
fmicb-11-00860 June 1, 2020 Time: 18:15 # 1

ORIGINAL RESEARCH
published: 03 June 2020

doi: 10.3389/fmicb.2020.00860

Edited by:
Santi M. Mandal,

Indian Institute of Technology
Kharagpur, India

Reviewed by:
Mohamed Elhadidy,

University of Science and Technology
at Zewail City, Egypt

Piyush Baindara,
University of Missouri, United States

*Correspondence:
M. Anwar Hossain

hossaina@du.ac.bd

†Present address:
M. Anwar Hossain,

Vice-Chancellor, Jashore University
of Science and Technology, Jashore,

Bangladesh

Specialty section:
This article was submitted to

Antimicrobials, Resistance
and Chemotherapy,

a section of the journal
Frontiers in Microbiology

Received: 15 December 2019
Accepted: 09 April 2020

Published: 03 June 2020

Citation:
Hoque MN, Istiaq A, Clement RA,

Gibson KM, Saha O, Islam OK,
Abir RA, Sultana M, Siddiki AZ,

Crandall KA and Hossain MA (2020)
Insights Into the Resistome of Bovine

Clinical Mastitis Microbiome, a Key
Factor in Disease Complication.

Front. Microbiol. 11:860.
doi: 10.3389/fmicb.2020.00860

Insights Into the Resistome of
Bovine Clinical Mastitis Microbiome,
a Key Factor in Disease
Complication
M. Nazmul Hoque1,2, Arif Istiaq1,3, Rebecca A. Clement4, Keylie M. Gibson4, Otun Saha1,
Ovinu Kibria Islam1,5, Ruhshan Ahmed Abir6, Munawar Sultana1,
AMAM Zonaed Siddiki7, Keith A. Crandall4,8 and M. Anwar Hossain1*†

1 Department of Microbiology, University of Dhaka, Dhaka, Bangladesh, 2 Department of Gynecology, Obstetrics
and Reproductive Health, Faculty of Veterinary Medicine and Animal Science, Bangabandhu Sheikh Mujibur Rahman
Agricultural University, Gazipur, Bangladesh, 3 Department of Developmental Neurobiology, Graduate School of Medical
Sciences, Kumamoto University, Kumamoto, Japan, 4 Computational Biology Institute, Milken Institute School of Public
Health, The George Washington University, Washington, DC, United States, 5 Department of Microbiology, Jashore
University of Science and Technology, Jashore, Bangladesh, 6 Bio-Bio-1, Bioinformatics Research Foundation, Dhaka,
Bangladesh, 7 Department of Pathology and Parasitology, Chittagong Veterinary and Animal Sciences University, Chittagong,
Bangladesh, 8 Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George
Washington University, Washington, DC, United States

Bovine clinical mastitis (CM) is one of the most prevalent diseases caused by a wide
range of resident microbes. The emergence of antimicrobial resistance in CM bacteria
is well-known, however, the genomic resistance composition (the resistome) at the
microbiome-level is not well characterized. In this study, we applied whole metagenome
sequencing (WMS) to characterize the resistome of the CM microbiome, focusing on
antibiotics and metals resistance, biofilm formation (BF), and quorum sensing (QS) along
with in vitro resistance assays of six selected pathogens isolated from the same CM
samples. The WMS generated an average of 21.13 million reads (post-processing)
from 25 CM samples that mapped to 519 bacterial strains, of which 30.06% were
previously unreported. We found a significant (P = 0.001) association between the
resistomes and microbiome composition with no association with cattle breed, despite
significant differences in microbiome diversity among breeds. The in vitro investigation
determined that 76.2% of six selected pathogens considered “biofilm formers” actually
formed biofilms and were also highly resistant to tetracycline, doxycycline, nalidixic acid,
ampicillin, and chloramphenicol and remained sensitive to metals (Cr, Co, Ni, Cu, Zn)
at varying concentrations. We also found bacterial flagellar movement and chemotaxis,
regulation and cell signaling, and oxidative stress to be significantly associated with
the pathophysiology of CM. Thus, identifying CM microbiomes, and analyzing their
resistomes and genomic potentials will help improve the optimization of therapeutic
schemes involving antibiotics and/or metals usage in the prevention and control of
bovine CM.
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INTRODUCTION

Mastitis is the foremost production and major economic
burden confronted by the global dairy industry (Reyes-Jara
et al., 2016; Hoque et al., 2019). Bovine clinical mastitis
(CM) milk is now considered to host a complex microbial
community with great diversity (Oikonomou et al., 2014;
Falentin et al., 2016; Hoque et al., 2019). The most frequently
isolated pathogens are Staphylococcus aureus, Escherichia coli,
Klebsiella spp., Streptococcus spp., Mycoplasma spp., Enterobacter
spp., Bacillus spp., and Corynebacterium species (Abebe et al.,
2016; Gao et al., 2017; Hoque et al., 2018). Therefore, the
accurate identification of pathogens that cause CM enables
appropriate choices for antimicrobial treatment and preventive
mastitis management (Preethirani et al., 2015; Van Boeckel
et al., 2015; Cheng et al., 2019). Over the past two decades,
a wide range of phenotyping and genotyping methods have
been implemented to study mastitis-causing bacteria (Preethirani
et al., 2015; Gao et al., 2017; Hoque et al., 2018; Cheng et al.,
2019). Although culture-based techniques are traditionally used
to detect CM bacteria, these methods are time-consuming
and have the inherent drawback of not being applicable to
non-cultivable bacteria (Baron et al., 2018). Until recently, 16S
rRNA partial gene sequencing remained the most commonly
used genomic survey tool to study bovine mastitis microbiomes
(Oikonomou et al., 2014; Falentin et al., 2016; Cremonesi
et al., 2018). However, this technique has limitations because
of polymerase chain reaction (PCR) bias, lower taxonomic
resolution at the species level, and limiting information on
gene abundance and functional profiling (Oniciuc et al., 2018).
Shotgun whole metagenome sequencing (WMS), on the other
hand, better characterizes the breadth of microbial diversity in
a sample and successfully provides insight into the phylogenetic
composition, species and/or strain, and functional diversity
for a variety of biomes (Seth et al., 2014; Oniciuc et al.,
2018). This WMS typically produces high complexity datasets
with millions of short reads allowing extensive characterization
of the microbiome in an ecological niche, profiling its
functional attributes, and gradually becoming a cost-effective
metagenomic approach (Seth et al., 2014; Oniciuc et al., 2018;
Hoque et al., 2019).

Currently, antimicrobial treatment is indispensable to keeping
bovine udder health, animal welfare, and economic aspects in
balance (Preethirani et al., 2015; Krömker and Leimbach, 2017;
Cheng et al., 2019). Therefore, dependence on antimicrobials
has become a widespread phenomenon on dairy farms
for mastitis management, prevention, and control programs.
However, efficacy of antimicrobial therapy against bovine
CM pathogens is low (Cheng et al., 2019), and the use
of antibiotics is confined to selected severe CM cases only
(Reyes-Jara et al., 2016; Cheng et al., 2019). The prevalence
of antimicrobial resistance (AMR) in bovine CM pathogens
has been investigated in numerous studies (Preethirani et al.,
2015; Krömker and Leimbach, 2017; Cheng et al., 2019).
The secretion of antimicrobial compounds by microbes is
an ancient and effective method to improve the survival
of microbes competing for space and nutrients with other

microorganisms (D’Costa et al., 2011). The vast diversity of
bacterial species in CM milk, many with short generation
times and rampant horizontal gene transfer, permit the rapid
accumulation of countless resistant variants at a relatively high
evolutionary pace (D’Costa et al., 2011; Weller and Wu, 2015).
However, resistance in CM bacteria typically goes unnoticed
until a given species becomes of clinical interest, and the
associated resistome is also suspected to be a source of newly
emerging resistance genes in CM pathogens (Krömker and
Leimbach, 2017; Cheng et al., 2019; Hoque et al., 2019; Zaheer
et al., 2019). Bacteria residing in the bovine gastrointestinal
tract and udder may become resistant to these antibiotics
and, once released into the milk, they may take part in
horizontal transfer of antibiotic resistance genes (ARGs) to
other CM bacteria of contagious and environmental origin
(Cheng et al., 2019; Zaheer et al., 2019). Furthermore, AMR
is a global health concern in both human and veterinary
medicine (Van Boeckel et al., 2015), and thus, monitoring the
emergence of AMR strains is an essential component of bovine
CM prevention and control strategies (Tomazi et al., 2018;
Cheng et al., 2019). Therefore, finding an effective alternative
strategy for the control of bovine mastitis is a challenge for
dairy producers.

The antimicrobial properties of metals have been documented
throughout the history of medicine and healthcare (Vaidya
et al., 2017). Metal salts such as chromium (Cr), cobalt
(Co), nickel (Ni), copper (Cu), and zinc (Zn) are effective
in controlling bacterial transmission and infection risks
(Vaidya et al., 2017). However, their uses are limited due
to their toxicity and possible detrimental environmental
effects in dairy industries particularly as therapeutic agents
against bovine CM pathogens. Biofilm formation (BF) is an
important virulence factor for mastitis causing bacteria and
contributes to resistance to different classes of antimicrobials
(Singh et al., 2017). Bacterial pathogens identified in this
study showed a broad spectrum of antimicrobial (antibiotics,
toxic metals) resistance, and possessed biofilm forming and
quorum sensing (QS) abilities, which might be potential factors
in hindering CM cures; thereby leading to the persistence
of the disease, and the increased risk of transmission to
non-infected dairy cows. However, genetic information
about resistance or in vitro assays of resistance is not
enough to understand the resistome when considered in
isolation rather than in combination (Van Boeckel et al.,
2015; Baron et al., 2018). Here we describe the resistance
potentials in the CM microbiome of four major cattle breeds
(Local Zebu, LZ; Red Chattogram Cattle, RCC; Sahiwal,
SW; Crossbred Holstein Friesian; XHF) of Bangladesh using
both metagenomic deep sequencing (WMS) and in vitro
cultural approaches. We aim to investigate the influences
of metabolic genomic potentials of the microbiomes in
predicting and understanding the role of resistant potentials
in the pathophysiology of bovine CM. We also test if cattle
breeds or host genetics influence the milk microbiota
composition and susceptibility to disease and resistance to
bacterial infection (Cremonesi et al., 2018; Curone et al., 2018;
Gonzalez-Recio et al., 2018).
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MATERIALS AND METHODS

Ethics Statement
The protocol for milk sample collection from
lactating dairy cows was approved by the Animal
Experimentation Ethical Review Committee
(AEERC), Faculty of Biological Sciences, University
of Dhaka under reference number 79/Bio. Scs.,
dated: 12-12-2019.

Screening for Clinical Mastitis
and Sampling
We screened 260 udder quarter milk samples collected from
260 CM affected cows belonging to 50 smallholding dairy
farms in two geographical regions of Bangladesh (central region,
CR = 160; southeastern region, SER = 100) (Supplementary
Figure S1). The cows represented four different breeds, including
local zebu (LZ), red Chattogram cattle (RCC), Sahiwal (SW),
and crossbred Holstein Friesian (XHF) at their early stage of
lactation (within 10–40 days post-calving). A screening test
for CM was conducted using the California Mastitis Test
(CMT R©, Original Schalm reagent, ThechniVet, United States)
(Hoque et al., 2015). Approximately 15–20 mL of milk from
each cow was collected under aseptic conditions in a sterile
falcon tube during morning milking (8.00–10.00 am) and
kept on ice (at 4◦C) for transport to the laboratory for
subsequent processing.

Metagenomic DNA Extraction and
Sequencing
Genomic DNA (gDNA) from 25 randomly selected CM
samples was extracted by an automated Maxwell 16
DNA extraction platform using blood DNA purification
kits (Promega, United Kingdom) following previously
described protocols (Hoque et al., 2019). DNA quantity
and purity were determined with NanoDrop (ThermoFisher,
United States) by measuring 260/280 absorbance ratios.
Sequencing libraries were prepared with the Nextera XT
DNA Library Preparation Kit (Head et al., 2014) and
paired-end (2 × 150 bp) sequencing was performed on a
NextSeq 500 machine (Illumina Inc., United States) at the
George Washington University Genomics Core facility. Our
metagenomic DNA yielded a total of 596.74 million reads
with an average of 23.87 million (maximum = 39.75 million,
minimum = 8.89 million) reads per sample (Supplementary
Material) before cleaning.

Sequence Reads Preprocessing
The resulting FASTQ files were concatenated and filtered
through BBDuk (Hoque et al., 2019) (with options k = 21,
mink = 6, ktrim = r, ftm = 5, qtrim = rl, trimq = 20,
minlen = 30, overwrite = true) to remove Illumina adapters,
known Illumina artifacts, and phiX before bioinformatics
analyses. Any sequence below these thresholds or reads
containing more than one “N” were discarded. On average,
21.13 million reads per sample (maximum = 36.89 million,

minimum = 4.71 million) passed the quality control step
(Supplementary Material).

Microbiome Diversity and Community
Analysis
The shotgun WMS data were analyzed using both mapping-based
and assembly-based hybrid methods of PathoScope 2.0 (PS)
(Hong et al., 2014) and MG-RAST (MR) (Glass et al., 2010),
respectively. In PS analysis, a “target” genome library was
constructed containing all bacterial sequences from the NCBI
Database using the PathoLib module (Hong et al., 2014). The
reads were then aligned against the target libraries using the
very-sensitive Bowtie 2 algorithm (Langmead and Salzberg,
2012) and filtered to remove the reads aligned with the cattle
genome (bosTau8) and human genome (hg38) as implemented
in PathoMap (-very-sensitive-local -k 100–score-min L,20,1.0).
Finally, the PathoID (Francis et al., 2013) module was applied
to obtain accurate read counts for downstream analysis. In these
samples, 17.20 million reads (4.3% of total reads) mapped to the
target reference genome libraries after filtering for the cow and
human genome (Supplementary Material). The raw sequences
were simultaneously uploaded to the MR server (release 4.0),
with proper embedded metadata, and were subjected to the
quality filter containing dereplication and removal of host
DNA by screening for taxonomic and functional assignment.
Alpha diversity (diversity within samples) was estimated using
the observed species, Chao1, ACE, Shannon, Simpson and
Fisher diversity indices (Koh, 2018) for both PS and MR read
assignments and counts. To visualize differences in bacterial
diversity, a principal coordinate analysis (PCoA) was performed
based on weighted-UniFrac distances (for PS data) through the
Phyloseq R package, version 3.5.1 (McMurdie and Susan, 2013)
and Bray-Curtis dissimilarity matrix (Beck et al., 2013) (for MR
data). We also used OmicCircos, version 3.9 (Hu et al., 2014a), an
R package based on python scripts, for circular visualization of
both microbiome diversity and resistance to antibiotics and toxic
compounds (RATC) functional groups found in MR data for our
four targeted breeds of CM cows.

In vitro Identification of Bacteria
Collected CM milk samples (n = 260) were subjected to
selective isolation and identification of S. aureus, E. coli,
Klebsiella, Enterobacter, Shigella, and Bacillus species according to
previously described microbiological methods (Reyes-Jara et al.,
2016; Gao et al., 2017; Hoque et al., 2018; Cheng et al., 2019).
The pathogens were identified based on their colony morphology,
hemolytic patterns on blood agar and Gram-staining (Cheng
et al., 2019). Gram-positive bacteria were further confirmed
based on their biochemical characteristics in indole, methyl
red, Voges-Proskauer (VP), catalase, oxidase, urease and triple
sugar iron (TSI) tests, and growth on mannitol salt agar.
Gram-negative bacteria were confirmed based on the results of
indole, methyl red, citrate (IMViC) tests and lactose fermentation
on MacConkey agar (Preethirani et al., 2015; Gomes et al.,
2016). Finally, all isolates were stored at −80◦C for further
genomic identification.
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PCR Amplification and Ribosomal
(16S rRNA) Gene Sequencing
Genomic DNA of probable S. aureus, E. coli, Klebsiella,
Enterobacter, Shigella, and Bacillus species was extracted
from overnight cultures using the boiled method Queipo-
Ortuño et al., 2008). The quantity and purity of the
extracted DNA was determined as mentioned before. The
16S rRNA gene was amplified using universal primers 27F
(5′-AGAGTTTGATCCTGGCTCAG-3′) and U1492R (5′-
CTACGGCTACCTTGTTACGA-3′) (Masomian et al., 2016).
Agarose gel electrophoresis (1.2% wt/vol) was used to verify the
presence of PCR products. DNA sequencing was carried out
at First Base Laboratories Sdn Bhd (Malaysia) using Applied
Biosystems highest capacity-based genetic analyzer (ABI PRISM R©

377 DNA Sequencer) platforms with the BigDye R© Terminator
v3.1 cycle sequencing kit chemistry.

Phylogenetic Analysis of the Microbial
Communities
Taxonomic abundance of the WMS data was determined by
applying the “Best Hit Classification” option in the PS pipeline
using the NCBI database as a reference, with the following
settings: maximum e-value of 1 × 10−30, minimum identity of
95% for bacteria, and a minimum alignment length of 20 as
the set parameters (Masomian et al., 2016). A midpoint rooted
phylogenetic tree consisting of the top 200 abundant bacterial
strains, identified through PS analysis from the WMS reads of the
25 CM samples with >90% taxonomic identity, was constructed
using the maximum-likelihood method in Clustal W, version 2.1
(Larkin et al., 2007) and visualized using the interactive Tree Of
Life (iTOL) (Letunic and Bork, 2011). Another phylogenetic tree,
which was constructed using the same approach, focused on 40
strains corresponding to the six in vitro examined CM bacteria
found in 260 CM samples with >90% taxonomic identity. Using
Molecular Evolutionary Genetics Analysis (MEGA) version 7.0
for the larger datasets (Kumar et al., 2016), the 16S rRNA
gene sequences, amplified from all individual bacterial isolates,
were aligned with each other and with relevant reference
sequences obtained from the NCBI Database using MEGA
7.0, and a maximum-likelihood tree was generated using these
16S rRNA gene sequences with the Tamura-Nei evolutionary
model (Kumar et al., 2016). Nodal confidence in the resulting
phylogenetic relationships was assessed using the bootstrap test
(1000 replicates) (Pattengale et al., 2010).

Antimicrobial Susceptibility Testing
The in vitro antibiogram profile of 221 CM isolates was
determined using the disk diffusion method (Supplementary
Figure S2) following the Clinical Laboratory Standards
Institute (CLSI, 2017) guidelines. Antibiotics were selected for
susceptibility testing corresponding to a panel of antimicrobial
agents (OxoidTM, Thermo Scientific, United Kingdom)
of interest to the dairy industry and public health in
Bangladesh. The selected groups of antibiotics were commonly
used in treating CM by the dairy farmers and included
penicillins (ampicillin, 10 µg/mL), tetracyclines (doxycycline,

30 µg/mL; tetracycline, 30 µg/mL), nitrofurans (nitrofurantoin,
300 µg/mL), quinolones (ciprofloxacin, 10 µg/mL; nalidixic
acid, 30 µg/mL), cephalosporins (cefoxitin, 30 µg/mL), penems
(imipenem, 10 µg/mL), phenols (chloramphenicol, 30 µg/mL),
aminoglycosides (gentamycin, 10 µg/mL; vancomycin,
30 µg/mL), and macrolides (erythromycin, 15 µg/mL).
Resistance was defined according to the clinical and laboratory
standards institute (CLSI, 2017) with slight modifications
(Preethirani et al., 2015; Cheng et al., 2019).

Metal Susceptibility Testing
The antibacterial effect of heavy metals was evaluated in vitro
for the isolated pathogens using the agar well diffusion method
(Supplementary Figure S3) (Reyes-Jara et al., 2016; Vaidya
et al., 2017). Five heavy metals such as copper (Cu), zinc (Zn),
chromium (Cr), nickel (Ni), and cobalt (Co) were used as salts:
CuSO4·5H2O, ZnSO4·7H2O, K2Cr2O7, NiCl2, and CoCl2·6H2O,
respectively, to study the level of zone of inhibition (ZOI). Briefly,
pure culture of the isolated pathogens from NA plates were sub-
cultured into Mueller-Hinton agar (OxoidTM, United Kingdom)
plates, and respective agar was poured into sterile Petri dishes,
which were then cooled. A total of 100 µl of cell suspension
was pipetted and spread across the entire area of the agar
using a sterile cotton swab. Two to five equal wells (7 mm
diameter) were cut out of each agar plate using a sterile cork
borer and stainless-steel needle. Varying concentrations of the
metal solutions were prepared (2, 4, 8, 16, 32, 48, and 64 µg/mL)
and 100 µl of the prepared metal ion solution was added to
each of the wells. The plates were incubated at 37◦C for 24 h to
allow diffusion of the metal into the agar, and the antibacterial
activity was determined by measuring the diameter of ZOI in mm
(Cremonesi et al., 2018). After investigating the resistance profile
of the isolates at different concentrations, the minimal inhibitory
concentration (MIC) of the metals was determined using the tube
dilution method, by gradually increasing or decreasing the heavy
metal concentrations (Reyes-Jara et al., 2016). Finally, growth
of bacterial colonies was observed and the concentration that
showed no growth was considered as the minimum bactericidal
concentration (MBC) (Reyes-Jara et al., 2016).

Biofilm Assay and Microscopy
Microtiter plate assays were performed to screen for the BF
ability of 80 randomly selected isolates using standard protocols
(Schönborn et al., 2017; Singh et al., 2017; Vaidya et al., 2017).
We quantified the absorbance of solubilized crystal violet (CV),
in a plate reader at 600 nm using 30% acetic acid in water as the
blank and TSB as the negative control. The solution was removed,
and the absorbance measured at optical density-590 (OD590)
(n = 3). To determine the BF ability of strains, cut-off optical
density (ODc) was defined as three standard deviations above
the mean OD of the negative control. Strains were classified as:
non-biofilm formers, NBF (OD ≤ ODc); weak biofilm formers,
WBF (ODc < OD ≤ 2 × ODc); moderate biofilm formers, MBF
(2 × ODc < OD ≤ 4 × ODc), and strong biofilm formers, SBF
(OD > 4 × ODc) (Tiwari et al., 2017; Vaidya et al., 2017). In
this study, the ODc value was set as 0.045 and the mean OD
of the negative control was 0.039 ± 0.002 (Vaidya et al., 2017).

Frontiers in Microbiology | www.frontiersin.org 4 June 2020 | Volume 11 | Article 860

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-00860 June 1, 2020 Time: 18:15 # 5

Hoque et al. Resistome of Bovine Clinical Mastitis Microbiome

The biofilm surfaces were then visualized using 5% TSB as
nutrient rich media and FilmTracerTM LIVE/DEAD R© Biofilm
Viability Kit as staining materials to observe the proportion of live
or active cells (fluorescent green) under Olympus BX51 upright
microscope (40× objective), and finally, images were collected
using an Olympus DP73 camera through cellSens entry software
(Olympus Corporation, Japan) and visualized using image J
software (Schönborn et al., 2017). As a negative control, we used
E. coli DH5 alpha for all the in vitro resistome (antimicrobial and
metal susceptibility tests and biofilm assays) analysis tests.

Microbial Functional Analysis
Metagenomic functional composition was based on the gene
families from different levels of the SEED module and the
Kyoto Encyclopedia of Genes and Genomes (KEGG) database
(Kanehisa et al., 2019), using the MR pipeline (Glass et al.,
2010). We observed significant differences (Kruskal–Wallis test,
P = 0.001) in the relative abundance of genes coding for RATC
and microbial functional genomic potentials in four cattle breeds.

Statistical Analyses
The characteristics of the cow breeds with CM were compared
using a non–parametric Kruskal–Wallis test for quantitative
variables (Cremonesi et al., 2018). The Shapiro-Wilk test was
used to check normality of the data, and the non–parametric
Kruskal–Wallis rank sum test was used to evaluate differences
in the relative abundance of bacterial taxa at the strain level
according to breed groups (Cremonesi et al., 2018; Curone et al.,
2018; Gonzalez-Recio et al., 2018). The statistical analyses for the
MR data were initially performed by embedded calls to statistical
tests in the pipeline and validated further using IBM SPSS (SPSS,
Version 23.0, IBM Corp., NY, United States) using the above-
mentioned tests. For the functional abundance profiling, the
statistical (Kruskal–Wallis test and Pearson correlation) tests
were applied at different KEGG and SEED subsystem levels in
MR pipeline generated data (Glass et al., 2010). To evaluate
the significant relationships between identified bacterial species
and the study region, we used the two-sample proportions test
using SPSS. Results were considered statistically significant when
P < 0.05 and highly significant when P < 0.01. Mean values were
used to compare the antimicrobial efficacy results of the tested
antibiotics and heavy metals at varying concentrations. Standard
error means were calculated to analyze the distribution of the
data from the mean value, and confidence intervals of 95% were
calculated for the MIC and MBC tests results to plot error bars
(Schönborn et al., 2017; Vaidya et al., 2017). We also performed
Pearson correlation tests to assess the relationships between the
taxonomic abundance of the pathogens and AMR, both for
cultural and metagenomic data. A post hoc Bonferroni test was
used to compare the biofilm OD600 mean values (Schönborn
et al., 2017; Vaidya et al., 2017).

RESULTS

To decipher the resistance potentials in bovine CM microbiomes,
we used both in silico (WMS, 16S rRNA gene sequencing)

and in vitro (culture base) approaches. The present WMS
investigation leads to the direct and comprehensive evaluation
of resistance to antibiotics and toxic compounds (RATC),
BF and QS genes in 25 CM milk samples. Furthermore,
in vitro AMR profiling of six CM causing bacteria (S. aureus,
E. coli, Klebsiella, Enterobacter, Bacillus, and Shigella) isolated
from 260 CM milk samples was carried out using 12
commonly used antibiotics (ampicillin, doxycycline, tetracycline,
nitrofurantoin, ciprofloxacin, nalidixic acid, cefoxitin, imipenem,
chloramphenicol, gentamycin, erythromycin, and vancomycin),
and five toxic metals (copper, zinc, chromium, nickel, and cobalt).
Moreover, we also demonstrated some functional metabolic
potentials of CM microbiomes found to be associated with
mammary gland pathogenesis.

Sequence Analysis
The WMS of 25 CM milk samples generated approximately
600 million reads, ranging from 8.86 to 39.75 million per
sample. An average of 21.13 million reads per sample
(maximum = 36.89 million, minimum = 4.71 million) passed
the quality control step (Supplementary Material). We analyzed
the sequencing reads simultaneously using two bioinformatics
pipelines, PathoScope 2.0 (PS) and MG-RAST (MR).

Microbiome Diversity and Composition
in CM
We investigated the strain-level microbial community and
relative abundances in 25 CM milk samples [previously
published 14 samples (Hoque et al., 2019) and 11 new
samples] through WMS. The reads generated from WMS
were mapped to 391 genera and 519 strains of bacteria
through MR and PS analyses, respectively (Supplementary
Material). The rarefaction curves based on observed species
richness reached a plateau after, on average, 23.87 million
reads (Figure 1A and Supplementary Material), suggesting
that the depth of coverage for most samples was sufficient to
capture the entire microbial diversity within each sample. We
did not, however, find any significant differences in the alpha
(observed species, Chao1, ACE, Shannon, Simpson and Fisher
diversity estimates) and beta (based on Bray-Curtis dissimilarity
matrix) diversities among the microbial communities across
the 25 CM samples (Figures 1B,C, respectively). However,
significant diversity (alpha and beta) differences were observed
among the CM microbiome communities across the four cattle
breeds (LZ, RCC, SW, XHF) regardless of the method (i.e.,
either PS or MR) used to tabulate microbial abundances (PS;
P = 0.005, MR; P = 0.001, Kruskal–Wallis test). In addition,
this breed’s specific diversity difference remained evident in the
microbial ecosystem of XHF cows associated CM milk samples
(Figures 1D,E, respectively). The PCoA analysis also showed
significant microbial disparity (P = 0.001) among the microbiome
of four dairy breeds (Figure 1E).

The predominant bacterial phyla we found associated
with CM were Proteobacteria, Bacteroidetes, Firmicutes,
Actinobacteria, and Fusobacteria (contributing to >95.0% of
the total sequences, Kruskal–Wallis test, P = 0.001) in the
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FIGURE 1 | Bovine clinical mastitis (CM) milk microbiome diversity. (A) Rarefaction curves showing the influence of sequencing depth (number of reads per sample,
x-axis) on species richness (y-axis) in CM milk samples. The rarefaction curves representing the number of species per sample indicated that the sequencing depth
was sufficient enough to fully capture the microbial diversity as existed. (B) Alpha diversity measured using the observed species, Chao 1, ACE and Shannon
diversity indices through PathoScope (PS) analysis. The observed species richness (PObserved = 0.511), Chao1 (PChao1 = 0.081), ACE (PACE = 0.121), Shannon
(PShannon = 0.401), Simpson (PSimpson = 0.011) and Fisher (PFisher = 0.014) diversity analyses revealed that microbiome diversity did not vary among the CM
samples. (C) Beta diversity (Principal coordinate analysis; PCoA) measured on the Bray-Curtis distance method using MG-RAST tool for CM causing microbial
communities (genus-level) shows that most of the CM samples clustered together (black circle), indicating no significant diversity differences. (D) Alpha diversity
measured using species richness (PObserved = 0.011), Chao1 (PChao1 = 0.001), ACE (PACE = 0.021), Shannon (PShannon = 0.001), Simpson (PSimpson = 0.009) and
Fisher (PFisher = 0.023) diversity matrices on PS data showed significant differences (Kruskal–Wallis test, P = 0.002) in microbial diversity across the four cow breeds
(Local Zebu cows, LZ; Red Chattogram cows, RCC; Sahiwal, SW; Holstein Friesian cross, XHF). (E) PCoA plot based on weighted-UniFrac distance method at
strain-level microbiome signature of four breeds of cows reveals that the CM samples appear more distantly (red circles) indicating significant group differences
(P = 0.001). These differences in the microbiome signature associated with CM across the four breeds could be explained by a large percentage of variation in the
first (62.6%) and second (19.7%) axes.

MR analysis. The strain-level signature of the microbiome
demonstrated that most of the species identified in each CM
sample were represented by multiple strains (Supplementary
Material), and of the detected bacterial strains, we identified the
top 200 strains according to their relative abundance (Figure 2).
The CM associated microbiome was dominated by 29 different
strains of Pseudomonas, while Acinetobacter, Streptococcus,
Lactobacillus, Corynebacterium, Staphylococcus, and Enterococcus
were represented by 27, 27, 18, 17, 15, and 10 different strains,
respectively (Figure 2 and Supplementary Material). Thus,
among the identified bacterial strains, A. johnsonii XBB1 had the
highest relative abundance (38.9%) followed by Micromonospora
sp. HK10 (17.6%). Other bacterial strains with high relative
abundance were Campylobacter mucosalis (8.7%), P. putida
KT2440 (7.7%), Anaerobutyricum hallii DSM 3353 (6.3%), P.
fragi (3.2%), Catenibacterium mitsuokai DSM 15897 (3.0%),
E. coli O104:H4 str. 2011C-3493 (2.0%), A. veronii (1.2%),
Pantoea dispersa EGD-AAK13 (1.1%), P. fluorescens Pf0-1
(0.8%), K. oxytoca (0.7%), and P. entomophila L48 (0.5%). The
remaining strains had a relatively lower abundance (<0.5%)

(Supplementary Material). According to the cattle breeds, the
XHF cows had the highest number of microbial strains (n = 403)
followed by LZ cows (n = 230), and SW cows (n = 134) and RCC
(n = 125) (Figures 3A–C, and Supplementary Material). The
breed specific association revealed that 45.7, 22.6, and 19.1% of
the detected bacterial strains in CM milk samples of LZ, SW, and
RCC cows, respectively, were also found in the CM microbiome
of XHF cows (Figure 3D and Supplementary Material).

Simultaneously, through in vitro cultural analysis, a total of
452 isolates that belonged to six bacterial (S. aureus, E. coli,
Klebsiella, Enterobacter, Bacillus, and Shigella) species were
identified in 260 CM samples (including 25 WMS CM samples)
collected from central (CR = 160) and southeastern (SER = 100)
regions of Bangladesh (Supplementary Figure S1). The overall
prevalence of S. aureus, E. coli, Klebsiella, Enterobacter,
Bacillus, and Shigella species were 23.5, 18.5, 19.2, 12.3,
9.2, and 17.3% in CM samples, respectively (Supplementary
Table S1). We found significant differences in the prevalence
of these species (P = 0.01) when analyzing the distribution
of these pathogens according to the origin of the samples
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FIGURE 2 | The strain-level taxonomic profile of microbiota associated with bovine clinical mastitis (CM). Taxonomic dendrogram showing the top bacterial
microbiome of bovine CM milk. Color ranges identify different strains within the tree. Taxonomic dendrogram in the midpoint rooted phylogenetic tree was generated
with the top 200 abundant unique strains of bacteria in CM milk metagenome based on the maximum likelihood method in Clustal W and displayed with iTOL
(interactive Tree Of Life). Each node represents a single strain shared among more than 50% of the samples at a relative abundance of >0.0006% of the total
bacterial community. Strains and/or species are color-coded by different order of bacteria present in >80% of samples. The strains in the phylogenetic tree are also
available in Supplementary Material.

(SER and CR) (Supplementary Figure S4). The culture-based
findings of the current study identified S. aureus as the chief
etiology of bovine CM in Bangladesh, while Shigella species
remained the least frequently detected CM pathogen—which
corroborates the results of WMS-based taxonomic identification
(Supplementary Figure S5).

Resistome Composition of CM
Associated Microbiome
For analyses of the resistome composition in CM microbiomes,
the SEED module of the MR pipeline provided a comprehensive
picture. Using SEED, 147,040 reads aligned to 30 resistance
to antibiotics and toxic compounds (RATC), and 10 BF and
quorum sensing (BF-QS) functional groups across the CM

samples, with different abundances (Supplementary Material).
The RATC genes were classified into two unique groups, 19
antibiotic resistance and 11 toxic metal resistance groups
(Figure 4 and Supplementary Material). This WMS analysis
showed a significant association (Pearson correlation, P = 0.001;
Non-parametric Spearman’s Correlation, P = 0.003) between
the number of reads aligned to bacterial genomes and the
number of reads mapped to RATC genes (Supplementary
Material). Among the RATC functional groups, multidrug
resistance to efflux pumps (MREP, 28.6%), CmeABC operon
(8.9%), resistance to fluoroquinolones (RFL, 6.2%), mdtABCD
cluster (5.5%), methicillin resistance in Staphylococci (MRS,
3.8%), BlaR1 regulatory family (BlaR1, 3.4%), MexE-MexF-
OprN (2.4%), and beta-lactamase resistance (BLAC, 2.2%)
were the dominating antibiotic resistance genes (ARGs) found
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FIGURE 3 | Strain-level bovine CM microbiome diversity in four different breeds (Local Zebu, LZ; Red Chattogram Cattle, RCC; Sahiwal, SW; Crossbred Holstein
Friesian, XHF) of cows through PathoScope analysis. (A) Venn diagrams representing the core unique and shared microbiomes of bovine clinical mastitis (CM) in XHF
and LZ breeds while (B) and (C) Venn diagrams showing the unique and shared bacterial strains in XHF and SW and XHF and RCC breeds, respectively. Microbiome
sharing between the conditions are indicated by yellow color. (D) The circular plot illustrates the relative abundance of the top 75 CM causing bacterial strains in CM
milk samples obtained from XHF, LZ, SW, and RCC dairy breeds. Taxa in the respective breed of cows are represented by different colored ribbons, and the inner
blue bars indicate their respective relative abundances. The XHF cows had the highest number of microbial strains followed by LZ, SW, and RCC. This breed specific
association revealed that 45.66, 22.58, and 19.11% of the detected bacterial strains in CM milk collected from LZ, SW, and RCC cows, respectively, were also seen
in the CM milk microbiome of XHF cows. The relative abundance bacterial strains in four breeds is also available in Supplementary Material.

in CM milk microbiomes (Figure 4A and Supplementary
Material). In addition to ARGs, the WMS analysis also detected
a number of metal and toxic metals resistant genes in CM
microbiomes. Among them, cobalt-zinc-cadmium resistance
(CZCR, 19.3%), copper homeostasis (CH, 9.6%), arsenic
resistance (AR, 2.9%), copper homeostasis: copper tolerance
(CHCT, 2.3%), and resistance to chromium compounds (RCHC,
1.4%) were the predominate resistant genes (Figure 4A and
Supplementary Material). Although the relative abundance
of these RATC genes varied among the microbiomes of
the four breeds (LZ, RCC, SW, and XHF), their resistome
composition did not vary significantly (P = 0.692) by
taxonomic diversity of respective breeds (Figure 4B and
Supplementary Material).

The resistance potentials of RATC functional groups also
varied significantly (P = 0.027) in six in vitro selected CM
pathogens isolated and identified from different sources of
CM samples (breed and study areas) under almost the same
farming management system (Figure 5A and Supplementary
Material). Among the RATC groups, the predominant ARGs
found were as follows; MRS (S. aureus, 37.0%), RFL (S. aureus,
14.8%; Shigella, 7.8%), MREP (E. coli, 28.5%; Klebsiella,
28.4%), BlaR1 (E. coli, 6.0%; Shigella, 8.5%), mdtABCD
cluster (E. coli, 17.5%; Klebsiella,18.9%; Enterobacter, 21.4%;

Shigella, 11.7%), multiple antibiotic resistance (MAR) Locus
(E. coli, 2.4%; Enterobacter, 2.6%), CmeABC operon (E. coli,
9.1%; Enterobacter, 11.0%; Shigella, 25.6%), and adaptation to
d-cysteine, ADCYS (Bacillus, 5.5%) (Figure 5B). Conversely,
genes encoding CH in S. aureus (11.1%), E. coli (4.8%),
Enterobacter (4.4%), and Shigella (6.0%), CHCT in Klebsiella
(11.2%) and Shigella (3.7%), mercuric reductase (MRD) in
S. aureus (11.1%), mercury resistance to operon (MROP) in
Enterobacter (2.4%), AR in S. aureus (3.7%), E. coli (4.4%),
Klebsiella (10.1%), Enterobacter (7.5%) and Shigella (7.8%), ZR
in E. coli (5.6%), cadmium resistance (CDR) in S. aureus
(3.7%), CZCR in S. aureus (3.7%), E. coli (10.4%), Klebsiella
(11.6%), Enterobacter (20.3%) and Shigella (21.0%), and RCHC in
Bacillus (85.0%), were the most abundant toxic metals resistant
RATC functional groups among the six selected pathogens
(Figure 5C). Assessment of the BF-QS ability of the CM
microbiomes revealed that autoinducer 2 (AI-2) transport and
processing (lsrACDBFGE operon, 33.7%), biofilm adhesion
biosynthesis (BAB, 24.2%), protein YjgK cluster linked to BF
(YjgK cluster, 15.5%), QS: autoinducer-2 synthesis (QSAU2,
9.4%) were the most abundant genes among CM associated
pathogens (Supplementary Material). However, by comparing
the association of these BF-QS genes among the six selected
bacterial pathogens, we found significant variation (P = 0.017) in
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FIGURE 4 | Projection of the resistance to antibiotic and toxic compounds (RATC) genes in bovine clinical mastitis (CM) pathogens. (A) Heatmap showing the
hierarchical clustering of 30 different RATC genes detected in CM associated microbiomes of 25 CM milk samples as measured at level-3 of SEED subsystems in
MG-RAST pipeline. The relative abundance of these genes significantly correlated (Pearson correlation, P = 0.002) with the relative abundance of the bacterial taxa
found in these samples. The color bar at the bottom represents the relative abundance of putative genes and expressed as a value between –1 (low abundance) and
1 (high abundance). The yellow color indicates the more abundant patterns, while blue cells for less abundant RATC gene in that particular sample. The genes
coding for MREP (multidrug resistance efflux pumps), CZCR (cobalt-zinc-cadmium resistance), BlaR (BlaR1 family regulatory sensor-transducer disambiguation);
BLAC (beta-lactamase resistance), AR (arsenic resistance), RFL (resistance to fluoroquinolones), CH (copper homeostasis), CmeABC Operon (multidrug efflux pump
in Campylobacter jejuni) had higher relative abundances than other RATC groups found in these CM samples. (B) The circular plot illustrates the diversity and relative
abundance of the RATC genes detected among the microbiomes of the four different breeds (Local Zebu, LZ; Red Chattogram Cattle, RCC; Sahiwal, SW;
Crossbred Holstein Friesian, XHF) of cows through SEED subsystems analysis. We found no significant correlation between the resistome and microbiome diversity
in different breeds (P = 0.692). The association of the RATC genes according to breeds is shown by different colored ribbons and the relative abundances these
genes are represented by inner blue colored bars. Part of the RATC functional groups are shared among microbes of the four breeds (XHF, LZ, SW, and RCC), and
some are effectively undetected in the microbiomes of the other breeds. Abbreviations: CH, copper homeostasis; CHCT, copper homeostasis: copper tolerance;
RCHC, resistance to chromium compounds; mdtABCD, the mdtABCD multidrug resistance cluster; OprN, mexe-mexf-oprn multidrug efflux system; MROP, mercury
resistance to operon; MRS, methicillin resistance in Staphylococci; ZR, zinc resistance; BH, bile hydrolysis; ER, erythromycin resistance; ADCYS, adaptation to
d-cysteine; SPVTL, Streptococcus pneumoniae vancomycin tolerance locus; STR, Streptothricin resistance; MAR Locus, multiple antibiotic resistance to locus;
RVAN, resistance to vancomycin; MRD, mercuric reductase; LI, lysozyme inhibitors; AADNYL, aminoglycoside adenylyltransferases; mdtRP, multidrug resistance
operon mdtRP of Bacillus; FR, Fosfomycin resistance; PSGCB, polymyxin synthetase gene cluster in Bacillus; OprM, mexA-mexB-oprm multidrug efflux system;
CDR, cadmium resistance. Additional information is also available in Supplementary Material.

their diversity, composition, and relative abundances (Figure 5D
and Supplementary Material).

The in vitro antibiogram profiling of 221 individual isolates
of the six bacteria, revealed that S. aureus isolates had the
highest resistance to doxycycline, ampicillin, tetracycline,
and erythromycin (73.0–88.0%) and moderate resistance to
chloramphenicol, ciprofloxacin, and nitrofurantoin (50.0–58.0%)
(Figure 6 and Table 1). The isolates of another Gram-positive
bacterium (Bacillus) demonstrated the highest resistance against
doxycycline, ampicillin, nalidixic acid, and erythromycin
(60.0–84.0%). However, E. coli isolates exhibited the highest
resistance against tetracycline, doxycycline, nalidixic acid,
and ampicillin (77.0–93.0%) and moderate resistance to
chloramphenicol, nitrofurantoin, gentamicin, and ciprofloxacin
(40.0–63.0%). The isolates of Klebsiella, Enterobacter, and
Shigella displayed the highest resistance to doxycycline, nalidixic
acid, tetracycline, and ampicillin (70.0–100.0%) and moderate
resistance to ciprofloxacin, gentamicin, nitrofurantoin, and

chloramphenicol (30.0–70.0%). In this study, imipenem and
cefoxitin remained as the most sensitive antibiotics against four
Gram-negative bacterial (E. coli, Klebsiella, Enterobacter, and
Shigella) species, while the two Gram-positive (S. aureus and
Bacillus) species were mostly sensitive to imipenem, cefoxitin,
and vancomycin (Figure 6 and Table 1). Taken together,
the antibiogram profile revealed that all of the selected CM
pathogens are becoming multidrug resistant (MDR, resistant
to ≥3 antibiotics) and the highest resistance was found against
tetracyclines (tetracycline and doxycycline), followed by
quinolones (nalidixic acid), and penicillin (ampicillin) groups of
antibiotics (Figure 6 and Table 1).

The use of toxic metals in soluble forms as an alternative
to prevent bovine CM appears to be a novel promising idea
supported by several earlier studies (Reyes-Jara et al., 2016;
Vaidya et al., 2017). Zones of inhibition (ZOI) assays using the
individual metal solution (Cu, Zn, Cr, Co, and Ni) demonstrated
an increase in antimicrobial activity which correlated with
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FIGURE 5 | Heatmap comparison of antibiotics, metals, biofilm formation and quorum sensing genes found in the metagenome sequences (WMS) of six CM
causing bacteria through SEED subsystems analysis in MG-RAST pipeline. (A) Diversity and relative abundance of the antimicrobial resistance (AMR), metal
resistance (MTR), and biofilm formation (BF) and quorum sensing (QS) genes varied significantly (Kruskal–Wallis test, P = 0.029) among the study bacteria.
(B) Relative abundance of AMR genes, (C) Relative abundance of MTR genes (D) Relative abundance of BF-QS genes. Values are colored in shades of green to
yellow to red, indicating low (absent), medium and high abundance, respectively. Abbreviations: MRS, methicillin resistance in Staphylococci; RFL, resistance to
fluoroquinolones; MREP, multidrug resistance to efflux pumps; BlaR, BlaR1 family regulatory sensor-transducer disambiguation; mdtABCD, the mdtABCD multidrug
resistance cluster; MAR Locus, multiple antibiotic resistance; CmeABC Operon, Multidrug efflux pump in Campylobacter jejuni; BLAC, beta-lactamase resistance;
AADNYL, aminoglycoside adenylyltransferases (Gentamycin resistance); FR, Fosfomycin resistance; mdtRP, multidrug resistance operon mdtRP of Bacillus; PSGCB,
polymyxin synthetase gene cluster in Bacillus; BFS, biofilm formation in Staphylococcus, lsrACDBFGE operon, autoinducer 2 (AI-2) transport and processing; QSY,
quorum sensing in Yersinia; BAB, biofilm adhesion biosynthesis; YjgK cluster, protein YjgK cluster linked to biofilm formation; QSAU2, quorum sensing: autoinducer-2
synthesis; QSRP, quorum sensing regulation in Pseudomonas; CH, copper homeostasis; CHCT, copper homeostasis: copper tolerance; MRD, mercuric reductase;
MROP, mercury resistance to operon; AR, arsenic resistance; ZR, zinc resistance; CDR, cadmium resistance; CZCR, cobalt-zinc-cadmium resistance; ADCYS,
adaptation to d-cysteine; RCHC, resistance to chromium compounds; LI, lysozyme inhibitors; BH, bile hydrolysis. More details about these genes can be found in
the text and Supplementary Material.

an increased metal ion solution concentration (P < 0.001)
(Figure 7). Thus, ZOI assays of metals demonstrated S. aureus
(ZOI: 25.4 mm) as the most sensitive CM pathogens followed by
Bacillus (ZOI: 23.4 mm), E. coli (ZOI: 20.6 mm), Enterobacter
(ZOI: 18.9 mm), Klebsiella (ZOI: 17.8 mm), and Shigella (ZOI:
15.4 mm) (Figure 7A). The minimal inhibitory concentration
(MIC) of the metal ions demonstrated a varying degree of
response against all the tested CM pathogens, and these bacteria
tolerated a wide range of metal concentration (3.4–38.1 µg/mL)
(Supplementary Material). We compared the highest MIC
values of each metal, and found that the highest MIC values
decrease in the following order: Zn (38.1 µg/mL, S. aureus),
Cu (33.2 µg/mL, S. aureus), Ni (28.2 µg/mL, E. coli), Cr
(17.2 µg/mL, Enterobacter species), and Co (15.3 µg/mL, Bacillus
spp.) (Figure 7B and Supplementary Material). For the MIC
of specific bacteria, the most effective metals were found to
be Cr against Shigella (3.4 µg/mL) and Klebsiella (5.8 µg/mL)
species, Ni against Shigella (3.5 µg/mL) species, Co against

Shigella (5 µg/mL) and Klebsiella (7.4 µg/mL) species, and Cu
and Zn against Shigella (7.5 µg/mL, both) species. In contrast, Zn
(38.1 µg/mL) and Cu (33.2 µg/mL) were the least toxic metals
against S. aureus (Figure 7B and Supplementary Material).
A similar pattern was demonstrated for the minimal bactericidal
concentration (MBC) with the greatest bactericidal activity for
Cr against S. aureus (11.3 µg/mL) followed by Co against E. coli
(14.3 µg/mL), Ni against S. aureus (23.1 µg/mL), Zn against
E. coli (24.2 µg/mL), and Cu against Shigella (25.1 µg/mL)
species. However, Cu produced equable antimicrobial efficacy as
Zn, Cr, Co and Ni against Enterobacter species (≤25.5 µg/mL)
(Supplementary Table S2).

To assess the BF ability of CM pathogens in in vitro conditions,
we randomly selected 80 isolates (S. aureus, 15; E. coli, 15;
Klebsiella, 15; Bacillus, 15; Enterobacter, 10 and Shigella, 10) for
a BF assay. In this study, 76.2% (61/80) the bacterial species
were biofilm-formers with significance differences (P = 0.028)
in their BF categories, which were designated as strong biofilm
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FIGURE 6 | Antibiotic resistance pattern of bovine clinical mastitis pathogens by disk diffusion method. The antimicrobial resistance (AMR) patterns of the six
bacteria obtained from 221 CM isolates (S. aureus, 56; E. coli, 54; Klebsiella spp., 42; Enterobacter spp., 26; Bacillus spp., 31; Shigella spp., 12) for twelve
commonly used antibiotics from nine different groups/classes. Abbreviations: AMP, Ampicillin; DOX, Doxycycline; TCN, Tetracycline; CIP, Ciprofloxacin; IMP,
Imipenem; CHL, Chloramphenicol; GEN, Gentamycin; NAL, Nalidixic acid; NIT, Nitrofurantoin; CFX, Cefoxitin; VAN, Vancomycin; ERY, Erythromycin. More details
about AMR profiles can be found in the text and in Table 1.

TABLE 1 | Antibiotic resistance pattern of bacteria [n (%) of isolates] associated with bovine clinical mastitis (CM).

Antibiotic Content per
disk

Breakpoint to
declare

resistance (≤)

S. aureus
(n = 56)

E. coli
(n = 54)

Klebsiella
spp. (n = 42)

Enterobacter
spp. (n = 26)

Bacillus spp.
(n = 31)

Shigella spp.
(n = 12)

AMP 10 µg 28 mm 48 (85.71) 42 (77.78) 36 (85.71) 24 (92.30) 25 (80.64) 10 (83.33)

DOX 30 µg 23 mm 49 (87.50) 46 (85.18) 39 (92.86) 22 (84.61) 26 (83.87) 10 (83.33)

TCN 30 µg 23 mm 46 (82.14) 50 (92.59) 38 (90.48) 24 (92.30) 11 (35.48) 12 (100)

CIP 10 µg 20 mm 28 (50.0) 22 (40.74) 18 (42.86) 8 (30.77) 13 (41.94) 4 (33.33)

IMP 10 µg 22 mm 10 (17.86) 12 (22.22) 11 (26.19) 5 (19.23) 2 (6.45) 3 (25.0)

CHL 30 µg 12 mm 32 (57.14) 34 (62.96) 23 (54.76) 18 (69.23) 6 (19.35) 6 (50.00)

GEN 10 µg 12 mm 22 (39.28) 23 (42.60) 21 (50.0) 4 (15.38) 23 (74.19) 5 (41.67)

NAL 30 µg 16 mm ND 46 (85.18) 36 (85.71) 20 (76.92) 23 (74.19) 12 (100)

NIT 10 µg 64 mm 28 (50.0) 32 (59.25) 30 (71.42) 12 (46.15) ND 4 (33.33)

CFX 30 µg 24 mm 14 (25.0) 14 (25.0) 12 (28.57) 8 (30.77) ND 2 (16.67)

VAN 30 µg 20 mm 12 (21.42) ND ND ND 6 (19.35) ND

ERY 15 µg 20 mm 41 (73.21) ND ND ND 19 (61.29) ND

n, total number of isolates tested; ND, not done; AMP, ampicillin; DOX, doxycycline; TCN, tetracycline; CIP, ciprofloxacin; IMP, imipenem; CHL, chloramphenicol; GEN,
gentamycin; NAL, nalidixic acid; NIT, nitrofurantoin; CFX, cefoxitin; VAN, vancomycin; ERY, erythromycin.

forming (SBF, 28.7%), moderate biofilm forming (MBF, 25.2%),
weak biofilm forming (WBF, 22.2%), and non-biofilm forming
(NBF, 23.7%) (Figure 8). Microscopic observation followed
by 3D image analysis revealed that the intensity of green

fluorescence remained higher, indicating that a large number of
cells were viable and attached to the surface (Figure 8A). While
investigated individually, E. coli (66.7%) remained as the highest
biofilm producing CM pathogen followed by Enterobacter
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FIGURE 7 | Antibacterial activity of heavy metals: Cu (CuSO4), Zn (ZnO), Cr (K2Cr2O7), Co (CoCl2) and Ni (NiCl2) against bovine CM pathogens. (A) Zone of
inhibition (ZOI, mm) for six CM causing bacteria, each bar representing the mean values (values given horizontal axis of the bars, mm) and standard deviation error
bar (SD error bar) for each bacterium. (B) Minimal inhibitory concentration (MIC) (expressed as µg/mL) of the tested metals against representative genera/species as
determined by agar well diffusion method.

(60.0%), Klebsiella (46.7%), S. aureus (40.0%), Shigella (30.0%),
and Bacillus (26.7%) species. Our current findings reveal that
Gram-negative CM pathogens (Enterobacter, 60.0%; E. coli,
40.0%; Shigella, 33.3%; Klebsiella, 28.6%) have a higher biofilm
producing ability than Gram-positive bacteria (S. aureus, 16.7%)
(Figures 8A,B). On the contrary, the majority of the Bacillus
(73.3%), Shigella (70.0%), and S. aureus (60.0%) isolates remained
as non-biofilm formers (NBF) (Figure 8B). Therefore, our
current findings of in vitro resistance analysis (antibiotics and
metals resistance and biofilm assays) corroborate the resistome
found in metagenome sequencing.

Microbiome Functional Analysis
We also investigated the possible links between chemotaxis and
pathogenicity through the identification of putative genes or
proteins associated with both flagellar motility and bacterial
chemotaxis. The KEGG pathway analysis identified 48 protein
families associated with flagellar motility in prokaryotes, and
among them, flagellar hook-length control protein, FliK (27.1%);
flagellar biosynthesis proteins, FlhA, FliL, FliP, FlhF, FlgN, FliS,
FlhB, FliO, FliQ (∼16.0%); flagellar M-ring protein, FliF (5.6%);
and flagellar regulatory protein, FleQ (5.3%) were predominantly
associated with cell motility (Supplementary Material).
Twenty-six functional genes encoding different proteins were
found to be associated with bacterial chemotaxis (Supplementary
Figure S6 and Supplementary Material), of them, methyl-
accepting chemotaxis protein, mcp (44.2%); chemotaxis family
proteins of bacterial two component system, CheV, CheA, CheB,
CheBR, CheY (∼15.0%); aerotaxis receptor, Aer (7.5%); MotB
(5.2%), and MotA (3.1%) were the most abundant among these
CM microbiotas (Supplementary Material). To explore the role
of regulation and cell signaling mechanisms in mammary gland
pathogenesis, using the SEED subsystem module of MR analysis,

we found two-component regulatory systems BarA-UvrYBarA-
UvrY (sirA) as the most abundant virulence regulatory gene
(84.1%) in CM microbiomes (Supplementary Material).
Another regulatory and cell signaling gene, endoplasmic
reticulum chaperon grp78 (BiP), was also found as the single
most abundant (93.8%) gene in the proteolytic pathways of the
CM associated bacterial strains (Supplementary Figure S7 and
Supplementary Material). A deeper look at microbial genes
associated with phages-prophages, transposable elements, and
plasmids revealed that pathogenicity islands related proteins
such as methionine-ABC transporter substrate-binding protein
(33.8%), GMP synthase (27.7%), tmRNA-binding protein;
SmpB (16.0%), heat shock protein 60; GroEL (16.0%), and SSU
ribosomal protein; S18p (6.1%) were predominantly abundant
among the CM pathogens (Supplementary Material). We also
found significant associations between the number of reads
assigned to genes coding for AMR and biofilm-formation-
and-quorum-sensing (Pearson correlation, P = 0.0001), and in
the relative abundance of genes coding for biofilm-formation
and flagellar activities (Pearson correlation, P = 0.004). The
SEED module analysis also enabled us to identify 28 different
protein functions associated with oxidative stress responses that
were mostly represented by catalase related proteins (26.7%),
Cu-Zn-Fe-Mn mediated superoxide dismutase (12.7%), H2O2-
inducible genes activator (7.8%), and paraquat-inducible protein
B (7.3%) (Figure 9 and Supplementary Material).

DISCUSSION

Previously, we reported that the bovine CM milk microbiome
harbors genes that may promote microbial pathogenicity,
including AMR compared to the healthy state (Hoque et al.,
2019). In this study, we employed a combination of both in silico
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FIGURE 8 | Biofilm formation (BF) ability of the six CM causing pathogens. (A) Confocal fluorescence images (2D and 3D) of S. aureus (i,ii), E. coli (iii,iv), Klebsiella
spp. (v,vi), Enterobacter spp. (vii,viii), Bacillus spp. (ix,x) and Shigella spp. (xi,xii). Scale bars are indicated in µm. (B) Capability of the biofilm formation by six CM
causing bacteria.

(WMS) and in vitro (culture-based) approaches to elucidate the
resistance potentials in CM associated microbiomes. Currently,
it is feasible to use metagenomic sequencing as a diagnostic tool
for the detection of microbiome and its associated resistome in
environmental samples (Pérez-Cobas et al., 2013; Schaik, 2015;
Lanza et al., 2018). Shotgun metagenomics (WMS) investigations
are progressively being used to analyze the ensemble of genes that
may encode antibiotic resistance in various microbial ecosystems,

which are defined as the resistome (Forsberg et al., 2012; Schaik,
2015; Su et al., 2017; Lanza et al., 2018; Zaheer et al., 2018).
The increasing prevalence of AMR in bacteria in bovine CM
milk is one of the most important challenges that public health
faces. It has been proposed that livestock production systems
may contribute to an increased prevalence of antimicrobial
resistant bacteria, and/or associated genes in the environment
and therefore pose a risk to human health. Globally, more than
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FIGURE 9 | Projection of the clinical mastitis (CM) milk metagenome onto KEGG pathways. The whole metagenome sequencing (WMS) reveals significant
differences (Kruskal–Wallis test, P = 0.001) in functional microbial pathways. A total of 28 genes associated with oxidative stress were found in CM microbiomes.
Black lines with green circles delineate the distribution of the stress related genes according to their class across the CM metagenome. The diameter of the circles
indicates the relative abundance of the respective genes. More details about these genes can be found in the text and Supplementary Material.

57 million kilograms of antibiotics are used annually in food
animal production (Van Boeckel et al., 2015), which may select
for antibiotic-resistant bacteria that persist throughout the meat
and milk production chain. Investigation of the microbiome,
and/or associated resistome of dairy animals especially in milk
from cows with mastitis, and their environment may provide
valuable data and models to estimate the public health risk of
antibiotic-resistant human infections associated with antibiotic
use in dairy animals (Zaheer et al., 2019).

Our present findings are sufficiently enriched in taxonomic
resolution and predicted protein functions, and corroborates the
findings of several previous studies (Oikonomou et al., 2014;
Falentin et al., 2016; Patel et al., 2017; Hoque et al., 2019).
The occurrence of bovine mastitis could be affected by cattle
breeds (Cremonesi et al., 2018; Curone et al., 2018; Gonzalez-
Recio et al., 2018), and the diversity of CM-causing pathogens
is associated with a broad range of host-defense mechanisms as
part of its immunological arsenal (Thompson-Crispi et al., 2014;

Li et al., 2019). We found significant differences in taxonomic
diversity and abundances among the CM microbiomes of four
dairy breeds. The XHF cows suffering from CM had higher
microbial diversity at strain-level, and a significant proportion of
the microbiota found to be shared with that of the other three
breeds (LZ, SW, and RCC). Consistent with the results of earlier
studies (Cremonesi et al., 2018; Curone et al., 2018; Gonzalez-
Recio et al., 2018; Li et al., 2019), the taxonomic profile of the CM
microbiomes found in four breeds of cows were dominated by
phyla Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria,
and Fusobacteria. This breed specific variation in taxonomic
richness and diversity of the microbiome, especially in XHF
and LZ cows, could be associated with their increased disease
resistance or immune response (Cremonesi et al., 2018; Curone
et al., 2018; Gonzalez-Recio et al., 2018), and rumen microbial
features (e.g., taxa, diversity indices, functional categories, and
genes) (Li et al., 2019). However, this study demonstrated that
the resistome is not significantly correlated with different dairy
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breeds suggesting that resistance potentials of CM microbiome
might be common among dairy breeds. In our study, lack of
congruence between resistome and microbial communities in
four dairy breeds suggested that other factors, in addition to
antimicrobial use, might be associated with changes in resistome,
and microbiome composition. It may also reflect the possibility
that a small fraction of the total bacterial population was resistant
to antibiotics (MacLean and Vogwill, 2015; Rovira et al., 2019),
and that horizontal gene transfer disrupted the link between
microbiome and resistome composition (Johnson et al., 2015).
However, further investigations are necessary to evaluate the real
effect of breed specific bacteria on cow mammary gland diseases.
Recent understandings regarding evolutionary relationships of
major CM causing bacteria are primarily based on 16S rRNA gene
phylogenetic identification along with a few individual gene or
protein sequences (Naushad et al., 2016), which often produces
conflicting phylogenies. This study explored the possibility that
the prevalence of CM milk pathogens could vary according to
geographical locations, and farming (semi-intensive to intensive
grazing system in SER, semi-intensive to free-range grazing
systems in CR) systems (Reyes-Jara et al., 2016). These differences
may imply that the etiology of bovine CM in Bangladesh could
be related to the breed/host genetic factors (Cremonesi et al.,
2018; Curone et al., 2018; Gonzalez-Recio et al., 2018; Li et al.,
2019), types of feeding, and farm locations and types (Reyes-Jara
et al., 2016), types of antibiotics and/or metals used for treatment
resistomes, and other predisposing factors, as described in
other countries (Preethirani et al., 2015; Reyes-Jara et al., 2016;
Cheng et al., 2019).

Data presented here, coupled with the data reported in our
earlier study (Hoque et al., 2019) provide important insights
into the resistance potentials in CM microbiomes. Our results
are concordant with MDR bacteria reported elsewhere from the
milk of clinically infected cows (Curone et al., 2018; Tomazi
et al., 2018; Cheng et al., 2019), buffalo cows (Preethirani et al.,
2015), and humans (Penders et al., 2013; Patel et al., 2017; Baron
et al., 2018). Our findings linked multidrug resistance to efflux
pumps (MREP), CmeABC operon, mdtABCD cluster, BlaR1
family, methicillin resistance in Staphylococcus (MRS), resistance
to fluoroquinolones (RFL), and multiple metals resistance to
CZCR and AR as the predominantly abundant antibiotics and
toxic compounds resistance (RATC) functional groups in CM
microbiomes, suggesting that bovine CM milk microbiome
constitutes a good reservoir for AMR (Kumar and Varela,
2012; Penders et al., 2013; Baron et al., 2018; Hoque et al.,
2019). It has been reported that efflux pumps regulated by
two-component systems in several pathogens, including A.
baumannii and K. pneumonia, provide multidrug resistance,
which may limit the treatment options against bacterial infections
of the mammary glands (Li and Nikaido, 2009; Tiwari et al.,
2017). Relative over-expression of efflux pumps enhances
resistance to antimicrobials by reducing the accumulation of
antibiotics inside the bacterial cells, providing sufficient time for
the bacteria to adapt to the antibiotics (slow phase antibiotic
efflux), and through mutations or alteration of antibiotic
targets (Yao et al., 2016; Tiwari et al., 2017). The CmeABC
operon is highly potent against multiple antibiotics, promotes

the emergence of ARGs, and confers exceedingly high-level
resistance to fluoroquinolones (Singh et al., 2017). Therefore,
multidrug resistance to efflux pumps and multiple heavy metals
resistance represented ubiquitous resistance mechanisms among
CM microbiomes, which might be associated with unethical
overuse of antibiotics in dairy animals (Preethirani et al., 2015;
Curone et al., 2018; Tomazi et al., 2018; Cheng et al., 2019;
Zaheer et al., 2019), and extensive application of toxic chemicals
and metals in agricultural use (Reyes-Jara et al., 2016; Vaidya
et al., 2017), or might have a function in the gut microbiome
that is still unknown (Penders et al., 2013; Hu et al., 2014b;
Ciesinski et al., 2018). The RATC genes detected in this study are
of particular interest because there is concern that the use of this
class of antibiotics or metals in veterinary medicine, particularly
for food animals, may contribute to the development of resistance
to this class of antimicrobial options in humans (Penders et al.,
2013; Hu et al., 2014b).

The in vitro antibiogram assays revealed that a high
proportion of multidrug resistant (MDR) bacteria was frequently
observed, where tetracyclines (tetracycline and doxycycline),
quinolones (nalidixic acid), penicillins (ampicillin), and phenols
(chloramphenicol) were the most common resistant antibiotics
against the six selected CM pathogens. This finding of high
MDR patterns for CM pathogens is in line with many previous
studies on bovine mastitis (Preethirani et al., 2015; Cheng et al.,
2019). The AMR profile of bovine CM pathogens for different
antimicrobials could vary according to the type and origin of
bacteria (Preethirani et al., 2015; Van Boeckel et al., 2015; Cheng
et al., 2019) and host-population such as bovine (Tomazi et al.,
2018; Cheng et al., 2019) and bubaline (Preethirani et al., 2015)
cows. Consistent with bacterial needs, heavy metals can be
transformed (e.g., oxidized, reduced, methylated, or complexed)
and used as a source of energy, terminal electron acceptors,
and/or enzyme structural elements (Drewniak et al., 2016). The
highest abundance of CZCR genes among CM pathogens is
mainly due to the presence of Co, Zn, and Cd detoxification
systems (Drewniak et al., 2016). Although understanding of
the uncontrolled spread of ARGs in bovine mastitis pathogens
(Cheng et al., 2019) is growing, information on toxic compounds
or heavy metal resistance remains unavailable. In this study,
heavy metals (Cr, Co, Ni, and Cu) tested for antibacterial
sensitivity showed good efficacy, but knowledge on their mode
of action is limited. Thus, with the increase of MDR bacteria
in CM, there is an imperative need for new biocidal and
antimicrobial formulations. The MIC and MBC tested metals
revealed effective antimicrobial efficacies against a wide range
of AMR pathogens (Reyes-Jara et al., 2016; Vaidya et al., 2017;
Ciesinski et al., 2018). We found that Cr and Co compounds
had the highest antimicrobial efficacy (MIC) against all of
the tested bacteria as supported by several previous studies
(Vaidya et al., 2017; Murcia et al., 2018). This finding is likely
related to the better lipophilicity of Cr and Co, resulting in
increased antimicrobial activities or chelating effects (Murcia
et al., 2018). However, both Cr and Co, should be used
cautiously either in medication or in feed supplementation after
calculating appropriate concentrations, to avoid cytotoxicity.
These in vitro resistance patterns of CM bacteria corroborate
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the resistome profile of the WMS, since multidrug resistance to
efflux pumps, resistance to fluoroquinolones, beta lactamases,
and methicillin were the predominant antibiotics resistance
functional groups, whereas cobalt, zinc, cadmium, copper,
arsenic, and chromium resistance were the predominating toxic
metals resistant genes in CM causing microbiomes. Molecular
methods complemented with culture-based diagnostics have
been historically implemented to document AMR in bacteria,
however, the advent of shotgun metagenomics (WMS) has
revolutionized the method of addressing relevant problems like
diagnosis and surveillance of infectious diseases, and the issue
of AMR (De, 2019). Biofilm formation is an important virulence
factor that may result in recurrent or persistent udder infections
(Melchior et al., 2006), and treatment failure through increased
resistance to antibiotics and protection against host defenses
(Schönborn et al., 2017). The relative overexpression of genes
encoding lsrACDBFGE operon, biofilm adhesion biosynthesis,
protein YjgK cluster, and QS: autoinducer-2 synthesis in CM
microbiomes is in accordance with several earlier reports (Gomes
et al., 2016; Schönborn et al., 2017; Hoque et al., 2019). In
this study, the relative abundance of the predicted proteins
for BF and QS varied significantly among the six selected
bacterial taxa. Bacterial BF and QS abilities can be the strain
specific or genetically linked traits, representing a selective
advantage in pathogenesis of bovine CM (Schönborn et al.,
2017). Biofilms can enhance proliferation of reactive oxygen
and nitrogen species that can survive antibiotic treatment
leading to the transfer of ARGs (Gomes et al., 2016). In this
study, overall, 76.2% of the isolates of the six selected CM
pathogens were found as biofilm producers, and their ability
to produce biofilm varied significantly (Gomes et al., 2016;
Schönborn et al., 2017). A large number of food spoilage
and/or pathogenic bacteria, including Enterococcus faecalis,
Enterobacter spp., Pseudomonas spp., Klebsiella spp., S. aureus,
E. coli, B. cereus, and others, have already been reported to
be associated with biofilm-formation (BF) from diary niches
(Melchior et al., 2006; Gomes et al., 2016; Schönborn et al.,
2017; Singh et al., 2017; Vaidya et al., 2017) which supports our
current findings.

Bacterial chemotaxis mediated by flagellar activities (Duan
et al., 2013) and the flagella mediated virulence factors are
found in many pathogenic species of bovine CM microbiomes,
making them a potential target for new antibacterial therapeutics
(Duan et al., 2013). The intra- and interspecies cell-to-cell
communication in bovine CM microbiomes were associated
with 26 different genes, which might have vital roles in the
early phase of mastitis for attachment to, or entry into the
udder tissues and virulence regulation (Zatakia et al., 2018),
and bacterial colonization in mammary tissues like other
suitable sites (Matilla and Krell, 2017). The cheA-cheY two-
component system mediated bacterial chemotaxis also facilitates
the initial contact of bacteria with mammary gland epithelial
cells, and contribute to effective invasion (Dons et al., 2004). The
two-component signal transduction system BarA-UvrY regulates
metabolism, motility, BF, stress resistance, virulence, and QS
in CM pathogens by activating the transcription of genes for
regulatory small RNAs (Zere et al., 2015). The up-regulation

of genes coding for proteolytic activity, grp78 during host-
pathogen interactions in CM, is associated with endoplasmic
reticulum (ER) stress which further triggers proteolytic activities
to initiate the mechanism of pathogenesis and cell death
(Hirai et al., 2018). Catalase activity is a marker of bovine
mastitis, which plays a central role in milk redox control
and markedly increases during the pathophysiology of bovine
CM (Andrei et al., 2016). Our present findings are in line
with previous reports (Andrei et al., 2016; Darbaz et al.,
2019) that an elevated oxidative stress mediated by catalase
activity might have originated either from the mammary
gland and/or bacterial cells. During the pathogenesis of bovine
mammary gland, bacteria are not rapidly killed by the phagocytic
activity of bovine macrophages; rather, they survive within
macrophages during prolonged infection due to secretion of
catalase and superoxide dismutase, which by degrading H2O2,
inhibit the ROS mediated killing mechanism of the host
(Andrei et al., 2016; Darbaz et al., 2019). The majority of
published studies on bovine mastitis describe 16S rRNA gene-
based community structure evaluations, whereas published
reports on shotgun deep sequencing metagenomics of CM
microbiome studies remain scarce. We completed an in-depth
report simultaneously describing microbiome diversity along
with previously unreported opportunistic strains, and their
associated resistome in bovine mastitis.

CONCLUSION

Bovine CM milk is a potential reservoir of diverse groups of
microbes harboring a diverse resistome and other virulence
factors. Our findings reveal that genes coding for multidrug
and multiple metal resistance are ubiquitously present in the
CM microbiome, and protect bacteria from the antibacterial
effects of antimicrobials, extruding them out of cells. The efflux
pumps mediated by multidrug resistance and multiple metals
(e.g., cobalt, zinc, cadmium, arsenic, chromium) resistance were
the predominating genomic functional groups to be considered
as the potential key factors for the persistence of bovine CM,
and the failure of conventional therapies against CM-related
pathogens. Additionally, BF, QS, bacterial flagellar movement
and chemotaxis, regulation and cell signaling, and oxidative
stress associated genes can be a great benefit to bacteria
against the host’s immune system. Microbial resistance and
genomic functional potentials represent important mechanisms
for antibiotic resistance, leading to treatment failure and
persistence of the disease. An accurate and timely identification
of CM-associated pathogens and analyses of their resistance
potentials are necessary for the selection of proper therapeutics
(antibiotics and/or metals), and the development of effective,
safe, and economical treatment regimens for bovine mastitis
and sustainable dairying. Although the baseline data presented
here are promising, further studies are recommended using a
larger sample size, and with the inclusion of gut microbiome
sampling in addition to the milk samples to elucidate the specific
resistance potential of CM pathogens as well as for direct testing
of microbiome and resistome transfer across this axis.
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