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Abstract A highly selective and stability-indicating HPLC-method, combined with appropriate sample
preparation steps, is developed for β-artemether assay and profiling of related impurities, including
possible degradants, in a complex powder for oral suspension. Following HPLC conditions allowed the
required selectivity: a Prevail organic acid (OA) column (250 mm� 4.6 mm, 5 μm), flow rate set at
1.5 mL/min combined with a linear gradient (where A¼25 mM phosphate buffer (pH 2.5), and
B¼acetonitrile) from 30% to 75% B in a runtime of 60 min. Quantitative UV-detection was performed
at 210 nm. Acetonitrile was applied as extraction solvent for sample preparation. Using acetonitrile–water
mixtures as extraction solvent, a compartmental behaviour by a non-solving excipient-bound fraction and
an artemether-solubilising free fraction of solvent was demonstrated, making a mobile phase based
extraction not a good choice. Method validation showed that the developed HPLC-method is considered
to be suitable for its intended regulatory stability-quality characterisation of β-artemether paediatric
formulations. Furthermore, LC–MS on references as well as on stability samples was performed allowing
identity confirmation of the β-artemether related impurities. MS-fragmentation scheme of β-artemether
and its related substances is proposed, explaining the m/z values of the in-source fragments obtained.
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1. Introduction

The past decade has seen an increased interest in specific population
targeted and even individualised drug development. Several legislative
initiatives in US (e.g., the Best-Pharmaceuticals-for-Children-Act) and
Europe (e.g., paediatric investigation plans as indicated in paediatric
regulation EC1901/2006), supported by the International Conference of
ier B.V. Open access under CC BY-NC-ND license.
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Harmonisation (ICH) and World Health Organisation (WHO), were
recently taken to stimulate and improve the pharmaceutical care-giving
to infants, children and adolescents [1–5]. The major challenges
encountered are a lack of investigators who are trained in paediatric
clinical pharmacology, an inadequate knowledge of drug action
mechanisms in a growing child, but foremost a lack of suitable
paediatric formulations [6]. It is acknowledged that there is a need for
paediatric formulations that permit accurate dosing and enhance patient
compliance to significantly reduce child mortality. For oral adminis-
tration, different types of formulations, aromas and colours may be
culture region and age dependent. Different drug concentrations in
these various formulations, often at low doses, may also be needed [7].
However, economical constraints limit the development, production
and marketing of such paediatric formulations. Up till now, one of the
most successful pharmaceutical forms that addresses these specific
requirements is undoubtedly the dry powder for oral suspension, due
to its ease, robustness and economics of production and distribution,
flexible dosing, organoleptic characteristics enhancing the patient
acceptability and excellent stability properties. However, the qualitative
and quantitative particularities of this dosage form result in different
and increased analytical challenges compared to the conventional tablet
as most often used for adults.

Half of the world’s population is at risk of malaria, and an
estimated 216 million cases led to 665 000 deaths worldwide
in 2010, of which 91% were in the African Region and about
86% were children under 5 years old. Artemisinin Combination
Therapies (ACTs), in which one of the active compounds is a
1,2,4-trioxane derivative like the water soluble artesunate or the
lipid soluble β-artemether, are currently recommended by the
WHO as first-line treatment for P. falciparum malaria. However,
access to appropriate treatment is still found to be inadequate due
to the relatively high costs of the drugs, combined with insufficient
attention to their quality by local health care providers in malaria
endemic countries [8].

The full drug potential of artemisinin-derivatives was under-
estimated in the Western World for many years until very recently,
when it has been proven that these 1,2,4-trioxane derivatives
possess an anti-parasitic activity in other neglected infections, such
as schistosomiasis [9–11] and leishmaniasis [12], as well as an
anti-viral activity [13,14]. It has also been confirmed that this
group of compounds possesses an important potential as anti-
cancer drugs by inducing apoptosis and by inhibiting angiogenesis
in different types of tumour cells [15–17]. As a consequence of
this awareness, increased research efforts are focused on new
derivatives with innovative applications and improved properties.
Major pharmaceutical companies are beginning to take an interest
in developing new trioxane compounds [18–21].

Current analytical techniques describe derivatisation-based methods
[22], gas chromatography (GC) [23], thin layer chromatography
(TLC) [24], supercritical fluid chromatography (SCFC) [25], spectro-
scopic [26] and immunological techniques [27,28], but it is clear that
the main-stream methods are mainly based on high performance liquid
chromatography (HPLC), coupled to ultra violet (UV), evaporative
light scattering detector (ELSD), electron capture detection (ECD)
or electrospray ionisation (ESI)–mass spectrometry (MS) detection
[29–32]. Up till now, the focus was directed to biological matrices like
plasma for pharmacokinetic information [33,34], to plant derived
samples for production reasons [23,35,36] or for environmental eco-
toxicity studies [37,38]. However, with the advent of a plethora of
newly developed 1,2,4-trioxane derivatives and the urgent demand to
develop suitable paediatric formulations, there is a clear need for
analytical methods which are suitable for quality purposes for finished
drug products (FDP). The availability of suitable quality methods is
currently also one of the key issues in the efficient regulatory approval
for clinical trials and marketing. These methods should encompass not
only the assay of the active pharmaceutical ingredient (API) in FDP’s
as up till now described [39–42] but also more importantly they
should focus on all related compounds, including the possible
degradants, respecting the pharmaceutically low specification limits.
Recently, an impurity evaluation of artemisinin, the plant-derived
starting material for API-production (e.g., β-artemether and artesunate)
was reported [43,44]. In addition, our research group has developed
a new approach for the calculation of the relative response factors of
β-artemether degradants, using dry heat stress, under various time,
temperature and environmental conditions, thus solving the peak area/
mass balance question [45].

The aim of this study was to investigate two specific analytical
challenges related to low-artemether-dosed, high-bulk-containing
paediatric powders for oral suspension (180 mg/60 mL after recon-
stitution in water), i.e., (1) sample preparation, where the extraction
solvent interacts with the excipients, and (2) the chromatographic
characterisation of a new, highly selective HPLC system allowing
separation of artemether-related impurities and excipients. Further-
more, LC–MS on stability samples of the powders for oral
suspension stored for 6 months at 40 1C/75% relative humidity
(RH), supported the selectivity of the method, indicating multiple
degradants at low concentrations. Finally, an in-source fragmenta-
tion pathway for β-artemether and its related substances, explaining
the observed m/z values, is proposed.
2. Materials and methods

2.1. Materials

The developmental FDP's, a powder for oral paediatric suspension,
were gifts from Dafra (Turnhout, Belgium) and consisted of
β-artemether (0.7%, m/m), lumefantrine (4.5%, m/m), saccharose,
cellulose, gums, parabens, silica, acidifying and flavouring agents.
The individual constituents of the formulation, including lumefan-
trine, as well as the related 1,2,4-trioxane compounds artesunate,
dihydroartemisinin (DHA), artemisinin, 9,10-anhydroartemisinin
(AHA), and α-artemether, were obtained from Dafra (Turnhout,
Belgium). From Sigma Tau (Rome, Italy), the degradation compound
2-[4-methyl-2-oxo-3-(3-oxobutyl)cyclohexyl]propanal (DKA) was
acquired. HPLC gradient grade acetonitrile was purchased from
Fisher Scientific (Leicestershire, UK), hydrochloric acid from UCB
(Leuven, Belgium) and potassium dihydrogen phosphate from Merck
(Darmstadt, Germany). Water was purified using an Arium 611
purification system (Sartorius, Göttingen, Germany) to laboratory-
graded water (18.2 M Ω cm).

2.2. HPLC-PDA system

The HPLC-photodiode array (PDA) apparatus consisted of a
Waters Alliance 2695 separations module and a Waters 2996
PDA detector with Empower 2 software for data acquisition (all
Waters, Milford, MA, USA). HPLC-analysis was performed using
a Prevail organic acid (OA) column (250 mm� 4.6 mm, 5 mm)
with guard column (7.5 mm� 4.6 mm, 5 mm) (Grace-Alltech,
Deerfield, IL, USA) thermostated at 25 1C. The flow rate was
set at 1.5 mL/min and linear gradient was applied (where A¼25
mM phosphate buffer, adjusted to pH 2.5 with diluted hydro-
chloric acid, and B¼acetonitrile), running from 30% to 75% B
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from 0 to 60 min, followed by returning to the initial conditions
and re-equilibration. The sample compartment was maintained at
5 1C and the injection volume was 20 mL. The UV-spectrum was
recorded between 190 and 400 nm, with 210 nm as the represen-
tative wavelength for quantification.

2.3. HPLC–MS system

The LC–UV/MS apparatus consisted of a Spectra System SN400
interface, a Spectra System SCM1000 degasser, a Spectra System
P1000XR pump, a Spectra System AS3000 autosampler and a
Finnigan MAT LCQ mass spectrometer (all Thermo, San Jose, CA,
USA), equipped with an SPD-10A UV–vis detector at 210 nm
(Shimadzu, Kyoto, Japan) and software Xcalibur 1.2 software
(Thermo) for data acquisition. For the MS-experiments described
in this paper, the samples were loaded onto a Prevail OA column
(250 mm� 4.6 mm, 5 mm) with guard column (7.5 mm� 4.6 mm,
5 mm) (Grace-Alltech, Deerfield, IL, USA), both thermostated at
25 1C. An adaptation was made of the mobile phase towards ESI-
MS compatibility, i.e., replacing the phosphate buffer pH 2.5 by
0.1% (m/v) formic acid. The same linear gradient elution was
performed at a flow rate of 1.5 mL/min. The sample compartment
was maintained at 5 1C and the injection volume was 20 mL.
Electrospray was using nitrogen sheath gas (90 arb, corresponds to
1.35 mL/min) and auxillary gas (30 arb, corresponds to 0.45 mL/
min) in positive ionisation mode (m/z 100–500). The capillary
voltage was set at +4 kV, combined with a capillary temperature of
230 1C.

2.4. GC-FID system

The acetonitrile content in the development experiments of the
extraction procedure was assayed using a high throughput
GC-Flame Ionisation Detector (FID) method. The GC apparatus
consisted of a separation module provided with an FID controlled
by TotalChrom Navigator (all Perkin Elmer, Massachusetts, USA).
GC separations were performed using a Glass column (2 m� 3 mm)
packed with 10% Carbowax 20 M on Chromosorb G thermostated
in an oven set at 120 1C. Injector and detector temperatures were
both 250 1C. Nitrogen was used as a carrier gas at a flow rate of
20 mL/min. The injection volume was 2 μL (split, 1:50) and ethanol
was used as internal standard.

2.5. Sample preparation

2.5.1. Solvent composition for extraction
Acetonitrile–water mixtures with different concentrations of water
(40–0%) were tested to explore the influence on artemether
recovery. During development of the extraction procedure, arte-
mether-test, spiked placebo and reference solutions were prepared
with the different solvent compositions. The final choice for the
extraction solvent was pure acetonitrile.

2.5.2. Reference solutions
Reference solutions for validation and quantification of β-artemether
and related substances were prepared by dissolving the reference
substances in acetonitrile. Solutions were produced containing
β-artemether at 120%, 110%, 100% (i.e., approximately
3.5 mg/mL), 90% and 80%. In addition, at lower concentrations,
dihydroartemisinin at 6%, 5%, 4%, 3% and 2% label claim (% l.c.).
and the other related substances (artemisinin and α-artemether) at
0.30%, 0.25%, 0.20%, 0.15% and 0.10% l.c., whereby 100% l.c.
corresponded to the label claim of β-artemether, were dissolved.
2.5.3. Artemether-test solutions of paediatric powder
Test solutions for artemether assay were prepared by extracting
4.400 g of finished drug product with 10.0 mL of acetonitrile.
After shaking for 30 min and sonication for 15 min, it was
centrifuged for 5 min at 4555 g at room temperature. Finally the
supernatant was filtered through a 0.45 mm regenerated cellulose
filter (Whatmans), discarding the first 2 mL of filtrate. For
quantification of related degradants and impurities, reconcentrated
solutions were prepared by taking 1.0 mL of the test solution
followed by evaporation using a gentle stream of nitrogen and
redissolving in 100 mL of acetonitrile.
2.5.4. Artemether-spiked solutions of placebo powder
Spiked placebo solutions were prepared as described for the test
solutions, replacing the extraction solvent by 10.0 mL of the
corresponding reference solution (see Section 2.5.2). The placebo
powder for a 60 mL suspension after reconstitution in water
consists of 4.77% lumefantrine, 86.33% saccharose, 5.96%
microcrystalline cellulose, 0.26% citric acid monohydrate, 0.53%
xanthan gum, 0.21% methyl paraben, 0.05% propyl paraben,
0.79% coconut flavour and 0.30% colloidal anhydrous silica (all
in m/m). Reconcentrated solutions were prepared in the same
manner as previously described (see Section 2.5.3).
2.5.5. Solutions for GC analysis
Ethanol (10%, v/v in water) was selected as the internal standard.
Reference solutions were prepared by transferring approximately
70 mL of water into a 100.0 mL volumetric flask, followed by
addition of 1000 mL extraction solvent, varying from 60% to 100%
acetonitrile content and 10.0 mL of internal standard solution,
followed by immediately dilution to volume with water. Test
solutions of each spiked placebo extract (varying from 60% to
100% acetonitrile) were prepared in the same manner.
2.5.6. Solutions for LC–MS analysis
Spiked placebo solutions were prepared containing the related
compounds diketoaldehyde (DKA), dihydroartemisinin (DHA),
α-artemether, 9,10-anhydroartemisinin (AHA) and artemisinin at
approximate concentrations of 17.5 μg/mL, which is equivalent to
0.5% of β-artemether l.c. Co-artesiane stability samples, stored for
6 months at 40 1C and 75% RH (accelerated ICH conditions), were
prepared by the same extraction procedure (see Section 2.5.3).
2.6. Validation

Method validation was performed using the spiked placebo
solutions and reference solutions for the β-artemether assay.
Reconcentrated solutions of spiked placebo and reference solutions
were applied for the validation of the determination of β-
artemether-related substances in the paediatric powder for oral
suspension. Accuracy, precision and linearity were evaluated for
all determinations.



Table 1 β-Artemether recoveries.

# ACN in extraction
solvent (%)

β-Artemether
recovery (%)

β-Artemether recovery
ACN-only (%)

A 60 166.7 100.0
B 65 146.5 95.2
C 70 133.7 93.6
D 75 122.0 91.5
E 80 117.4 93.9
F 85 109.1 92.7
G 90 101.7 91.5
H 95 101.0 96.0
I 100 101.4 101.4

Fig. 2 Percentage acetonitrile found in the test solutions (given
as means with 95% confidence intervals) in function of percentage
acetonitrile in the extraction solvent.
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3. Results

3.1. Development of extraction procedure

As low UV-detection (i.e., 210 nm) is used, methanol, tetrahydro-
furan (THF) and chloroform mixtures as organic solvent component
as extraction solvent were excluded and acetonitrile, with its low UV
cut-off value of 190 nm, was retained. Moreover, initial sample
preparation experiments using chloroform-based solvents [39]
showed generally significant peak broadening, negatively influencing
the separation of closely eluting related impurities. As it is a common
practice in pharmaceutical sample processing to use aqueous-based
organic extraction solvents for better compatibility with the reversed-
phase chromatographic system, we investigated the aqueous-
acetonitrile based extraction. This type of extraction solvent for
β-artemether is also recommended in the International Pharmacopoeia
monograph ‘artemether injection’ [46], completely dissolving fractio-
nated coconut oil or the medium chain triglycerides oil (which are
used in FDP like Artesiane), while with arachis oil (used in e.g.,
Mantera), resulting in a two-phase extraction and separation. Other
solvents such as THF and isopropanol yielded always a one-phase
system, independent of the oil-type used. However, THF is quite
volatile and unstable, making its handling more problematic and thus
not an ideal solvent for sample preparation. While isopropanol was
a good solvent for the oil preparations and in the extraction of
the powder, it gave a more pronounced unretained signal, thereby
increasing the risk of masking polar degradants of β-artemether.
Therefore, the optimisation of the extraction procedure was performed
with acetonitrile–water based sample solvents.

A non-linear relationship was found between the β-artemether
recovery and percentage acetonitrile in the extraction solvent,
decreasing from 167% to 101% recovery for an acetonitrile
content varying from 60% to 100%, respectively (Fig. 1). The
recovery-increasing effect due to solvent composition was not
observed for extraction solvent compositions with 10% water or
less. To investigate if and to what extent the solvent composition
influenced the chromatographic behaviour of the β-artemether
peak, the symmetry factors and plate counts as described by the
Ph. Eur. were calculated: no significant effects were observed
under our operational conditions. It was thus hypothesised that the
water in the extraction solvent was bound onto the FDP matrix,
leading to an acetonitrile-enriched supernatant liquid, which
contains nearly all β-artemether present in the sample. Based on
Fig. 1 β-Artemether recovery in function of percentage acetonitrile
in the extraction solvent.
this hypothesis, β-artemether recovery was calculated assuming
only acetonitrile as the dissolving liquid (Table 1). The lower
recoveries calculated for acetonitrile indicate that not all water in
the extraction solvent is bound to the excipients, and hence that the
Fig. 3 Methyl- (○) and propyl- (●) paraben recovery in function of
percentage acetonitrile in the extraction solvent.
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freely available solvent (after extraction) still contains some water.
Further investigation on the exact composition of the supernatant
after extraction of the FDP was thus performed using GC-analysis. A
Fig. 4 Typical chromatograms (UV at 210 nm) showing reference solution
the Prevail OA column using the chromatographic conditions as described
flavour, (b) methyl paraben, (c) propyl paraben, (d) α-dihydroartemisinin, (e)
and (i) lumefantrine. Peaks (j) and (k) were identified as lumefantrine-relate
graph showing the percentage acetonitrile found in the supernatant
test solutions in function of the theoretical acetonitrile concentration
(i.e., exact composition of extraction solvent before being added to
(A), placebo solution (B) and spiked placebo solution (C) obtained on
in the experimental section. Peak identities are as follows: (a) coconut
β-dihydroartemisinin, (f) artemisinin, (g) α-artemether, (h) β-artemether,
d impurity degradants.



Table 2 Overview of general information on β-artemether and related compounds: RRT HPLC vs. RRT MS.

# Chemical name Structure RRT
HPLC

RRT MS RRFa

1 Diketo aldehyde (DKA) 0.41 0.40 3.41
2-[4-Methyl-2-oxo-3-(3-oxobutyl)
cyclohexyl]propanal
[C14H22O3, 238.32]
[62,63]

2 α-Dihydroartemisinin 0.48 0.50 1.08
(3R,5aS,6R,8aS,10S,12R,12aR)-Decahydro-
10-hydroxy-3,
6,9-trimethyl-3,12-epoxy-12H-pyrano[4.3-
j]-1,2-benzodioxepin
[C15H24O5, 284.35]
[53]

3 β-Dihydroartemisinin 0.64 0.65 1.08
(3R,5aS,6R,8aS,10S,12R,12aR)-Decahydro-
10-hydroxy-3,6,9-trimethyl-3,12-epoxy-
12H-pyrano[4,3-j]-1,2-benzodioxepin
[C15H24O5, 284.35]
[53,64]

4 Furano acetate 0.69 0.69 n.a.
(3aS,4R,6aS,7R,8S,10R,10aR)-8-Methoxy-
4,7-dimethyloctahydro-2H-furo[3,2-i][2]
benzopyran-10-yl acetate
[C16H26O5, 298.37]
[65]

5 Artemisinin 0.71 0.71 1.10
(3R,5aS,6R,8aS,9R,12S,12aR)-Octahydro-
3,6,9-trimethyl-3,12-epoxy-12H-pyrano
[4,3-j]-1,2-benzodioxepin-10(3H)-one
[C15H22O5, 282.33]
[66]

6 α-Artemether 0.85 0.83 1.03
(3R,5aS,6R,8aS,10R,12R,12aR)-Decahydro-
10-methoxy-3,6,9-trimethyl-3,12-epoxy-
12H-pyrano[4,3-j]-1,2-benzodioxepin
[C16H26O5, 298.37]
[64,67]

7 9,10-Anhydroartemisinin (AHA) 0.91 0.91 21.30
(9,10-Anhydro-10-deoxoartemisinin)
[C15H22O4, 266.33]
[68]

K. Vandercruyssen et al.42



Table 2 (continued )

# Chemical name Structure RRT
HPLC

RRT MS RRFa

8 β-Artemether 1.00 1.00 1.0
(3R,5aS,6R,8aS,9R,10S,12R,12aR)-
Decahydro-10-methoxy-3,6,9-trimethyl-
3,12-epoxy-12H-pyrano [4,3-j]-1,2-
benzodioxepin
[C16H26O5, 298.37]
[69]

9 9-Epi-artemisinin n.a. n.a. 1.37
(1R,5R,12S)-1,5,9-Trimethyl-11, 14,15,16-
tetraoxatetracyclo-hexadecan-10-one
[C15H22O5, 282.33]
[44]

10 Artemisitene n.a. n.a. 37.52
3,12-Epoxy-12H-pyrano[4,3-j]-1,2-
benzodioxepin-10(3H)-one,octahydro-3,6-
dimethyl-9-methylene-
(3R,5aS,6R,8aS,12S,12aR)
[C15H20O5, 280.13]
[44,70,71]

11 Deoxyartemisinin n.a. n.a. n.a
(1R,9R)-1,5,9-Trimethyl-11,14,15-
trioxatetracyclo-pentadecan-10-one
[C15H22O4, 266.33]
[70,72]

12 Artemisinic acid n.a. n.a. n.a
2-(7-Methyl-1,2,3,4,4a,5,6,8a-
octahydronaphthalen-1-yl)prop-2-enoic
acid
[C14H20O2, 220.31]
[43,70]

13 Arteannuin B n.a. n.a. n.a
(1aR,1bR,4aS,7R,7aS,9aR)-7,9a-Dimethyl-
4-methylenedecahydro-3H-oxireno[7,8]
naphtho[8a,1-b]furan-3-one
[C15H20O3, 248.32]
[43,73]

LC–UV/MS of paediatric artemether formulations 43



Table 2 (continued )

# Chemical name Structure RRT
HPLC

RRT MS RRFa

14 Proposed structure of major artemisinin
impurity

n.a. n.a. n.a

(3R,5aS,6R,8aS,9R,12S,12aR)-Octahydro-
3,6,9-trimethyl-3,12-epoxy-12H-pyrano
[4,3-j]-1,2-benzodioxepin-10(3H)-one
[C15H22O5, 282.33]
[43]

15 Proposed structure of artemisinin
degradant

n.a. n.a. n.a

(3R,6R,10aS)-3,6,9-Trimethyl-3a,4,5,6,6a,7-
hexahydrofuro[3,2-i]chromen-2(3H)-one
[C14H20O3, 236.31]
[43]

16 Proposed structure of artemisinin
degradant

n.a. n.a. n.a

(7R)-4,7-Dimethyl-8-oxooctahydro-2H-furo
[3,2-i]isochromen-10-yl acetate
[C15H22O5, 282.33]
[43]

n.a. not applicable
aRRF or relative response factors calculated by our research group [45].
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powder) is given in Fig. 2. From above data, the recovery-extraction
solvent relationship may at least be partly explained as a dehydration
of the extraction solvent. For instance, acetonitrile–water 60:40%,
(v/v) as extraction solvent being dehydrated to acetonitrile–water
80:20% (v/v) (see Fig. 2) would theoretically yield 133% recovery.
However, this still contrasts the actual 167% recovery found for
β-artemether. Therefore, also a part of acetonitrile is included in the
non-solving (β-artemether-free) solvent fraction bound to the powder
particles.

To further verify our bound/free solvent hypothesis, effects of
the solvent composition on methyl and propyl paraben recoveries
were verified using the spiked placebo solutions and the results
obtained for these two preservatives are shown in Fig. 3. Similar
extraction solvent dependent effects were observed for the
recovery of the two preservatives as for β-artemether, although
less pronounced for methyl paraben (log P≈1.9 vs. 2.90 and 2.82
for propyl paraben and β-artemether, respectively [47]). This
indicates that the major effect is the free-bound solvent volume
change, where the water is the dominant solvent component, but
that the physico-chemical properties of the compound itself (e.g.,
solubility in different aqueous-acetonitrile mixtures) also play a
role. By overall results of the several tests, selection of 100%
acetonitrile as extraction solvent is made.
3.2. HPLC-method for determination of β-artemether and
related substances

3.2.1. Selectivity
Several HPLC columns, e.g., Purospher Star RP-18e, LiChrospher
100 RP-18, Microsorb 100C18) were previously tested for their
selectivity. However, the best overall selectivity was obtained with
a new column, i.e., the Prevail OA column, which is a specific
type of polar-embedded reversed-phase stationary phase. The
excellent selectivity performance of this Prevail OA method for
the analysis of 1,2,4-trioxane derivatives is demonstrated by
typical chromatograms of the β-artemether-containing FDP given
in Fig. 4. Selectivity was demonstrated by the retention character-
istics of the placebo-excipient chromatograms, structurally related
compounds (e.g., artesunate) and related impurities including
potentially present degradants (i.e., α-artemether, DHA and
DKA), and possible other API (e.g., lumefantrine) and its degra-
dants (e.g., desbenzylketo lumefantrine derivative) [48]. Even in the
presence of extremely large peaks from other ingredients, such as
flavouring agent, preservatives and lumefantrine (with peak areas
being 3–84 times that of β-artemether), β-artemether and its related
compounds at low concentrations can still be unequivocally
determined without interference from these drug product



Table 3 Method validation results.

Validation attribute β-Artemether DHA Artemisinin α-Artemether

90–120% l.c. 2–6% l.c. 0.1–0.3% l.c. 0.1–0.3% l.c.
(n¼6) (n¼3) (n¼3) n¼3)

Accuracy (recovery) (%) 99.9 96.5 105.2 106.0
Precision (R.S.D.) (%) 0.43 6.68 6.52 8.27
Linearity
Intercept (95% C.I.) (mAU s) −99 340 to 161 126 −406 463 to 244 612 191 to 8479 −10 885 to 20 699
Slope (95% C.I.) (mAU s/% l.c.) 18 141 to 20 735 134 116 to 284 810 177 512 to 215 878 128 482 to 274 688
R2 0.9977 0.9992 0.9999 0.9992
Quantification limit (mg/mL)a 5.5 (0.31% l.c.) 11.48 (0.33% l.c.) 3.9 (0.11% l.c.) 4.7 (0.13% l.c.)

aCalculated as S/N¼10 (Ph. Eur.).
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ingredients. Under our conditions, β-artemether was eluted at
approximately 40 min, while the more hydrophilic DKA, artesunate
and 9,10-anhydroartemisinin (AHA) were sufficiently retained at
17, 24 and 37 min, respectively (Table 2). The elution times of the
other compounds were: 20 and 26 min (DHA epimers), 28 min
(artemisinin) and 34 min (α-artemether). No interference was seen
with the early eluting excipients, including parabens, lumefantrine
and the different aroma-compounds. While this method is consider-
ably longer than the previously published methods, its selectivity is
demonstrated to be significantly higher, allowing the individual
determination of β-artemether related impurities including degra-
dants. This was not possible with the existing shorter and isocratic
methods. Moreover, stress degradation under various conditions,
i.e., HCl, NaOH and H2O2 as well as dry heat conditions, resulted in
additional peaks, which are clearly separated from β-artemether.
This stress degradation study (see Supplementary information)
served to demonstrate the high selectivity of the HPLC-methodol-
ogy, as well as to draw attention to possible degradation-peaks,
which can be looked after in the ICH accelerated and long-term
stability studies. It is noted that although UV-DAD peak purities
higher than 99.0% were obtained on the β-artemether peaks in the
samples, this was not considered as an ultimate proof of specificity,
seen the rather non-specific UV spectra of these trioxane derivatives.
3.2.2. Validation
Validation of our final method resulted in the performance
characteristics as summarised in Table 3. The specified, identified
degradants of β-artemether in the FDP currently include α- and
β-DHA epimers, α-artemether and artemisinin. A linear correlation
was found between the peak areas and the concentrations in the
assayed range of β-artemether and its identified degradants. For
all compounds the regression coefficients (R2) were greater than
0.995, demonstrating the linearity of the method. For the
β-artemether-assay, spiked placebo solutions (n¼6) were investi-
gated for precision and accuracy, resulting in a RSD-value less
than 2.5% and a recovery to be within 95.0–105.0%. Reconcen-
trated spiked placebo solutions were also analysed for precision
and accuracy for the determination of the other related compounds.
For DHA, α-artemether and artemisinin, respectively, a mean
RSD-value of 7.16% and a recovery of 102.6% were found. From
these data, the developed HPLC-method for the determination
of β-artemether and its related substances in paediatric powder
for oral suspension, is considered to be suitable for its intended
purpose, i.e., regulatory quality analysis of samples from ICH
long-term and accelerated stability studies.
3.3. LC–MS characterisation

Similar chromatographic retention times were obtained using the
modified mobile phase, i.e., 0.1% (m/v) formic acid for ESI-MS
compatibility (Table 2). The full scan mass spectra (m/z 100–500)
acquired for β-artemether (m/z 299) and artemisinin (m/z 283) are
given in Fig. 5, while Table 4 gives an overview of the MS data of
β-artemether, artemisinin and their identified related substances.
The in-source fragmentation pathways for artemether and artemi-
sinin are proposed in Figs. 6 and 7, respectively.
3.3.1. β-artemether
For β-artemether, the following qualifier ions are withheld: m/z
267, m/z 249, m/z 239, m/z 221 and m/z 163. Due to in-source
fragmentation, the protonated form or parent ion of β-artemether
[M+H]+ with m/z of 299 is not detected. Our fragmentation
process was considered to consist of following steps: m/z 267
[M+H–CH3OH]

+ as [AHA+H]+, m/z 249 [M+H–CH3OH–
H2O]

+, m/z 239 [M+H–CH3OH–CO]
+ as [DKA+H]+, m/z 221

[M+H–CH3OH–CO–H2O]
+ and m/z 163 [M+H–CH3OH–CO–

H2O–C3H6O]
+ (Fig. 6). The ion m/z 281 [M+H–H2O]

+ is also
observed, explained by elimination of water from the protonated
β-artemether.
3.3.2. Artemisinin
For artemisinin, the predominated peaks observed are m/z 283
(corresponding to the parent ion [M+H]+), m/z 265, m/z 248, m/z
237, m/z 219, m/z 209, m/z 191 and m/z 163. The m/z 145 is
reported above the reporting cut-off threshold (20% relative
abundance) with artemether and AHA, but is not observed as a
significant fragment in artemisinin. Due to its very characteristic
m/z values, artemisinin is expected to follow another fragmentation
pathway, different from β-artemether and its related impurities,
DHA, AHA and DKA. Following steps in the in-source fragmen-
tation pathway of artemisinin are proposed: m/z 265 [M+H–H2O]

+

and m/z 237 [M+H–H2O–CO]
+ (Fig. 7).



Fig. 5 Mass spectra of β-artemether (A) and artemisinin (B), together with structures allocated to the in-source fragments.
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4. Discussion

It is well-known that volumes of solution formation are not
additive, i.e., volume change is not conserved under the process
of solution formation, because the intermolecular forces of a
mixture are different from these forces in the pure substances. This
property is expressed by the partial molar volume, which is the
change in volume per mole compound added to a specific solvent
under defined temperature and pressure. Simple systems like
acetonitrile solutions in water have been investigated, and a partial
molar volume of around 45 mL/mol acetonitrile (at 298.15 K and
1 atm) has recently been calculated [49]. The partial molar volume
of solids is also a topic of current physico-chemistry research.
Nevertheless, in pharmaceutical analysis, the concept of the



Table 4 MS spectra of β-artemether and related substances.

Peaks (mz) observeda Compound

DKA-related DKA α-DHA β-DHA Artemisinin α-Artemether AHA β-Artemether

113.9 − − − + + − + −
145.1 − − − − − + + +
163.1 + + ++ ++ + ++ + +
182.4 − − − + − − − −
190.9 − − − + + − + −
192.8 − − − + − − − −
207.1 − − − − − + + −
209.3 − − − − + − − −
219.0 − − − − + − − −
221.1 ++ ++ ++ ++ − + ++ ++
224.7 − − − − − − + −
230.3 − − − − − + + +
237.0 − − − − ++ − − −
238.9 + + + + − + + +
241.5 − − − − − − + −
242.3 − − + + − − − −
246.1 − − − − + − − −
249.0 − − + + − + ++ +
265.1 − − − − ++ − − −
266.8 − − + + − + ++ +
282.9 − − − − ++ − − −
283.9 − − − − − + − −
315.8 − − − − − ++ − +

aReporting threshold: 20% relative abundance.
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partial molar volume is normally not of any concern, due to the
volumetric handling of liquid mixtures as extraction solvents,
together with a low quantity of excipients, which are moreover
often insoluble in the extraction solvent. However, these and other
solvent volume effects are no longer negligible in paediatric
formulations, which are currently being developed under regula-
tory supportive actions: they contain substantial amounts of
excipients compared to the API-quantity for dosing and child-
acceptability reasons. These high-bulk excipients are often mix-
tures of soluble and insoluble compounds in the analytical
extraction solvents. Consequently, in these cases, the final solvent
volume needs careful attention in quantitative analysis. First of all,
the dissolution of appreciable quantities of excipients like sucrose
will also influence the final volume: for simple aqueous sucrose
solutions, a partial molar volume of around 300 mL/mol sucrose
was recently determined, exhibiting an hydration number of
around 5, equivalent to approximately 10% water bound in similar
situations as in our case, leaving 90% of the water volume free
[50]. However, our analytical situation is more complex, as the
extraction solvent is a mixture of acetonitrile and water, and the
powder does consist not only of sucrose but of other soluble and
insoluble components as well. Our data indicate a more complex
“2-compartmental” solvent distribution, i.e., a free (available) and
a bound (unavailable) solvent fraction, which cannot completely
be explained alone by the partial molar volume data currently
available. There is a preferential, but not complete, binding of
water to the excipients: some water is still present in the freely
available fraction and some acetonitrile is present in the bound-
unavailable solvent fraction as well. There is an initial exchange of
excipient-bound water with pure acetonitrile, up to 10% water in
the extraction solvent, which keeps the freely available extraction
solvent constant. At increasing water content (above 10%) in the
extraction solvent, the volume of free solvent decreases. Moreover,
also the analyte itself plays an analytically relevant role, depending
on its physico-chemical solubility and hydrophobicity character-
istics. This is consistent with a recent explanation of concentration-
distance water-bound gradient from colloid surfaces [51]. It is
clear that small changes in extraction solvent composition used in
the analysis of paediatric formulations have major consequences.

The Prevail OA column was recently specifically designed and
up till now only used for the analysis of organic acids. Its proprietary
silica-based polar-embedded bonding chemistry enables the use of
highly aqueous eluents without stationary-phase dewetting. Com-
pared to other RP columns previously used in the analysis of 1,2,4-
trioxane derivatives, this column showed a significant improvement
in chromatographic performance compared to those previously
described and tested by us, i.e., Purospher Star, LiChrospher,
Microsorb. A recently reported method was only partly suitable for
the assay, characterised by very high asymmetry factors according to
regulatory pharmacopoeial criteria, and did not report any related
compound [39]. Using the Prevail OA column, dihydroartemisinin
(DHA) did show on-column epimerisation into its α- and β-form as
recently reported for other columns as well [52,53]. It was found that
other components in the analytical aliquot influenced this behaviour,
as demonstrated in Fig. 4: the chromatograms of a pure acetonitrile
reference solution (Fig. 4A) showed significant on-column epimer-
isation whilst this was not observed with a sample solution (Fig. 4C).
This warrants careful interpretation in the methodology development,
as not only the aging of the column but also the composition of the
analytical solutions will influence this epimerization behaviour. When



Fig. 6 Proposed fragmentation pattern of artemether, with the rupture of peroxide bridge as proposed in literature [48] (A), as currently
proposed (B).
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using the total area of the DHA epimers, our validation data showed
that unwanted and variable on-column process did not significantly
affect the reproducibility.

From the validation results (Table 3), it is concluded that the
newly developed HPLC stability-indicating method is suitable for
β-artemether assay in the 80–120% l.c. range, for DHA assay in
the 2–6% range, and for other related substances (α-artemether
and artemisinin) in the 0.1–0.3% l.c. range in paediatric powder
for oral suspension.

The major improvement of the developed method lies within its
selectivity, next to improved asymmetry factors and qualification
limits, allowing notably the identification and quantification of
β-artemether, but also of its related substances in bulky-excipients
containing paediatric powders for stability studies, where excipi-
ents and other APIs will degrade as well.

The trioxane derivatives possess rather non-specific UV spectra,
whereby the quantification of the β-artemether related degradation
products is hampered by the absence of a selective UV-chromophor.
Hence, false positive degradation peaks are a major problem in the
HPLC stability-profiling of the FDP’s. LC–MS analysis was
considered to be very helpful: by using the typical ESI-mass spectra
of the HPLC peaks, it was possible to confirm whether the HPLC-
peak is a β-artemether related impurity in real-life samples. Our
observation that MS detection is highly wanted, if not a requirement,
in the quality analysis of β-artemether and related trioxane drugs, is
recently acknowledged by the USP-MC monographs containing
β-artemether [54,55]. The observed m/z values are explained by
proposed fragmentation patterns as given in Fig. 6 for β-artemether
and Fig. 7 for artemisinin, respectively, and compared to those
already described in literature [56–59].

The proposed fragmentation pathway of the cationized β-
artemether (Li+, Na+ and K+ -salt adducts) revealed by Dos
Santos et al. [56] differs in the first fragmentation steps, i.e., they
did not detect no significant signals for [AHA+H]+ m/z 267 or
[DKA+H]+ m/z 239. This contrasts our observation, whereby m/z
267 and 239 are high intensity peaks, leading to the fragments
with the similar characteristic m/z values of 221 and 163. Their
hypothesis that artemether salt adducts undergo first isomerisation
through the rupture of the peroxide ring [56] is not observed or
supported by our data, as no observation was made of m/z 259 for
Li+-β-artemether salt adduct, which also corresponds with m/z-
values of 254 for H+, 271 for NH4

+, 276 for Na+ and 292 for K+.
Also the MS-spectra of the AHA and DKA-reference (see
Supplementary information) (Table 4) give extra supportive infor-
mation for structure elucidation of the β-artemether fragments by
their characteristic m/z values. The parent ion of AHA [AHA+H]+

with m/z 267 gives fragments with similar characteristics m/z values
of 249, 239 [DKA+H]+, 221 and 163, confirming the presence of



Fig. 7 Proposed fragmentation pattern of artemisinin, with the rupture of peroxide bridge as proposed in literature [48] (A), as currently
proposed (B).
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AHA in the MS-spectrum of β-artemether, meaning that the
peroxide bridge is still present in the first fragmentation step. The
differences in MS-spectra can be explained by differences between
mobile phase composition, aqueous–organic ratio, adduct-ion type
and concentration applied or present [60].

Moreover, α- and β-DHA with a m/z 285 corresponding to
[DHA+H]+ (Table 4), follow a similar fragmentation pattern, with
dehydration (–H2O) in the first step, leading to the same 9,10-
anhydroartemisinin (AHA) m/z 267 and diketoaldehyde (DKA) m/z
239. DKA is also present as a related impurity in the DHA drug
substance. Our findings are in line with the hypothetical fragmenta-
tion of DHA by Naik and co-workers [57]. Further elucidation of the
fragmentation yielded m/z 163 [DHA+H–H2O–CO–H2O–C3H6O]

+

and m/z 145 [DHA+H–H2O–CO–H2O–C3H6O–H2O]
+.

As mentioned in the previous section (see Section 3.3.2),
artemisinin seems to follow another fragmentation pathway,
different from β-artemether and its related derivatives (DHA,
AHA and DKA). Artemisinin shows very characteristic m/z values
of 283, 265, 237, 219 and 209. The product ion mass spectrum of
artemisinin observed by Xing et al. [58] leads to their proposed
fragmentation patterns of artemisinin and β-artemether (Figs. 6A
and 7A). A variant structure for m/z 163 was proposed. Artemi-
sinin differs only in its typical carbonyl group from the other
artemisinin derivatives, whereby difference in the fragmentation
between artemisinin and β-artemether can be explained by an
altered carbocation stability of the fragments. The typical carbonyl
group of artemisinin has a great influence on its fragmentation
process, leading to a various protonation of the parent molecule
during ESI-process and a various manner of peroxide bridge
rupture [61].

Finally, there is no single characterstic m/z value, which can
selectively identify the individual impurities. However, the
combination of different m/z values can be used as qualifiers of
β-artemether and its related (degradation) products. Using the
characteristic in-source fragmentation, extracted ion or selected ion
monitoring with the selected m/z values of 267, 239, 221 and 163
can thus be applied in complex mixtures, e.g., paediatric powder
for oral suspension, to collect or confirm the β-artemether relevant
peaks. Using these settings, a real-life ICH-accelerated stability
sample (T6 months; 40 1C/75% RH) could be evaluated for the peak
assignments of the β-artemether degradation products.
5. Conclusions

This study reports for the first time a complete analytical
characterisation of β-artemether and related compounds in a powder
for oral suspension, which can be used for regulatory purposes.
Volume effects are observed during the sample preparation of
these paediatric formulations containing low API and high-bulk
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excipient concentrations. Our results show that water is preferentially
used up and/or adsorbed from the extraction solvent by pharmaceu-
tical excipients, diminishing the freely available solvent and conse-
quently increasing the apparent API concentration. The best
extraction solvent for β-artemether and its related impurities was
pure acetonitrile. Chromatography using a gradient elution on a
Prevail OA column proved to be highly selective, and combined
with appropriate sample preparation steps, this method can be
employed for regulatory stability and quality control analysis. By
adding MS analysis of the FPP, it was possible to acquire selective
MS-data on the β-artemether degradants, whereby a fragmentation
pathway of β-artemether, its related degradants and artemisinin is
proposed.
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