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Abstract: Epoxyeicosatrienoic acid (EET) is a cardioprotective metabolite of arachidonic acid. It is
known that soluble epoxide hydrolase (sEH) is involved in the metabolic degradation of EET.
The abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) play important
roles in the pathogenesis of atherosclerosis and restenosis. Thus, the present study investigated the
effects of the sEH inhibitor 12-(((tricyclo(3.3.1.13,7)dec-1-ylamino)carbonyl)amino)-dodecanoic acid
(AUDA) on platelet-derived growth factor (PDGF)-induced proliferation and migration in rat VSMCs.
AUDA significantly inhibited PDGF-induced rat VSMC proliferation, which coincided with Pin1
suppression and heme oxygenase-1 (HO-1) upregulation. However, exogenous 8,9-EET, 11,12-EET,
and 14,15-EET treatments did not alter Pin1 or HO-1 levels and had little effect on the proliferation of
rat VSMCs. On the other hand, AUDA enhanced the PDGF-stimulated cell migration of rat VSMCs.
Furthermore, AUDA-induced activation of cyclooxygenase-2 (COX-2) and subsequent thromboxane
A2 (TXA2) production were required for the enhanced migration. Additionally, EETs increased COX-2
expression but inhibited the migration of rat VSMCs. In conclusion, the present study showed that
AUDA exerted differential effects on the proliferation and migration of PDGF-stimulated rat VSMCs
and that these results may not depend on EET stabilization.

Keywords: soluble epoxide hydrolase; epoxyeicosatrienoic acid; cyclooxygenase-2; vascular smooth
muscle cell

1. Introduction

Coronary heart disease is a leading cause of death in developed countries and accounts for one
in seven deaths in the United States [1]. Restenosis, which is the re-narrowing of the vessel lumen
after percutaneous coronary intervention (PCI), is mainly caused by neointimal hyperplasia [2,3].
In neointimal hyperplasia, endothelial injury activates platelets and induces the release of various
growth factors and cytokines, including platelet-derived growth factor (PDGF). PDGF enhances the
migration and proliferation of vascular smooth muscle cells (VSMCs) and fibroblasts in the media
and adventitia of the vasculature, which subsequently contributes to the formation of neointima and
reduces the size of the lumen [4–6]. Although there are conflicting perspectives regarding the origin
of α-smooth muscle actin (α-SMA)-positive cells in the neointima, the proliferation and migration of
VSMCs are considered to be the main factors contributing to neointimal hyperplasia [7–9].

Epoxyeicosatrienoic acid (EET), a bioactive product derived from the cytochrome P450-catalyzed
pathway of arachidonic acid, has four regioisomers: 5,6-EET, 8,9-EET, 11,12-EET, and 14,15-EET.
EET is hydrolyzed by soluble epoxide hydrolase (sEH) into dihydroxyeicosatrienoic acid (DHET),
which is also active but readily degraded [10]. It is well-documented that EET exerts cardioprotective
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effects by preventing hypertension and reducing inflammation [11–14]. The EET receptor is yet to
be characterized, but it is known that EET serves as a ligand for peroxisome proliferator-activated
receptors (PPARs) [15]. Therefore, sEH inhibitors are being developed for the purpose of stabilizing
endogenous EETs [16].

The present study aimed to determine the effects of sEH inhibitors on the proliferation and
migration of VSMCs. Previous studies have shown that neointima formation induced by femoral cuff
injury is diminished in hyperlipidemic sEH knockout mice [17], and urea-based sEH inhibitors, such as
1-cyclohexyl-3-dodecyl urea (CDU) and 12-(((tricyclo(3.3.1.13,7)dec-1-ylamino)carbonyl)amino)-
dodecanoic acid (AUDA), inhibit the proliferation of PDGF-induced human aortic VSMCs [18,19].
Here, the sEH inhibitor AUDA suppressed rat VSMC proliferation but potentiated their migration,
and that these effects might not be mediated through the stabilization of EETs. It was shown that
AUDA inhibited PDGF-induced rat VSMC proliferation by decreasing peptidyl/prolyl isomerase
pin1, while increasing heme oxygenase-1 (HO-1) expression. It was also demonstrated that AUDA
induced the activation of cyclooxygenase-2 (COX-2) in PDGF-treated VSMCs, suggesting that surplus
thromboxane A2 (TXA2) production might be related to enhanced VSMC migration.

2. Results

2.1. Effects of AUDA on VSMC Proliferation

First, it was assessed whether the sEH inhibitors AUDA and CDU inhibit the PDGF-induced
proliferation of rat VSMCs. Both AUDA and CDU dose-dependently suppressed the proliferation of rat
VSMCs exposed to PDGF for 48 h (Figures 1A,B and S1). Since CDU and AUDA are similar urea-based
sEH inhibitors [19] and AUDA showed better efficacy, AUDA was mainly used in this study.

Figure 1. Cont.
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Figure 1. Soluble epoxide hydrolase (sEH) inhibitors inhibit platelet-derived growth factor
(PDGF)-induced vascular smooth muscle cell (VSMC) proliferation by heme oxygenase-1 (HO-1)
induction and Pin1 suppression. (A,B) Effects of 12-(((tricyclo(3.3.1.13,7)dec-1-ylamino)carbonyl)amino)-
dodecanoic acid (AUDA). (A) and 1-cyclohexyl-3-dodecyl urea (CDU). (B) on VSMC proliferation. Rat
VSMCs were treated with vehicle control, AUDA (0.3 to 10 µg/mL), or CDU (0.3 to 10 µM) 30 min
prior to PDGF (30 ng/mL) exposure. VSMC proliferation was monitored 48 h after PDGF treatment
by thiazolyl blue tetrazolium bromide (MTT) assay; (C) Effect of AUDA on Pin1 expression in VSMC.
Vehicle control or AUDA (1 to 30 µg/mL) was treated 30 min prior to PDGF (30 ng/mL) exposure.
Total cell lysates were obtained 24 h after PDGF treatment and subjected to Pin1 immunoblotting
(n = 3); (D) Effects of AUDA on HO-1 and Kelch Like ECH Associated Protein 1 (Keap1) expression.
VSMCs were incubated with vehicle control or AUDA (0.3 to 30 µg/mL) for 24 h and HO-1 and Keap1
expression was determined by immunoblottings (n = 3); (E) Effects of AUDA on nuclear level of nuclear
factor erythroid 2-related factor-2 (Nrf2). VSMCs were incubated with vehicle control or 30 µg/mL
AUDA for indicated time points and nuclear extracts were subjected to Nrf2 immunoblotting (n = 4).
Statistical significance is indicated as * p < 0.05, ** p < 0.01, *** p < 0.001 vs. vehicle-treated control;
# p < 0.05, ### p < 0.001 vs. PDGF-treated group.

The peptidyl-prolyl isomerase Pin1 regulates proteins involved in cell cycle progression and
apoptosis [20]. Our research group previously reported that the upregulation of Pin1 by PDGF inhibits
the activation of nuclear factor erythroid 2-related factor-2 (Nrf2) and downregulates the level of HO-1
in VSMCs, which subsequently boosts VSMC proliferation [21]. Moreover, HO-1 expression in VSMCs
has been shown to be inversely correlated with the formation of neointimal hyperplasia [22,23].

Thus, the present study investigated the effect of AUDA on Pin1 and Nrf2-mediated HO-1
expression in VSMCs. AUDA (1–30 µg/mL) dose-dependently inhibited the protein expression of
Pin1 (Figure 1C) and increased HO-1 protein levels in PDGF-treated VSMCs at a dose of 3 µg/mL,
although potent induction was seen only at 30 µg/mL (Figure 1D). To determine whether the increased
HO-1 levels were dependent on the stability of the Kelch-like ECH-associated protein 1 (Keap1)-Nrf2
complex, Keap1 degradation, and Nrf2 nuclear translocation were examined. AUDA reduced Keap1
levels in a dose-dependent manner, and accordingly Nrf2 levels in the nucleus increased 9 h after
compound treatment (Figure 1D,E). These data suggest that the sEH inhibitors dampen PDGF-induced
VSMC proliferation, at least in part, by reducing Pin1 and enhancing HO-1 expression.

2.2. Effects of Exogenous EET on VSMC Proliferation

EETs induce HO-1 in the cardiovascular system; EET analogs increase HO-1 levels in human
microvascular endothelial cells [24], mouse adipocytes [25], and the cardiac and adipose tissues of
obese/diabetic mice [26]. In addition, the treatment of EET (1 µM) to human umbilical vein endothelial
cells (HUVECs) has been shown to activate the Nrf2 pathway and increases HO-1 expression [27].

Thus, the present study examined whether exogenous EET would inhibit VSMC proliferation
by inducing HO-1 and inhibiting Pin1 as AUDA did. Because 11,12-EET and 14,15-EET are known
to be the most abundant isomers in the vascular system, and 5,6-EET is barely detectable in human
plasma [10,28], 8,9-EET, 11,12-EET, and 14,15-EET were used in this study. In rat VSMCs, 8,9-EET
and 11,12-EET significantly enhanced PDGF-induced proliferation, while 14,15-EET significantly
suppressed it (Figure 2A). However, the effective concentrations were considerably higher (3 µM)
compared to human plasma concentrations (0.1–10 ng/mL) [28,29] and the degree of inhibition or
enhancement was marginal (~15%). Furthermore, the three EET regioisomers did not reduce the Pin1
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expression induced by PDGF (Figure 2B), nor did they increase HO-1 expression (Figure 2C). Since
exogenous EETs do not mimic the effects of AUDA on VSMC proliferation, the anti-proliferative effects
of sEH inhibitors may not be related to EET stabilization.

Figure 2. Exogenous epoxyeicosatrenoic acids (EETs) do not inhibit VSMC proliferation nor affect
Pin1 and HO-1 expression. (A) Effects of EETs on VSMC proliferation. Rat VSMCs were preincubated
with vehicle control, 8,9-EET, 11,12-EET, or 14,15-EET (0.1–3 µM) for 30 min and exposed to PDGF
(30 ng/mL) for 48 h. VSMC proliferation was determined by MTT assay; (B) Effects of EETs on Pin1
expression. Rat VSMCs were pretreated with vehicle control, 8,9-EET, 11,12-EET, or 14,15-EET (1 or
3 µM) for 30 min and exposed to PDGF (30 ng/mL) for 24 h. Pin1 expression was determined by
immunoblotting (n = 3); (C) Effect of EETs on HO-1 expression. HO-1 protein level was determined in
VSMCs treated with vehicle control, 8,9-EET, 11,12-EET, or 14,15-EET (1 and 3 µM), for 24 h (n = 4).
Statistical significance is indicated as * p < 0.05; *** p < 0.001 vs. PDGF-treated group.

2.3. Differential Effects of AUDA and EET on VSMC Migration

Next, the effect of AUDA on VSMC migration was determined. A Boyden chamber
migration assay revealed that PDGF increased VSMC migration and AUDA significantly enhanced
PDGF-mediated VSMC migration (Figure 3A). However, AUDA alone did not induce VSMC migration
(Figure 3A). On the contrary, all three EET regioisomers suppressed the migration of PDGF-stimulated
VSMCs (Figure 3B). Taken together, it seems that the stimulatory effects of sEH inhibitors on VSMC
migration are not dependent on the stabilization of EETs.
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Figure 3. Differential effects of AUDA and EETs on PDGF-induced VSMC migration. (A) Effect of
AUDA on PDGF-induced VSMC migration. Cell migration was determined via Boyden chamber
assay in VSMC incubated with vehicle control or 10 µg/mL AUDA for 24 h. Culture media
containing 30 ng/mL PDGF was added to the lower chamber as chemoattractant; (B) Effect of EETs
on PDGF-induced VSMC migration. VSMCs were incubated with vehicle control, 8,9-EET, 11,12-EET,
or 14,15-EET (1 µM, respectively) for 24 h. Cell migration was determined as described in (A). Statistical
significance is indicated as * p < 0.05; *** p < 0.001 vs. PDGF-treated group.

2.4. COX-2 Upregulation by AUDA and Its Involvement in Enhancing VSMC Migration

COX-2 induction and the subsequent overproduction of prostanoids in VSMCs, endothelial cells,
and macrophages are involved in the pathogenesis of neointima formation in the vasculature [30].
Previous studies have shown that COX-2 knockout attenuated wire injury-mediated neointimal
hyperplasia, and prostaglandin E2 (PGE2) receptor (EP) 3 deficiency prevented mouse VSMC
migration [31]. It has been known that Angiotensin II and interleukin-1β induce COX-2 expression and
VSMC migration, and inhibition of COX-2, EP, or the TXA2 receptor (TP) suppressed those effects [32],
and PDGF also increases COX-2 expression and potentiates VSMC migration [33,34].

In the present study, PDGF increased COX-2 protein levels in rat VSMCs, and the sEH inhibitors
AUDA and CDU dose-dependently upregulated COX-2 expression (Figure 4A,B). PGE2, a stable
prostanoid, was quantified in the culture media to determine whether AUDA-induced increases in
COX-2 expression would lead to increased COX-2 activity. Indeed, AUDA enhanced the production of
PGE2 in PDGF-treated VSMCs, but this effect was dose-dependently diminished by co-treatment with
the COX-2-selective inhibitor celecoxib (Figure 4C). In addition, the enhanced VSMC migration induced
by AUDA was completely mitigated by low dose of celecoxib (1 µM; Figure 4D). The effects of COX-2
induction by sEH inhibitors on VSMC proliferation were also investigated. The co-incubation of VSMCs
with celecoxib and AUDA caused neither an increase nor a decrease in PDGF-induced proliferation
(Figure 4E). Thus, it seems plausible that the COX-2 upregulation by AUDA was associated with
enhanced VSMC migration but not with the attenuated proliferation.
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Figure 4. Cyclooxygenase-2 (COX-2) upregulation by sEH inhibitors and its role in VSMC migration.
(A,B) COX-2 upregulation by sEH inhibitors. VSMCs were preincubated with vehicle control,
AUDA ((A), 1–30 µg/mL), or CDU ((B), 1–30 µM) for 30 min, and then stimulated with 30 ng/mL
PDGF for 8 h. The total cell lysates were subjected to COX-2 immunoblotting (n = 3); (C) PGE2

enzyme-linked immunosorbent assay (ELISA). Rat VSMCs were preincubated with vehicle control or
AUDA (10 µg/mL) in the presence or absence of celecoxib (0.1–10 µM) for 30 min and then exposed
to 30 ng/mL PDGF for 24 h. The secreted PGE2 levels in culture media were quantified by ELISA;
(D) Effect of COX-2 inhibitor on VSMC migration. Cell migration was determined via Boyden chamber
assay of VSMC incubated with vehicle control or 10 µg/mL AUDA with or without 1 µM celecoxib for
24 h. Culture media containing 30 ng/mL PDGF was added to the lower chamber as chemoattractant;
(E) Effects of Celecoxib on VSMC proliferation. Rat VSMCs were preincubated with vehicle control or
AUDA (10 µg/mL) in the presence or absence of celecoxib (0.1–10 µM) for 30 min and exposed to PDGF
(30 ng/mL) for 48 h. VSMC proliferation was determined by MTT assay. Statistical significance is
indicated as * p < 0.05; *** p < 0.001 vs. vehicle-treated control; # p < 0.05; ### p < 0.001 vs. PDGF-treated
group; § p < 0.05; §§ p < 0.01 vs. PDGF + AUDA-treated group.
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2.5. Role of TXA2 in sEH Inhibitor-Induced Enhancements in VSMC Migration

Next, it was investigated whether COX-2-derived prostanoids would mediate the enhanced
VSMC migration by AUDA. It has previously been shown that TXA2 and PGE2 induce VSMC
migration [31,35]. Co-treatment of AUDA with various prostanoid receptor antagonists revealed
that the TP antagonist ICI192,605 and the prostaglandin I2 (PGI2) receptor (IP) antagonist CAY10441,
significantly prevented VSMC migration by AUDA while EP1, EP2, EP3, the prostaglandin D2 (PGD2)
receptor (DP) antagonist AH6809, and the EP4 antagonist L-161,982 did not (Figure 5A). Because
CAY10441 alone inhibited the PDGF-stimulated migration of VSMCs, its effects do not seem to coincide
with AUDA co-treatment. Therefore, the enhancement of PDGF-induced VSMC migration by AUDA
may be attributable to COX-2-mediated TXA2 production rather than EET stabilization.

Figure 5. Role of thromboxna A2 (TXA2) in AUDA-stimulated VSMC migration. (A) Effects of
prostanoid receptor antagonists on AUDA-stimulated VSMC migration. Rat VSMCs were treated
with vehicle control, TXA2 receptor (TP) antagonist ICI192,605 (10 µM), PGI2 receptor (IP) antagonist
CAY10441 (10 µM), EP1, EP2, EP3, and PGD2 receptor (DP)1 antagonist AH6809 (10 µM), or PGE2

receptor (EP) 4 antagonist L-161,982 (10 µM) in the presence or absence of AUDA (10 µg/mL) for 24 h.
Cell migration was determined via Boyden chamber assay. Culture media containing 30 ng/mL PDGF
was added to the lower chamber as chemoattractant; (B) Effects of EETs on COX-2 expression in VSMC.
Rat VSMCs were preincubated with vehicle control, 8,9-EET, 11,12-EET, or 14,15-EET (1 µM) for 30 min
and then exposed to 30 ng/mL PDGF for 8 h. COX-2 expression in total cell lysates was assessed
by immunoblotting (n = 3). Statistical significance is indicated as * p < 0.05 vs. PDGF-treated group;
### p < 0.001 vs. PDGF+AUDA-treated group.
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It has been reported that 11,12-EET increases COX-2 levels and cell migration in HUVECs [36,37],
while 14,15-EET inhibits PDGF-induced migration in human VSMC cell lines [38]. To assess the effects
of EETs on COX-2 expression, rat VSMCs were treated with 8,9-EET, 11,12-EET, and 14,15-EET; all three
EETs significantly enhanced PDGF-induced COX-2 expression in VSMCs (Figure 5B). Additionally,
although the inhibition intensity was variable, 8,9-EET, 11,12-EET, and 14,15-EET significantly
mitigated PDGF-induced VSMC migration (Figure 3B).

3. Discussion

The present study demonstrated that the sEH inhibitor AUDA suppressed rat VSMC proliferation
via HO-1 upregulation and Pin1 downregulation. However, this study also showed that
AUDA potentiated PDGF-stimulated VSMC migration via COX-2 induction and subsequent TXA2

overproduction. Unexpectedly, these differential effects were not reproduced by exogenous EETs.
Thus, the effects of AUDA may or may not be related to sEH inhibition.

sEH inhibition led to decreased cell proliferation in VSMCs (Figure 1A,B) and, in fact, most
urea-based sEH inhibitors suppress the proliferation of human VSMCs [18,19,38]. However, the
effect of sEH inhibition on VSMC migration is yet to be confirmed. This study has demonstrated
that both AUDA and CDU increased COX-2 expression in rat VSMCs (Figure 4A,B) and provided
evidence that the potentiation of VSMC migration by sEH inhibitors was due to COX-2-catalyzed
TXA2 formation (Figure 5A). On the other hand, Wang et al. [38] recently reported that the sEH
inhibitor 1-(1-methanesulfonyl-piperidin-4-yl)-3-(4-trifluoromethoxy-phenyl)-urea (TUPS) inhibits
PDGF-induced migration in a human aortic smooth muscle cell line. It remains unclear whether this
discrepancy is due to differences in the chemical properties of the compounds or to differences between
the human VSMC cell line and primary rat VSMCs.

The direct effects of EET on VSMC proliferation and migration are poorly understood.
Davis et al. [18] reported that 10 µM of an EET mixture (8,9-EET, 11,12-EET, and 14,15-EET;
1:1:1) inhibits human VSMC proliferation, and that CDU suppresses VSMC proliferation via the
downregulation of cyclin D1. Additionally, Wang et al. [38] showed that 100 nM 14,15-EET attenuates
the migration of human VSMCs, while TUPS suppresses PDGF-induced VSMC switching from a
contractile phenotype to a synthetic phenotype, in turn ameliorating neointimal hyperplasia. However,
neither of these studies addressed the direct effects of EET on those mechanisms. In the present
study, exogenous EETs did not suppress VSMC proliferation, nor did they affect Pin1 and HO-1
expression (Figure 2A–C). Although EETs either enhanced (8,9-EET and 11,12-EET) or suppressed
(14,15-EET) VSMC proliferation at a concentration of 3 µM, the efficacy was marginal (~15%; Figure 2A).
Furthermore, all three regioisomers of EET hindered the cell migration of PDGF-stimulated VSMCs
(Figure 3B). Taken together, these results suggest that the aforementioned effects of sEH inhibitors
might have been independent of EET stabilization.

PDGF-induced COX-2 upregulation is controlled by p38 mitogen-activated protein kinase
(p38 MAPK) in VSMCs [39] and the activation of p38 MAPK in response to PDGF plays an important
role in the migration of endothelial cells and VSMCs [33,40,41]. Moreover, increases in COX-2 activity
cause Nrf2 activation and HO-1 induction, which are also regulated by p38 MAPK signaling, in the
vasculature [42–44]. In this study, COX-2 expression occurred earlier than the nuclear translocation of
Nrf2 and induction of HO-1 in AUDA-treated VSMCs (Figure 1C,D and Figure 4A). Because HO-1
expression was observed in the PDGF-free condition, it is difficult to determine whether the increased
HO-1 levels were directly linked to the enhanced COX-2 expression. However, it seems probable
that p38 MAPK signaling is associated with COX-2 upregulation and Nrf2 activation induced by
sEH inhibition.

Even though COX-2 was induced by EETs in PDGF-treated VSMCs, EET did not enhance
PDGF-stimulated VSMC migration, unlike AUDA (Figure 4A,B). Recent studies have shown that
5,6-EET, 8,9-EET, and 11,12-EET, but not 14,15-EET, can be metabolized by COX-2 to produce
mitogenic and angiogenic metabolites (e.g., ct-8,9-epoxy-11-hydroxy-eicosatrienoic acid), which are
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then subjected to sEH metabolism [45,46]. Although their roles in the migration of VSMCs are yet to
be elucidated, it seems possible that sEH inhibition by AUDA stabilizes these metabolites, as well as
EET, thereby facilitating VSMC migration.

In conclusion, the sEH inhibitor AUDA suppressed proliferation while enhancing cell migration
in PDGF-stimulated VSMCs. However, these effects of AUDA might not be related to EET
stabilization because they were not mimicked by exogenous EET. Therefore, the development of
sEH inhibitors for the purpose of alleviating neointimal hyperplasia should take these differential
effects into consideration.

4. Materials and Methods

4.1. Antibodies and Reagents

12-(((tricyclo(3.3.1.13,7)dec-1-ylamino)carbonyl)amino)-dodecanoic acid (AUDA), 8,9-EET,
11,12-EET, 14,15-EET, CAY10441, L-161,982, and AH6809 were purchased from Cayman Chemical (Ann
Arbor, MI, USA). 1-Cyclohexyl-3′-dodecylurea (CDU) and ICI-192,605 were obtained from Calbiochem
(Darmstadt, Germany). PDGF was supplied by Peprotech (Rocky Hill, NJ, USA). Antibodies for Pin1,
Keap1, Nrf2, COX-2 were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA). HO-1
antibody and PGE2 enzyme-linked immunosorbent assay (ELISA) kit were obtained from Enzo Life
Sciences (Ann Arbor, MI, USA), and Lamin A/C antibody was from Cell Signaling Technology (Beverly,
MA, USA). Antibody for β–actin, thiazolyl blue tetrazolium bromide (MTT), elastase, Sulforhodamine
B based in vitro toxicology assay kit, hematoxylin and eosin solution were supplied by Sigma-Aldrich
(St. Louis, MO, USA). Collagenase was purchased from Worthington Biochemical Corporation
(Lakewood, NJ, USA). HRP substrate kit was purchased from Millipore Corporation (Billerica, MA,
USA). Transwell® permeable supports were obtained from Corning Incorporated (Corning, NY, USA).
DMSO was used as vehicle control for AUDA and CDU. Ethanol was used as vehicle control for EETs.

4.2. Isolation and Culture of VSMC

Rat aortas were isolated from 6–8-week-old Sprague Dawley rats. Connective tissues were
removed from the aorta and adventitia were detached by incubation in collagenase. Remaining media
were minced to pieces of 1–2 mm2 and incubated in collagenase and elastase for single cell suspension.
VSMCs were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) with 10% fetal bovine serum
(FBS), 100 U/mL penicillin, and 100 µg/mL streptomycin. VSMCs of 2–6 passages were used in
the experiments.

4.3. Immunoblotting Analysis

Cells were harvested with phosphate buffered saline (PBS) and centrifuged at 3000× g for 5 min.
Cell pellets were resuspended in cell lysis buffer—1 mM Tris pH 7.1, 100 mM NaCl, 1 mM EDTA,
10% glycerol, 0.5% Triton X-100, 0.5% Nonidet P-40 (NP-40), 1 mM dithiothreitol (DTT), and 0.5 mM
phenylmethylsulfonyl fluoride (PMSF)—for 1 h on ice. The cell suspensions were centrifuged at
13,000× g for 15 min, and the resulting supernatants were used as total cell lysate. The protein
samples were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)
and then transferred to nitrocellulose membrane. The membranes were blocked with 5% skim milk
in PBS-Tween20 and incubated with primary antibodies as indicated. The membranes were washed
and incubated with second antibodies conjugated with horseradish peroxidase (HRP). HRP substrates
were added on the membrane and chemiluminescence was detected by LAS3000-mini (Fujifilm, Tokyo,
Japan). The densitometry was measured using Image J software (NIH, Rockville, MD, USA).

4.4. Nuclear Fractionation

Cells were harvested with PBS and centrifuged at 3000× g for 5 min. Cell pellets were incubated in
Buffer A—10 mM HEPES pH 7.9, 10 mM KCl, 0.1 mM EDTA, 1 mM DTT, 0.5 mM PMSF—for 10–12 min
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on ice. NP-40 with a 10% concentration was added to the mixture and vortexed and centrifuged at
16,000× g for 3 min. Resulting supernatants were used as cytosolic fractions. Remaining pellets were
washed with Buffer A three times and with PBS once. The washed pellets were resuspended in Buffer
B—20 mM HEPES pH 7.9, 0.4 M NaCl, 1 mM EDTA, 1 mM DTT, 1 mM PMSF—then vortexed in 4 ◦C
for 10 min. The suspensions were centrifuged at 20,000× g for 15 min, and the supernatants were used
as nuclear fractions.

4.5. MTT Proliferation Assay

VSMCs were seeded 20,000 cells per well on 96-well culture plate and cultured for 24 h, and the
cells were serum-starved overnight. Cells were then treated as indicated for each experiment and
incubated for 48 h. MTT solution was added to each well for a final concentration of 0.5 mg/mL and
incubated for 2 h. Culture media was removed and the remaining formazan crystal was dissolved in
dimethylsulfoxide (DMSO), and the absorbance was detected at 590 nm using a microtiter plate reader
(Berthold Technology, Bad Wildbad, Germany).

4.6. Boyden Chamber Migration Assay

Transwell inserts were coated with type I collagen and left to dry. After they were completely
dried, these inserts were transferred to a 24-well plate and VSMC suspensions in serum-free media
with indicated reagents were seeded 1000 cells per well in the upper chamber of the inserts. PDGF
was, when indicated, added to the lower chambers as a chemoattractant. Twenty-four hours later,
the inserts were fixed in methanol and cells in the lower side of the inserts were stained with H&E.
Cells were observed at 200× by phase contrast microscope and analyzed by number of cells on each
field (n = 8).

4.7. ELISA

VSMCs were treated as indicated in the figure legends and incubated for 24 h, and supernatants
were collected for PGE2 ELISA. PGE2 levels were measured according to the manufacturer’s
instructions (Enzo, cat. No. ADI-900-001).

4.8. Sulforhodamine B Assay

VSMCs were seeded 20,000 cells per well on 96-well culture plate and cultured for 24 h, and
the cells were serum-starved overnight. Cells were then treated as indicated for each experiment
and incubated for 48 h. Sulforhodamine B staining was measured according to the manufacturer’s
instructions (Sigma, cat. No. TOX6).

4.9. Statistical Analysis

SigmaPlot 12.0 software was used for data analysis. Statistical significance was determined via
one-way ANOVA and p < 0.05 was considered significant. Data are shown in mean ± SEM.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/12/2683/s1.
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Abbreviations

EET epoxyeicosatrienoic acids
sEH soluble epoxide hydrolase
VSMC vascular smooth muscle cell
AUDA 12-(((tricyclo(3.3.1.13,7)dec-1-ylamino)carbonyl)amino)-dodecanoic acid
CDU 1-cyclohexyl-3-dodecyl urea
PDGF platelet-derived growth factor
HO-1 heme oxygenase-1
COX-2 cyclooxygenase-2
Nrf2 nuclear factor erythroid 2-related factor-2
Keap1 Kelch like ECH associated protein 1
HUVEC human umbilical vein endothelial cells
TXA2 thromboxane A2
TP TXA2 receptor
PGE2 prostaglandin E2
EP PGE2 receptor
PGI2 prostaglandin I2
IP PGI2 receptor
PGD2 prostaglandin D2
DP PGD2 receptor
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