4.48 0.07 12.04 4.45 14.37 3.67 0.07

C18:1n7 Vaccinic acid 1.34 0.49 1.47 0.41 0.71 1.30 0.42 1.59 0.53 0.17
C18:2n6 Linoleic acid 12.25 5.12 14.07 4.87 0.02 ↑ 12.12 5.26 14.67 3.75 0.016 ↑

C18:3n6 Gamma linoleic
acid (GLA) 0.17 0.10 0.26 0.16 0.003 ↑ 0.14 0.06 0.24 0.10 0.021 ↑
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Table 2. Cont.

Fatty Acid (%) Intervention with 12 g
p

Intervention with 24 g
pMedian IQR Median IQR Median IQR Median IQR

g C18:3n3 Linolenic acid 0.18 0.07 0.13 0.06 0.02 ↑ 0.17 0.05 0.12 0.04 0.09
C20:4n6 Arachidonic acid (AA) 6.03 1.46 5.76 1.73 0.47 5.75 1.10 6.10 1.44 0.76

C20:5n3 EPA 0.48 0.11 0.51 0.21 0.14 0.58 0.40 0.51 0.55 0.46
C22:4n6 Docosatetraenoic acid 0.49 0.24 0.39 0.29 0.46 0.50 0,19 0.46 0.16 0.32
C22:5n3 Docosapentaenoic acid 0.56 0.18 0.63 0.19 0.05 ↑ 0.52 0.18 0.62 0.33 0.008 ↑

C22:6n3 DHA 1.55 0.51 1.50 0.44 0.46 1.60 0.59 1.85 0.90 0.005 ↑
Increased amount of fiber in the diet reduced concentration of prostaglandin E2, which was more visible in the
group who received 24 g of fiber (Table 3). ↑- significant increase, ↓ significant decrease.

Table 3. Eicosanoids profile before and after 8 weeks of high-fiber buns intervention.

Eicosanoids (ng/mL) Intervention with 12 g
p

Intervention with 24 g
pMedian IQR Median IQR Median IQR Median IQR

Resolvine E1 0.52 0.26 0.43 0.15 0.1 0.51 0.17 0.33 0.27 0.3
Prostaglandin E2 7.42 2.84 5.25 3.78 0.017 ↓ 9.89 6.95 5.61 9.51 0.008 ↓

LTX A4 3.72 8.93 4.04 6.58 0.89 5.74 3.20 7.92 11.52 0.42
DiHDHA Protectin DX 0.58 0.39 0.13 0.06 0.58 0.33 0.12 0.14 0.05 0.01

Leucotriene B4 0.03 0.04 0.03 0.02 0.41 0.04 0.03 0.04 0.01 0.52
18 HEPE 0.11 0.08 0.09 0.05 0.54 0.16 0.07 0.09 0.05 0.3
13 HODE 0.08 0.06 0.10 0.04 0.78 0.09 0.07 0.13 0.11 0.36
9 HODE 0.06 0.03 0.09 0.07 0.27 0.10 0.05 0.12 0.08 0.23
15 HETE 0.63 0.30 0.73 0.62 0.41 0.75 0.47 0.70 0.41 0.63

17 HDHA 0.15 0.09 0.12 0.05 0.68 0.19 0.29 0.12 0.04 0.19
12 HETE 1.45 1.19 1.74 4.98 0.43 1.94 0.62 2.65 1.72 0.11
5 HETE 0.52 0.49 0.79 0.86 0.54 0.67 0.40 0.68 0.70 0.78

5 oxo ETE 0.66 0.67 0.72 0.37 0.21 0.43 0.65 0.62 0.50 0.26

↑- significant increase, ↓ significant decrease.

4. Discussion

Dietary fiber is one of most important components of a healthy diet [15]. Dorosti et al.
conducted a randomized, open-label control trial on 112 NAFLD patients, who increased
fiber intake in their diet. The results showed that 12 weeks of increased consumption of
whole-grain products promoted weight reduction and improved glucose regulation in
overweight adults compared with placebo. At the same time, the degree of steatosis had a
significant decrease in the intervention group (p < 0.001), as well as serum concentration of
ALT (p < 0.001), AST (p < 0.001), γ-glutamyltransferase (GGTP, p = 0.009), diastolic blood
pressure (p = 0.008), and systolic blood pressure (p = 0.004) [16]. Javadi et al. showed that
prebiotic supplementation (10 g/day for 3 months) in NAFLD patients can significantly
reduce the concentration of LDL (p = 0.015) and body weight (p < 0.001) [17].

Our intervention was based on the additional supply of 12 g and 24 g of fiber. The
results of biochemical studies showed that patients who received more fiber (24 g) reduced
their total cholesterol and AST concentration. We also noticed a trend to increase HDL, and
to decrease LDL, ALT, fasting insulin, and degree of steatosis. Interestingly, the group with
less fiber supplementation showed significantly reduced body weight and degree of liver
steatosis but we did not see any significant changes in biochemical parameters. However,
we can notice a trend to increased fasting insulin in these patients (p = 0.09). A number of
studies present hypotheses where fiber fermentation products, mainly short-chain fatty
acids (SCFAs), contribute additional calorie intake through fermentation, and this can
explain weight gain in some individuals [18]. It seems that we can notice this dependence
in our patients. SCFAs have a huge impact on glucose and lipid metabolism; therefore,
biochemical changes can be more visible in the group of higher fiber intake.

Data from animal studies showed that dietary fiber normalized the expressions of
sterol regulatory element-binding protein 1 (SREBP1) [19]. Synthesis of fatty acid in the
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liver, as well as triglyceride, is regulated by transcription factor SREBP-1c, which increases
formation of palmitic acid and its metabolites of elongation and desaturation—stearic acid,
palmitoleic acid, and oleic acid. These changes are stimulated by insulin and intracellular
cholesterol concentration, which accelerates liver fat accumulation [20,21]. Dietary fiber is
fermented by intestinal microbiota, which results in the production of SCFAs. SCFA can
regulate many processes involved in glucose and lipid metabolism and reduce endogenous
synthesis of cholesterol and fat storage [22]. Recent studies revealed that oral administration
of SCFAs tends to downregulate expression of SREBP-1C in liver and fatty acid synthase
(FAS), enzymes that induce de novo lipogenesis [22].

Our study showed that increased fiber intake helps to reduce the concentration of main
saturated fatty acids, such as palmitic acid and stearic acid, and increase the concentration
of monounsaturated fatty acids, such as palmitoleic acid and oleic acid (trend to reduction,
p = 0.07). These changes are noticeable in both groups. We can assume that increased
amount of fiber in the diet reduced de novo lipogenesis, especially because total cholesterol,
one the main factors inducing FAS activity, decreased in both groups. In NAFLD patients,
adipose tissue delivers approx. 60% FAs for TG synthesized in the liver while de novo
lipogenesis contributes only 26% [23]. Enteral infusion of SCFA (acetate and propionate)
causes a 40% reduction in serum FAs [24]. The contribution of gut-microbiota-derived
acetate production available for whole organism is estimated to be 44% [25]. Increasing
fiber fermentation and SCFA production may be a novel strategy to induce regulation of
lipid metabolism in liver diseases.

Eicosanoids, especially series 2 of prostaglandins (PGs), play an important role in
the development of metabolic diseases and NAFLD. There are three series of homologues
PGs, which are biosynthesized from different polyunsaturated fatty acids (PUFA) by
cyclooxygenase (COX) [26]. The 2 series PGs are produced from DGLA, an AA derived
from membrane phospholipids. PGs have a varied effect on hepatic insulin signaling,
dependent on which series of PGs are produced and where they are produced. Metabolites
generated in parenchymal hepatocytes or Kupffer cells play a negative role in insulin
metabolism [27]. Animal research has revealed that COX-2 inhibitors intake can decrease
PGE metabolites in obese rats. These changes were associated with insulin sensitivity
improvement and decreasing hepatic glucose production [28].

PGs also participate in lipid metabolism dysregulation and in hepatic lipid storage [29].
PGE2 acts with insulin in the pathogenesis and progression of hepatic steatosis. High PGE2
concentration in the serum is also associated with fibrosis progression in liver steatosis [30].
The 2 series of PG decreases the secretion of very-low-density lipoprotein (VLDL) and pro-
motes steatosis in hepatocytes. Reduction of VLDL secretion is associated with decreased
TG transportation and output [31]. During NAFLD development, increased COX-2 activity
and high PGE2 concentration results in lipid storage and peroxidation enhancement in
mice [32]. However, some scientific evidence derived from cell culture research suggests
that PGE2 may play a protective role for liver cells. Our research revealed that, along with
the reduction of steatosis, the concentration of PGE also decreased. Moreover, in both
groups, we noticed increased concentration of GLA, the precursor of PGs. This observation
may indicate the reduction of COX-2 activity in NAFLD patients on a high-fiber diet. The
role of fiber and SCFA in COX activity is still unknown.

5. Conclusions

NAFLD is associated with metabolic changes connected with lipid metabolism and
glucose homeostasis. There are increasing interests about the role of dietary fiber in
supporting the treatment of the disease. Our study revealed that a high amount of fiber
in the diet is associated with a reduction in fatty liver, although this effect was more
pronounced in patients in the lower fiber group, who had reduced body weight. This
observation can be caused by higher calorie intake from extra fiber; therefore, calorie
restriction and weight loss seems to be a primary goal for NAFLD patients. However,
regardless of the amount of fiber consumed, we observed significant changes in the profile
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of FAs, which may reflect the positive changes in lipid liver metabolism. Regardless of the
amount of fiber consumption, patients decreased the amount of PGE2, which may indicate
the lack of disease progression associated with the development of inflammation.

Figure 1 summarizes results of the study and the proposed hypothesis.
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