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Abstract: Synchronous correlation brain and muscle oscillations during motor task execution is
termed as functional coupling. Functional coupling between two signals appears with a delay time
which can be used to infer the directionality of information flow. Functional coupling of brain and
muscle depends on the type of muscle contraction and motor task performance. Although there have
been many studies of functional coupling with types of muscle contraction and force level, there
has been a lack of investigation with various motor task performances. Motor task types play an
essential role that can reflect the amount of functional interaction. Thus, we examined functional
coupling under four different motor tasks: real movement, intention, motor imagery and movement
observation tasks. We explored interaction of two signals with linear and nonlinear information flow.
The aim of this study is to investigate the synchronization between brain and muscle signals in terms
of functional coupling and delay time. The results proved that brain–muscle functional coupling and
delay time change according to motor tasks. Quick synchronization of localized cortical activity and
motor unit firing causes good functional coupling and this can lead to short delay time to oscillate
between signals. Signals can flow with bidirectionality between efferent and afferent pathways.

Keywords: cortico-muscular coherence; electroencephalogram; electromyogram; functional coupling;
mutual information; motor task performance; delay time

1. Introduction

Functional coupling of brain and muscle signals usually appear during voluntary
movement. Investigating the coupling between brain and muscle signals is important
for rehabilitation of stroke patients and future brain–computer interface (BCI) technol-
ogy [1]. Functional coupling of brain and muscle signals is usually calculated by using
cortico-muscular coherence (CMC). CMC has been recognized as a potential biomarker
for recovery from stroke [2–5]. It is a technique for measuring the strength of correlations
between two signals in the frequency domain [6]. The real-world applications of functional
coupling and CMC have been found in the invention of movement intention detectors,
biomedical robotics, prosthetic devices for people with disabilities and amputees, rehabili-
tation systems for the stroke patients, in the construction of cortical-muscular functional
networks and in numerous research studies for investigating EEG/EMG controllers with
different kinds of classifiers etc.

Concerned with functional coupling of brain and muscle signals, previous studies
have used positron emission tomography (PET), transcranial magnetic stimulation (TMS),
functional magnetic resonance imaging (fMRI) and electroencephalogram (EEG) to in-
vestigate coherence mechanisms of motor cortex in patients [7,8]. Some studies initially
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used magnetoencephalography-electromyogram (MEG-EMG) and electrooculography-
electromyogram (ECoG-EMG) to report the functional coupling [9,10]. The studies have
performed EEG-EMG correlation analysis with and without the neurofeedback experi-
mental paradigm [11,12]. EEG-EMG coherence was calculated with three types of hand
movement tasks such as clench fist, wrist flexion and wrist extension by using magnitude
squared coherence (MSC) and wavelet coherence [13]. However, this study used only linear
correlation methods and lack of studying different frequencies analysis with the adopted
SVM classifier. The researchers constructed the cortical-muscular functional network and
classified the accuracy of movements with Fisher and artificial neural network. It still needs
better optimization methods in order to simplify the proposed functional networks for
real-world applications [14]. Although there were well-documented findings of functional
coupling with maintained voluntary contraction, executed precision-pinch tasks, static
isometric contraction tasks, wrist flexion and extension tasks with different classifiers,
EEG-EMG functional coupling with various motor tasks still needs to be studied to achieve
reliable evidence for real-world applications.

One of the major concerns about functional coupling is band frequencies. During mo-
tor task performance, cognitive brain signals produce alpha (8–12 Hz) and beta (13–30 Hz)
waves and muscle activities produce beta (13–30 Hz) and piper (30–60 Hz) rhythms [15,16].
Coherence occurs in the beta band ranges of both low (13–21 Hz) and high (21–31 Hz)
beta in flexor and extensor muscle regardless of contraction [17]. Moreover, studies have
concluded that alpha band coherence shows an EMG reflecting ascending or feedback
interactions, and gamma band coherence shows an EMG reflecting descending or feed-
forward interactions [18]. Coherence values of 4–6 Hz and 8–12 Hz are observed when
Parkinson’s disease and essential tremor subjects are subjected to the experiment [19–21].
Conversely, the coherence value was found to be in the higher beta/low gamma range
(30–45 Hz) during dynamic motor tasks [22,23]. Moreover, effects of attention and precision
of exerted force can cause beta band EEG-EMG synchronization [24]. The studies indicated
that EEG-EMG coherence was detected in the motor imagery condition, while the other
studies pointed out that no EMG signals occurred during the motor imagery [3,25–27].
Thus, there remains many doubted issues of functional coupling in motor imagery tasks.
EMG rectification is one of the problems in coherence analysis. Rectification can cause
a significant distortion of the frequency content of an EMG signal [28]. The functional
coupling of two signals depends on the specific band frequency ranges, force level, age
correlation and use of the rectification process for EMG signals [29,30].

From the perspective of nonlinear correlation analysis, mutual information can pro-
vide a measure of nonlinear dependency between two signals [31]. Mutual information can
be used to investigate information transmission between EEG-EEG [32,33], delay time and
directionality inference between EEG-EMG [27,34]. However, there is a lack of research
into the comparison of coupled information across tasks with mutual information meth-
ods. The estimation of delay time between two signals can facilitate understanding of the
physiology of a given system and information on conduction velocity. Previous studies
have indicated that there will be time lag for descending oscillation (from brain to muscle)
and ascending oscillation (from muscle to brain) between the sensorimotor cortex and the
peripheral muscles [4,35]. The functional coupling of two signals with a delay time usually
represents those signals’ propagation time [36–38]. As the cortical events propagate to the
periphery and the motor cortex also receives input from the periphery, more research is
still needed in order to explore the cortico-muscular synchronization from the perspective
of delay time with directionality inference [39,40]. Most of the previous studies used the
cross correlation method [27] and phase-based methods [34,41] in finding the delay time
between two signals; however, a lack of directionality inference was the negative aspect of
these methods.

The aim of this proposed study is to fulfill the above unclear facts and remaining
problems for functional coupling during different motor tasks. In previous studies, lack
of various motor tasks with nonlinear correlation methods, inconsistent occurrence of
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coherences in different frequency ranges, unjustification of rectified EMG issues and mo-
tor imagery condition, attention and inattention effects on coupling level, task-related
performances and information flow directionality between brain and muscles were the
main motivations of this study and research. Thus, we focused on electroencephalography-
electromyogram (EEG-EMG) functional coupling with linear and nonlinear information
flow in four different types of motor task condition, such as hand grasping real move-
ment (RM), movement intention (Inten), motor imagery (MI) and movement observation
only looking at virtual hand in three dimensional head mounted display (3D-HMD) en-
vironment (OL). The abbreviated words RM, Inten, MI and OL for each task were used
for the whole discussion of this study. We accounted for the MI and OL tasks together
with RM and Inten motor tasks for comparison of functional coupling and delay time
as a new experimental task-related perspective based on the state of the art as listed in
Appendix A Table A1. To infer directionality of information flow between two signals,
we investigated the delay time with the use of lagged power correlation in the specified
coupling frequency bands.

The main objective of this study was to investigate the synchronization of brain and
muscle signals and coupling delay time that can change based on four different motor tasks.
The research facts of this study were aimed to be applied in the rehabilitation systems of
stroke patients for clinical applications in future. If patients could move their hand or arm,
a correlation of brain and muscle signals might be observed. Then, we can deduce the
amount of delay time for that information flow to judge whether the patients recover from
stroke level or not during the rehabilitation period. Furthermore, this study evidence can be
used in the design of movement intention detectors with various classifiers and prosthetic
devices for people with disabilities. Thus, this study proved that EEG-EMG functional
coupling and delay time change based on the motor task performance as a preliminary
study. The remainder of this paper is organized as follows. Section 2 presents experimental
materials in detail. Section 3 discusses methods of the study. Section 4 describes the results.
Section 5 presents the discussion. Section 6 provides the conclusions.

2. Materials
2.1. Participants

This experiment comprised a total of 13 participants who were right-handed. All
participants were from Kyushu University and ranged in the age from 21 to 28 years
(23.92 ± 1.754 years, mean ± SD). Among the 13 participants, two were females and eleven
were males. None of the participants had a physical disorder or brain damage in the past.
The study was conducted in accordance with the ethical principles of Kyushu University
and the Declaration of Helsinki. The participants provided written informed consent before
the experiment.

2.2. Experimental Setting

We used g.USBamp of g.tec medical engineering company to record the EEG and
EMG signals. Ten EEG channels and three surface EMG (sEMG) channels were used.
EEG electrodes were Fp1, Fp2, Cz, FC3, C3, CP3, FC4, C4, CP4, and Pz. Bipolar sEMG
electrodes were put on the brachioradialis muscle, flexor carpi ulnaris muscle and flexor
carpi radialis muscle, respectively. We recorded both EEG and EMG signals with 1200 Hz
sampling rate. All electrodes’ impedance values were under 1 kΩ. To suppress the power
line noise interferences, the notch filter 60 Hz was used. The A1 electrode was set as a
reference and AFz was set as a ground. In this experiment, we used Oculus company’s
oculus rift head mounted display, HMD to make a virtual reality environment. We made
the virtual reality environment by using Unity (2019.2.9f1) software and designed a place
mimicking a real experimental room in a three-dimensional head mounted display (3D-
HMD). We created hand models with MakeHuman software and Blender software for task
instructions. After making a file of recording movement, we used this file as an input to the
Unity which played this file by using trigger. We used two computers in this experiment.
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One computer was used for signal recording and the other one was used for making a
virtual reality environment.

2.3. Experimental Design and Procedures

We displayed the created hand models in virtual reality by using head mounted
display, HMD for motor task instructions and motor learning of hand grasping tasks. We
asked the participants to put both hands on the table in the same position of hand in a
virtual reality environment. We placed the towel under the participant’s hand in order
not to include force. To reduce physiological artifacts, we asked the participant not to
blink, clenching their jaw or make unnecessary movements during recording. Firstly, we
demonstrated the motor tasks presented in the work before data acquisition to acclimatize
participants with the setup. Then, the instructions for the tasks were shown on the monitor
screen via head mounted display, HMD in a virtual reality environment. Figure 1 shows
the experimental design.
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Figure 1. Experimental design for motor task performance using the 3D-HMD condition in the VR environment.

We used four different motor tasks. RM is a task in which a participant moves his
or her dominant hand in real-hand grasping movement. Inten is a kind of isometric
contraction that involves the static contraction of a muscle without any visible movement
in the angle of the joint. MI is a task in which participants carried out a mental process by
rehearsing or simulating a given motor action. OL is a task in which participants just looked
at virtual hand’s movement without any brain imaging. To ensure the absence of bias, we
designed the motor task with four patterns: Inten→OL→RM→MI, OL→RM→MI→Inten,
RM→MI→Inten→OL, and MI→Inten→OL→RM. The participants performed one pattern
randomly selected from these four patterns. Figure 2 shows the task flow of the experiment.
There was a 2 min rest period as a baseline. Then, there were 8 s of rest, 2 s of being ready
and 5 s of the task in 1 trial. We designed a total of 40 trials with 4 sets in each motor task.
A fixation cross was shown on the virtual palm during rest, which disappeared during the
2 s ready stage. The virtual hand grasping appeared on the monitor in HMD during 5 s
task. The time to break between each motor task was 5 min, then RM, Inten, MI and OL
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tasks were performed, respectively. Figure 3 shows the first ten trials data of one subject in
each task for both EEG and EMG data.
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2.4. Data Analysis

Among 10 channels of EEG data, we chose only the contralateral brain motor cortex,
C3 as it was mainly concerned with body movement in the brain [13]. Among three EMG
channels, we used only flexor carpi ulnaris muscle since this muscle was directly involved
in hand grasping movement. Since this study would like to emphasize the coupling and
their delay time change based on the tasks and bands, we chose only a single electrode of
EEG and EMG at this time. In data preprocessing, we resampled both signals to 256 Hz for
reducing computation speed and time. We chose the bandpass filter range to 1 to 100 Hz
for both signals. The EEG data that contained artifacts was determined by visual inspection
with the use of EEGLAB. We used ICA as it is an effective tool for rejecting several types
of non-brain artifacts. To remove eye-blinking and muscle noises, the data that were over
the limit ±100 µV were excluded. We rejected at most one or two ICA components that
apparently affect the EEG channel data. Then, we extracted EEG data. For EMG signals,
the non-rectified EMG signals were filtered with selected bandpass filter and then exported
to further analysis [2,9].

For statistical analysis, firstly, we used the Shapiro–Wilk normality test to verify the
normality of the data with (p > 0.05). We used bootstrap estimation for each ANOVA test as
it is an effective method for creating the non-normal data to normality. We further applied
the generalized linear model together with one-way ANOVA for achieving more specific
information between different variables. The one-way ANOVA was performed based on
frequency bands and designed tasks. The normality test for the mutual information showed
a non-normal distribution with (p < 0.05). The Kruskal–Wallis test was used to compare
more than two groups in the nonparametric method. For the delay time comparison of the
beta and gamma bands, one-way ANOVA was performed after conducting the Shapiro–
Wilk test for normality. We used LSD and Bonferroni correction methods for all pairwise
comparisons with p < 0.05. IBM SPSS 20 (SPSS Inc., Chicago, IL, USA) was used for all
statistical comparisons.

3. Methods
3.1. Functional Coupling of Brain and Muscle Signals with Linear Correlation Analysis

Coherence is the principal measure of linear correlation between two signals in the
frequency domain. The range of coherence is between zero and one, where one indicates a
perfect linear relationship and zero indicates two signals that are not linearly correlated at
that frequency.

To determine functional coupling between two signals, we calculated the EEG-EMG
coherence for each task. After preprocessing the data, we took only 0–5-s EEG and non-
rectified EMG data. For a single trial, we calculated the frequency space relationships
between two data sets of EEG and EMG signal with a 19-ms non overlapping Hanning
window and a frequency resolution of 2 Hz then all segments were transformed to the
frequency domain using the fast Fourier transform. We then computed auto power spectral
Sxx , Syy and cross power spectral Sxy for both signals. After this, we calculated the
coherence for one trial. We calculated coherence values between EEG and EMG at the
frequency, f, for every trial and then averaged the data to access the changes in coherence
by using Equation (1).

Cohxy(f) =
∣∣Sxy(f)

∣∣2/Sxx(f)× Syy(f) (1)

The coherence value significance level was determined based on the confidence limit,
CL as in Equation (2).

CL = 1 − (1 − α) 1(L−1) (2)
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where L represents the number of data segments used in the coherence calculation and α is
a confidence interval and is typically 95% [13].

Acoh = ∑
f

∆f(Cohxy(f) − CL) (3)

For statistical comparison, the coherence areas for each frequency band range were
calculated by using the formula as in Equation (3), where ∆f represents frequency resolution,
f is the frequency of the calculated band, and Cohxy(f) is the coherence value.

3.2. Functional Coupling of Brain and Muscle Signals with Nonlinear Correlation Analysis

The coherence method is a linear method and it cannot be used for the study of com-
plex and nonlinear brain dynamics. Mutual information is a flexible analysis framework
that can be applied to identify the patterns of connectivity regardless of the distributions of
the data, for example, linear, nonlinear and circular [36].

To examine the functional coupling with nonlinear correlation analysis, we computed
the mutual information between EEG, C3 versus EMG signals during four different motor
task types. The data from two electrodes was computed with a sliding 100 ms segment
and a step size of 50 ms over all trials in the data range of −2 s to 5 s time series, then we
calculated the amount of mutual information between two signals. To calculate the mutual
information, the entropy of the signals are required to compute. Thus, we firstly bin the
data to create a histogram with Matlab function hist. Next, we compute the probability that
a value of the data would fall into each bin. Then, we multiply the probability value by the
logarithm-base-2 of that probability value and sum all probability values for entropy [36].
After that, we calculated mutual information between EEG and EMG. We compared the
amount of mutual information across all motor tasks by using Equation (4).

MI(X, Y) = H(X) + H(Y)−H(X, Y)=
m

∑
j=1

n

∑
i=1

p(xi, yj) log2

[
p
(

xi, yj

)
/p(xi)p

(
yj

)]
(4)

3.3. Delay Time Investigation with Nonlinear Mutual Information Flow

The delay time of mutual information can be used to infer the directionality of infor-
mation flow between two signals [36] (p. 404). The coherence and mutual information of
two signals do not appear at the same time but with a little delay time that can tell us the
possible information processing of motor tasks and flow directionality of two signals. In
previous studies, delay time during functional coupling was investigated with the phase-
based method, Hilbert transform method and cross correlation analysis [27,41]. However,
these methods limit its applicability to the narrow band coherence and existence of mini-
mal phase relation in two signals and they are not be capable to infer the directionality of
information flow. Thus, we investigated the delay time with lagged power correlation in
specific frequency bands to infer the direction of information flow between efferent and
afferent pathways.

Since the highest coherence values were occurred in the range of beta (13–30 Hz) and
gamma (31–50 Hz) in results, we calculated the delay time of EEG and EMG signals in
those bands by making power fluctuations time series using Morlet wavelet transformation.
We considered two time series X(t) and Y(t) (t = 1 . . . T) at T discrete points [42]. First,
we constructed the time-frequency representation of beta and gamma bands based on
the Morlet wavelet decomposition, which provides an optimal concentration in time and
frequency [34]. Morlet wavelet, ω(t,f) in terms of time and frequency representation is
given as in Equation (5).

ω(t, f) = Ae(−t2/2σ2
t )e(2iπft), (5)
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We calculated the convolution of the wavelet with the signal from the epoch at time
instant, t and every frequency, f. The square norm of the convolution was the time varying
energy of the both EEG and EMG signals at a specific frequency, as in Equation (6).

|Ex(t, f)| =
∣∣ω(t, f) ∗ xq(t)

∣∣2, (6)

We computed mutual information repeatedly for the multiple time lags by taking the
shifting one signal with respect to another by using Equation (7). Then, it was graphed by
calculating mutual information between two signals by fixing EEG signals and measuring
the information according to the delay time in EMG signals [36] (p. 404). If the information
present at the location EEG is transmitted to location EMG, there will be a peak in the
curve with TDMI(X(t), Y(t + τ)) at τ > 0. If the information present at the location EMG is
transmitted to location EEG with delay time TDMI(X(t), Y(t + τ)) at τ < 0. A peak that occurs
for τ = 0 implies that a zero delay for the EMG and EEG may be due to the nullification of
two strong counteracting forces driven from EEG to EMG and opposing drive from EMG
to EEG [37].

TDMI(X(t), Y(t + τ)) = H(X(t)) + H(Y(t + τ))−H(X(t), Y(t + τ))
= ∑

n
p(x(t), y(t + τ))× log2[p(x(t), y(t + τ))/p(x(t), y(t + τ))] (7)

4. Results
4.1. Comparison of EEG-EMG Coherence in Each Motor Task Based on Bands

To predict the pattern of coherence clearly, the coherence of one subject’s data in RM
task was shown in Figure 4. The highest coherence appeared at ~38 Hz during the task. As
we had already mentioned above, the functional coupling can happen in different specified
frequency bands within different muscle contraction types. Thus, we firstly checked the
averaged values of coherence during coupling in delta (0.5–3.5 Hz), theta (4–7.5 Hz), alpha
(8–12 Hz), beta (13–30 Hz) and gamma (31–50 Hz) ranges for all motor tasks. The first
hypothesis was that the functional coupling of brain and muscle signals in five different
bands was not significantly different in each RM, Inten, MI and OL tasks.

We used the Shapiro–Wilk normality test to check the normality distribution in the
statistical analysis. All the motor tasks showed normality with p > 0.05 in all bands. Then,
we performed a one-way ANOVA test with bootstrap estimation and generalized linear
model for the comparison of coherence based on bands in each motor task. The results
rejected the null hypothesis and showed a significant difference among all band groups
with one-way ANOVA (F(4,60) = 3.159, p = 0.02, η2

p = 0.174) in the RM task. The LSD
post-hoc test showed a significant difference of coherence (mean ± SE) between the alpha
band (0.0503± 0.0029, p = 0.018) and beta band (0.0618± 0.0018). There was also significant
difference between the delta band (0.0549 ± 0.0050, p = 0.047), theta band (0.0534 ± 0.0043,
p = 0.022) and alpha band (0.0503 ± 0.0029, p = 0.004) compared to the gamma band
(0.0645 ± 0.0012).

The coherences in Inten task also rejected the null hypothesis with a significant
difference one-way ANOVA (F(4,60) = 4.578, p = 0.003, η2

p = 0.234). The LSD post-
hoc test resulted in a significant difference of coherence (mean ± SE) between the delta
band (0.0540 ± 0.0030, p = 0.029), theta band (0.0543 ± 0.0018, p = 0.036), and alpha band
(0.0522 ± 0.0023, p = 0.007) compared to the beta band (0.61162 ± 0.0018). There was also
a significant difference among the delta band (0.0540 ± 0.0030, p = 0.006), theta band
(0.0543 ± 0.0018, p = 0.008), and alpha band (0.0522 ± 0.0023, p = 0.001) compared to the
gamma band (0.0631 ± 0.0019).

However, there was no significant difference among the five different bands with
one-way ANOVA (F(4,60) = 0.140, p = 0.967, η2

p = 0.009) in the MI task and (F(4,60) = 0.926,
p = 0.455, η2

p = 0.058) in the OL task, as shown in Figure 5. Thus, Bonferroni correction
post-hoc tests were used for multiple comparisons of MI and OL tasks. According to the
results, we could say that the functional coupling of two signals can occur in all types of
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band but with different amounts. The highest coherences appeared in beta and gamma
bands of RM and Inten tasks while all five bands had low coherences in MI and OL tasks.

Sensors 2021, 21, 4380 8 of 24 
 

 

    |E (t, f)| =  |ω(t, f)  ∗  x (t)| , (6)

We computed mutual information repeatedly for the multiple time lags by taking the 
shifting one signal with respect to another by using Equation (7). Then, it was graphed by 
calculating mutual information between two signals by fixing EEG signals and measuring 
the information according to the delay time in EMG signals [36] (p. 404). If the information 
present at the location EEG is transmitted to location EMG, there will be a peak in the 
curve with TDMI(X(t), Y(t + τ)) at τ > 0. If the information present at the location EMG is 
transmitted to location EEG with delay time TDMI(X(t), Y(t + τ)) at τ < 0. A peak that 
occurs for τ = 0 implies that a zero delay for the EMG and EEG may be due to the nullifi-
cation of two strong counteracting forces driven from EEG to EMG and opposing drive 
from EMG to EEG [37]. TDMI X(t), Y(t + τ)  = H X(t) + H Y(t + τ) − H X(t), Y(t + τ)   =  (x(t), y(t + τ))  × log [p(x(t), y(t + τ))/p(x(t), y(t + τ))] (7)

4. Results 
4.1. Comparison of EEG-EMG Coherence in Each Motor Task Based on Bands 

To predict the pattern of coherence clearly, the coherence of one subject’s data in RM 
task was shown in Figure 4. The highest coherence appeared at ~38 Hz during the task. 
As we had already mentioned above, the functional coupling can happen in different 
specified frequency bands within different muscle contraction types. Thus, we firstly 
checked the averaged values of coherence during coupling in delta (0.5–3.5 Hz), theta (4–
7.5 Hz), alpha (8–12 Hz), beta (13–30 Hz) and gamma (31–50 Hz) ranges for all motor tasks. 
The first hypothesis was that the functional coupling of brain and muscle signals in five 
different bands was not significantly different in each RM, Inten, MI and OL tasks. 

 
Figure 4. EEG-EMG coherence of one subject data in RM task. Figure 4. EEG-EMG coherence of one subject data in RM task.

Sensors 2021, 21, 4380 9 of 24 
 

 

We used the Shapiro–Wilk normality test to check the normality distribution in the 
statistical analysis. All the motor tasks showed normality with p > 0.05 in all bands. Then, 
we performed a one-way ANOVA test with bootstrap estimation and generalized linear 
model for the comparison of coherence based on bands in each motor task. The results 
rejected the null hypothesis and showed a significant difference among all band groups 
with one-way ANOVA (F(4,60) = 3.159, p = 0.02, η =  0.174) in the RM task. The LSD post-
hoc test showed a significant difference of coherence (mean ± SE) between the alpha band 
(0.0503 ± 0.0029, p = 0.018) and beta band (0.0618 ± 0.0018). There was also significant dif-
ference between the delta band (0.0549 ± 0.0050, p = 0.047), theta band (0.0534 ± 0.0043, p = 
0.022) and alpha band (0.0503 ± 0.0029, p = 0.004) compared to the gamma band (0.0645 ± 
0.0012). 

The coherences in Inten task also rejected the null hypothesis with a significant dif-
ference one-way ANOVA (F(4,60) = 4.578, p = 0.003, η =  0.234). The LSD post-hoc test 
resulted in a significant difference of coherence (mean ± SE) between the delta band 
(0.0540 ± 0.0030, p = 0.029), theta band (0.0543 ± 0.0018, p = 0.036), and alpha band (0.0522 
± 0.0023, p = 0.007) compared to the beta band (0.61162 ± 0.0018). There was also a signifi-
cant difference among the delta band (0.0540 ± 0.0030, p = 0.006), theta band (0.0543 ± 
0.0018, p = 0.008), and alpha band (0.0522 ± 0.0023, p = 0.001) compared to the gamma band 
(0.0631 ± 0.0019). 

However, there was no significant difference among the five different bands with 
one-way ANOVA (F(4,60) = 0.140, p = 0.967, η =  0.009) in the MI task and (F(4,60) = 0.926, 
p = 0.455, η = 0.058) in the OL task, as shown in Figure 5. Thus, Bonferroni correction 
post-hoc tests were used for multiple comparisons of MI and OL tasks. According to the 
results, we could say that the functional coupling of two signals can occur in all types of 
band but with different amounts. The highest coherences appeared in beta and gamma 
bands of RM and Inten tasks while all five bands had low coherences in MI and OL tasks. 

 
Figure 5. Comparison of the averaged coherence based on frequency band in four motor tasks. Error bars show the stand-
ard error of the mean. * p < 0.05 ** p < 0.01. 

  

Figure 5. Comparison of the averaged coherence based on frequency band in four motor tasks. Error bars show the standard
error of the mean. * p < 0.05 ** p < 0.01.



Sensors 2021, 21, 4380 10 of 24

4.2. Comparison of EEG-EMG Coherence in Beta Band and Gamma Bands Based on Motor Tasks

As the higher coherences were detected in the beta and gamma bands, we selected
these two bands among five bands and then compared the averaged coherence again based
on the tasks in all subjects. Thus, we hypothesized again that functional coupling coherence
between cortex and muscle in beta and gamma bands was not statistically significantly
different across four types of motor tasks.

However, the results also rejected the null hypothesis. The higher coherence occurred
in only RM and Inten tasks in both band ranges, as shown in Figure 6a. In the beta
band, we could clearly observe the averaged coherence amount of RM, Inten, MI and OL
tasks with a significantly different task × coherence value of (F(3,48) = 5.145, p = 0.004,
η2

p = 0.243) in the ANOVA test. The LSD post-hoc test showed a significant difference
of coherence (mean ± SE) between the MI task (0.0550 ± 0.0015, p = 0.004) and OL task
(0.0557 ± 0.0011, p = 0.008) compared to the RM task (0.0618 ± 0.0017), and between the
MI task (0.0550 ± 0.0015, p = 0.008) and the OL task (0.0557 ± 0.0011, p = 0.017) compared
to the Inten task (0.0611 ± 0.0018). There was no statistically significant difference between
the RM task and Inten task (p = 0.762).

In the gamma band, the result also showed high coherence in the RM and Inten tasks
rather than MI and OL tasks, with a task × coherence value of one-way
ANOVA(F(3,48) = 9.812, p = 0.001, η2

p = 0.380). Then, the LSD post-hoc test showed
a significant difference between the MI task (0.0535 ± 0.0117, p < 0.001) and OL task
(0.0568 ± 0.0016, p = 0.002) compared to the RM task (0.06455 ± 0.0011) and MI task
(0.0535 ± 0.0117, p < 0.001) and OL task (0.0568 ± 0.0016, p = 0.011) compared to the Inten
task (0.0631 ± 0.0199) in the gamma band. As with the beta band, there was no statistically
significant difference between the RM task and Inten task in gamma band (p = 0.530).

To be able to check the individual level of the independent variables and to look at
the confidence interval in terms of true mean values for coherence, we also performed the
95% CI of the within-subject standard error estimation of coherences across the tasks in
both beta and gamma bands as shown in Figure 6b. Finally, to evaluate the magnitude and
variability of coherence across tasks, we further constructed box and whisker plots which
depicted the mean coherence obtained within two frequency bands of beta and gamma, as
shown in Figure 7. The changed coherence in all subjects was compared across each task.
The results confirmed that the functional coupling or interaction between brain and muscle
signals can be greater in the RM and Inten tasks rather than the other MI and OL tasks if
two signals synchronized well during the motor tasks execution. These results confirmed
again that the functional coupling of EEG-EMG change based on motor task performance.



Sensors 2021, 21, 4380 11 of 24Sensors 2021, 21, 4380 11 of 24 
 

 

 
(a) 

 
(b) 

Figure 6. Comparison of the averaged coherence in beta band and gamma band based on motor tasks: (a) The top and 
bottom of each box represent the 25th and 75th percentiles, respectively. Cross sign inside each box represents the mean 
value. The horizontal black line represents the median. The whiskers are drawn from the ends of the interquartile ranges 
to the minimum and maximum values. * p < 0.05 ** p < 0.01. (b) Circle marked points represent the means and bars of these 
points represent the 95% CI of the within-subject standard error. 

Figure 6. Comparison of the averaged coherence in beta band and gamma band based on motor tasks: (a) The top and
bottom of each box represent the 25th and 75th percentiles, respectively. Cross sign inside each box represents the mean
value. The horizontal black line represents the median. The whiskers are drawn from the ends of the interquartile ranges to
the minimum and maximum values. * p < 0.05, ** p < 0.01. (b) Circle marked points represent the means and bars of these
points represent the 95% CI of the within-subject standard error.



Sensors 2021, 21, 4380 12 of 24Sensors 2021, 21, 4380 12 of 24 
 

 

  
(a) (b) 

  
(c) (d) 

   
(e) (f) 

Figure 7. EEG-EMG coherence comparison across all subjects in beta band and gamma band: (a) RM task versus Inten task; (b) RM 
task versus MI task; (c) RM task versus OL task; (d) Inten task versus MI task; (e) Inten task versus OL task; (f) MI task versus OL 
task. * p < 0.05 ** p < 0.01. 

4.3. Comparison of EEG-EMG Mutual Information Based on Motor Tasks 
Since coherence is a linear method and it cannot be applied for the complex brain and 

muscle signals, we checked the mutual information across all four kinds of motor task 
performance. Figure 8 shows the result of mutual information amount in one subject. The 
amount of information in the RM task increased during the 5 s task after instructions be-
gan. The Inten task also showed a greater amount of mutual information during the 5 s 
motor task as nearly the same result of RM. However, the amount of mutual information 
was low during the MI and OL tasks. There were small fluctuations concerned with the 
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showed that there was very low functional coupling between brain and muscle signals if 
there was no actual movement and intention to move. The nonlinear mutual information 
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Figure 7. EEG-EMG coherence comparison across all subjects in beta band and gamma band: (a) RM task versus Inten task;
(b) RM task versus MI task; (c) RM task versus OL task; (d) Inten task versus MI task; (e) Inten task versus OL task; (f) MI
task versus OL task. * p < 0.05, ** p < 0.01.

4.3. Comparison of EEG-EMG Mutual Information Based on Motor Tasks

Since coherence is a linear method and it cannot be applied for the complex brain
and muscle signals, we checked the mutual information across all four kinds of motor
task performance. Figure 8 shows the result of mutual information amount in one subject.
The amount of information in the RM task increased during the 5 s task after instructions
began. The Inten task also showed a greater amount of mutual information during the 5 s
motor task as nearly the same result of RM. However, the amount of mutual information
was low during the MI and OL tasks. There were small fluctuations concerned with the
subjects’ motor tasks preparation and learning before the stimulus time point. The results
showed that there was very low functional coupling between brain and muscle signals if
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4.4. Comparison EEG-EMG Averaged Mutual Information Across All Subjects

We calculated the averaged mutual information across all subjects. In the results, the
RM showed the highest amount of mutual information during the 5 s motor task, then the
Inten task followed, with the second highest amount of information between brain and
muscle signals. Then, the MI and OL tasks showed a slight increase in mutual information
in averaged data, and this might concern the subjects achieving focused attention and
sensory motor integration after some period of stimulus, as shown in Figure 9. In addition,
there were some fluctuations for movement preparation before the subjects performed
the tasks.

For statistical analysis, the further null hypothesis was that functional coupling be-
tween brain and muscle signals was not different across motor tasks in nonlinear mutual
information. We took only the mean absolute value of mutual information from the 0–5 s
data. According to the Shapiro–Wilk normality distribution test, the results showed that
mutual information data were not distributed with p < 0.05. Thus, we had used the
nonparametric Kruskal–Wallis test and independent-sample Kruskal–Wallis test for mul-
tiple group comparisons. We rejected the null hypothesis with a significant difference
in mutual information across the four motor tasks (Chi square = 16.65, p = 0.001, df = 3).
There was a significant difference in mutual information (mean ± SE) between the MI task
(0.0111 ± 0.0033, p = 0.042) and OL task (0.0099 ± 0.0041, p < 0.001) compared with the
RM task (0.0372 ± 0.0064) and between the MI task (0.0111 ± 0.0033, p = 0.023) and OL
task (0.0099 ± 0.0041, p = 0.002) compared with the Inten task (0.0167 ± 0.0029), as shown
in Figure 10. There was no statistically significant difference between RM task and Inten
task (p = 0.230). We could say that the more synchronized the cortical neurons and motor
firing units inside the cell during tasks, the higher the functional coupling between brain
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and muscle signals. Thus, the greater amount of functional coupling between two signals
totally depend on the motor tasks.
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4.5. Calculation Delay Time between Brain Motor Cortex and Peripheral Muscle

We finally investigated whether a good correlation of two signals would require a
smaller delay time in signal transmission from one to each other or not. Based on the
occurrence of high coherence within the frequency ranges of beta (13–30 Hz) and gamma



Sensors 2021, 21, 4380 15 of 24

(31–50 Hz), the delay time values were calculated to determine the signal propagation and
interaction time from the motor cortex to the muscle periphery or the muscle periphery to
the motor cortex. In the calculation, a positive value of delay indicates that the time series
of EMG is in advance; a negative value of delay indicates that the time series of EEG is
in advance [36,38]. The results of delay time mutual information in one subject data for
the beta and gamma bands of RM task was shown in Figure 11. Based on the results, we
could infer that information flow direction with (−)20-ms lagged time from peripheral
muscle to motor cortex in beta band and (+)15-ms lagged time from cortex to muscle in
gamma band.
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We reported delay time values of each subject across all motor tasks in both beta and
gamma ranges in Table 1. According to the results, the averaged delay time in the RM
and Inten tasks was in the range from 15–25 ms, in agreement with [4]. Conversely, the
delay time in the no movement tasks, such as the MI and OL conditions, were higher than
those in the RM task and Inten task in both beta and gamma bands. The amount of delay
time in the gamma band also occurred with a smaller amount of mutual information if we
compared it with the beta band. It is noteworthy that the higher the frequency ranges we
investigated, the lower the delay time, with lower amount of mutual information resulted.
This might have occurred in the gamma band ranges of averaged results for all subjects.
Some subjects showed a zero delay time. A zero delay might be due to the nullification of
strong counteracting forces drive from motor cortex to muscle and opposing drive from
muscle to motor cortex. This result indicates that the amount of time to transmit the signals
from one area to another could be high if they were not coherent or even if they had a low
correlation. In summary, good functional coupling of brain and muscle would require a
smaller delay time for signal transmission in both efferent and afferent pathways.
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Table 1. Summary of the delay time in the beta band and gamma band across all motor tasks.

Delay Time (ms) Obtained by Maximizing
Mutual Information 1

Subject RM Inten MI OL

β γ β γ β γ β γ

1 −20 +15 +20 −20 −40 −15 −45 −30
2 −20 +15 +20 −20 −30 −20 −45 −39
3 25 +20 +25 −20 +25 −45 35 +35
4 +30 +23 −25 +25 +30 −28 +35 −40
5 +25 −30 0 −30 −35 −30 +20 −39
6 −20 +30 −35 −15 −25 −30 −43 −25
7 −25 −20 −35 −20 −40 +20 −43 +20
8 −30 0 −25 −20 −30 +30 −35 −25
9 −15 −15 +30 −25 −40 −28 −35 −20

10 −25 −30 +15 −30 −35 −35 −25 +25
11 −16 +23 −35 −28 −39 −43 −43 −39
12 −20 −15 −30 +30 +35 −40 +25 −20
13 +25 −15 −30 0 −30 −45 −30 −15

Mean 22.76 19.31 25.00 21.76 33.38 31.46 35.31 28.61

SD 4.83 8.35 9.78 8.16 5.45 9.78 8.37 8.86
1 Delay time values were calculated by maximizing the mutual information for the thirteen subjects. Positive and
negative signs were introduced to infer the directionality of information flow and these polarities were not taken
into account in calculation.

4.6. Statistical Analysis of Delay Time across All Subjects

We also performed a statistical analysis of the averaged delay time to check multiple
comparisons across all subjects in four kinds of motor task. First, we checked the nor-
mality distribution of the data with the Shapiro–Wilk test. The data of each task for all
individuals together showed normal distribution with p > 0.05. Then, we used the para-
metric test ANOVA with the task × delay time value for statistical analysis. A significant
difference was found among four different motor tasks in the beta band delay time with
one-way ANOVA(F(3,48) = 8.479, p = 0.001, η2

p = 0.361). The LSD post-hoc test showed
a significant difference among the MI task (33.38 ± 1.5129 ms, p < 0.001) and OL task
(35.31 ± 2.32 ms, p < 0.001) compared with the RM task (22.77 ± 1.31 ms), and between the
MI task (33.38 ± 1.5129 ms, p = 0.011) and OL task (35.31 ± 2.32 ms, p < 0.001) compared
with the Inten task (25 ± 2.71 ms). There was no statistically significant difference between
the RM task and Inten task beta band delay time (p = 0.445).

In the gamma band delay time, the results also showed a significant difference with
(F(3,48) = 4.053, p = 0.012, η2

p = 0.253). The LSD post-hoc test resulted in the MI task
(31.46 ± 2.71 ms, p = 0.003) and OL task (28.61± 2.46 ms, p = 0.012) compared with RM task,
and the MI task (31.46 ± 2.71 ms p = 0.044) compared with Inten task (21.77 ± 2.262 ms),
as shown in Figure 12. We could use this to prove that the EEG-EMG functional coupling
delay time values in both beta band and gamma band are also significantly different and
variable based on the motor task performance.
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5. Discussion
5.1. EEG-EMG Functional Coupling Analysis Using Linear Coherence

Using the previous studies on cortical-muscular coherence and functional network,
this study hypothesized that EEG-EMG functional coupling changes based on different
motor task performance [3,13,14,43]. The results proved that the functional coupling
between brain and muscle signals varies depending on the motor tasks that subjects
executed. In this study, coupling amounts were greater in the RM and Inten tasks than in
the other MI and OL tasks in all subjects. Functional coupling of EEG-EMG signals was
systematically decreased and enhanced at specific frequencies of interest from 0.5 Hz to
50 Hz across the four motor tasks. Our results satisfied the remaining controversial issue
of previous studies concerned with band-specific problems, namely whether the highest
coherences can appear only in the beta band and gamma band or not. Both beta and
gamma bands can appear in RM and Inten tasks, while all five bands had low coherences
in MI and OL tasks.

The high coherence values depict that there is strong physiological underpinning as
an indicator of neural binding across the tasks [44]. From a physiological perspective, RM,
Inten, MI and OL tasks require different patterns of coordination among cortical and motor
neurons to produce the necessary motions and forces. Thus, this study motivated the four
tasks since they are distinct from the perspective of mechanical requirements such as force
and motion etc. These fundamental mechanical differences were also among one of the
phenomena that brain and muscle activity coordination changes associated with tasks.

Based on the occurrence of highest coherence in beta and gamma bands during
clench fist, wrist flexion and extension tasks, the study extracted features and applied
a SVM classifier for reclassifying a motor task among three different motor tasks [13].
Next, the study constructed the cortical-muscular functional network and classified hand
movements with Fisher and artificial neural network for exploration of more effective
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methods in human behavior perception. The researchers applied theta, alpha, beta and
gamma frequency bands for their constructed model [14]. Our study confirmed again the
same occurrence of beta and gamma bands coherence during the motor tasks execution as
the previous studies [13,14].

There were low coherences in delta, theta and alpha bands and high coherences in
beta and gamma bands. The results of alpha band coherence is typically thought to reflect
the afferent feedback through the stretch reflex loop [44]. There was very low coherence
in the alpha band across all tasks in the study. The coherences were more apparent in
the efferent pathways than afferent feedback. The higher band coherences are typically
thought to reflect cortical drive to muscles. Beta band coherence is thought to be very
sensitive to movement. It usually occurred during the maintenance of static and isometric
force [10,15,22]. In addition, the occurrence of coherence in the beta band could be related
to the ERD/ERS phenomenon as an interactive effect of it [45]. The firing behavior of spinal
motoneurones and cortical activity correlated as a functional coupling within the beta
ranges [9]. The study concluded that the amount of significant beta range synchronization
decreases below the confidence level when the attention is divided between motor tasks
and other simultaneously performed tasks. The cortical-muscular network works in good
synchronization when the attentive resources are directed towards the motor tasks. Beta
range EEG-EMG synchronization was the effect of attention and precision of exerted force
during a maintained motor contraction task [24].

The integration of visual and somatosensory information increment could shift cortico-
muscular coherence to the gamma range [22]. The 40 Hz rhythms could have occurred
during motor preparation and controlling of finger movement performance [46]. Neuronal
gamma band (40–70 Hz) coherence has been found along the visuomotor pathways and is
concerned with visuomotor interactions [21,47]. In this study, we applied 3D-HMD for the
motor task commands and stimulation for the subjects. This process could lead to a focused
attention from the participants and produced sensory motor integration of brain signals
and then resulted in the gamma range (31–50 Hz) coherences [24]. Cortical gamma band
oscillation may reflect the efferent drive to the muscle during very strong tonic contraction
and dynamic forces [15,22,48].

In addition, as we used the 19 ms Hanning windowing in coherence analysis, this
would effectively create a ~50 Hz high pass of the original signal. However, this high-pass
filter effect of this derivation can remove the activity with low spatial frequencies, including
volume conducting activity. Thus, coherent values in high frequency beta and gamma
bands cannot be due to volume conduction, and resulting coherence values are purely as a
consequence of the execution of different motor tasks. The functional coupling of higher
bands’ results were consistent with the results reported in [23,49]. The coherences could
occur in both bands without using special dynamic forces in our experiment.

Coherence similarities between cortical activities occurred during the imaginary neu-
romuscular activities [3,25,26]. Nevertheless, there was very low coherence in the MI and
OL tasks, except for some subjects in the OL task. In summary, our results showed that the
coupling ranges totally change based on the motor task performance, as we had already
discussed. The expression and gating of coherent discrete cortical and spinal networks
during motor tasks may be a mechanism to appear as good functional coupling between
two signals.

5.2. EEG-EMG Functional Coupling Analysis Using Nonlinear Mutual Information

The study used the wavelet coherence and magnitude squared coherence (MSC) to
calculate the EEG-EMG coherence based on hand movements and to classify the move-
ments with SVM classifier [13]. However, there has been a lack of studies with nonlinear
correlation methods for the construction of cortical-muscular functional networks with dif-
ferent types of classifiers [14]. This study was the initial study with nonlinear information
flow calculation across different task conditions.



Sensors 2021, 21, 4380 19 of 24

Comparison of mutual information across different motor tasks was one of the essen-
tial state of the art requirements in brain–muscle correlation, as in Appendix A Table A1.
Thus, we extended our study to fill the gap of functional coupling with different motor
tasks. When the averaged mutual information was investigated in accordance with the
different motor tasks, a greater amount of mutual information was found during the RM
and Inten tasks than during the MI and OL tasks. The information increased starting
from the baseline onset zero point as shown in Figures 8 and 9. Using a 100 ms sliding
window in analysis can create an effective high pass filter and this can lead to achieving
the pure task data mutual information. Increased mutual information of RM and Inten
tasks revealed that there were good coupled signals between the brain and muscle signals
during motor task execution. The absence of good synchronization between two signals
could lead to a small amount of mutual information. The nonlinear mutual information
results were also consistent with the linear coherence method in this study.

In addition, we observed that the MI and OL tasks showed a slight increment after
the task instructions point in averaged mutual information results. This transient increase
of mutual information during motor imagery and movement observation might be the
influences and consequences of subjects’ attention and the impulse responses of visual
stimulation [21,47]. These occurrences were the same coincidence as the occurrence of
higher gamma band coherence, caused by visual effects in linear analysis [25]. Thus, the
mutual information results could determine whether there is a good relationship or not in
the form of functional coupling across motor tasks.

During hand grasping tasks, motor unit firing and cortical neuron burst inside the
cell and caused synchronization, and finally appeared as an action, which we had already
proven. In [33], the authors used schizophrenic patients and then checked information
transmission between different cortical areas by estimating the average cross mutual
information (AMI), but they only used brain signals. The authors used DTF based on the
MVAR and AR models, but there were still limitations for linear dependencies [50–52].
Thus, we applied both EEG and EMG signals to further explore the relationships between
brain and muscle signals by applying the nonlinear information gain method. In summary,
this nonlinear correlation method also totally proved that EEG-EMG functional coupling
of brain and muscle signals change based on the motor task performance.

5.3. Functional Coupling Delay Time Change Based on Motor Tasks

Delay time calculation is fundamentally important for brain–muscle interaction, espe-
cially in the design of prosthetic devices and movement intention detectors. The previous
studies used only classifiers, and then classified the movement types and did not calculate
the amount of the time lag between brain and muscle signals [14,53]. Thus, we finally
emphasized the calculation of EEG-EMG functional coupling delay time based on the
motor task performance. It is well-known that the direction of information flow cannot be
calculated by the functional coupling of coherence. The conventional mutual information
is also limited in that it cannot be used for the direction of information flow because it is a
symmetric measure. To overcome this limitation, we used delay time mutual information
by defining a time series in one of the variables to calculate mutual information, which can
lead to an asymmetric measure. The delay time between EEG and EMG data was 11–27 ms
between the tremor correlated parts (cortex) of the brain EEG and the trembling hand EMG.
The coherence delay time was calculated based on the highest coherence frequency bands
as a function of time lag, but the authors could not infer the directionality of information
flow [38].

Based on the nerve fibers’ conduction velocity of 50–65 m/s in the arms and the
distance between the scalp and the hand of approximately 1.2 m, most delay times are
in the range from 18–24 ms [54]. We chose the beta (13–30 Hz) and gamma (31–50 Hz)
ranges since there has been a lack of delay time analysis based on these bands. Our results
indicate that the averaged delay time values were within the range of 15–25 ms for RM
and Inten tasks. These ranges were consistent with physiological facts, as we discussed
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above [4,54]. Moreover, there was a longer delay time in the no movement task condition
of the MI and OL tasks. These results showed that the time will take longer or higher for
the transmission of signals from one point to another if there is no high coupling or greater
mutual information. The gamma band delay time averaged values showed a smaller
amount of delay time than the beta band delay time averaged values.

The advantage of mutual information time lag was that we could infer the direction
of information flow based on the polarity of the time value rather than the linear method
of coherence. Thus, we could clearly see the signal propagation or transmission time from
brain to muscle (descending) or muscle to brain (ascending) oscillation in terms of the lag
time, as in Table 1. Some subjects showed information flow from brain to peripheral muscle,
and some subjects showed information flow from peripheral muscle to brain [35,55]. In
our research, investigation of the delay time with the nonlinear method based on the beta
and gamma bands represented a new approach with directionality inference. However,
future studies still need to be undertaken in order to obtain more exact results with more
subjects with different ages. In summary, EEG-EMG functional coupling delay time values
are also significantly different and they change based on the motor tasks in both beta and
gamma bands according to the results.

5.4. Real-World Applications, Limitations and Future Works of Study

From the perspective of real-world situations, the resulting facts and evidence of this
study are aimed to be able to apply in the rehabilitation systems for training stroke patients
in future. We can decide the physiological and anatomy changes of patients based on
the data of functional coupling level of brain and muscles during training period [2,12].
However, it needs to be tested with a more optimized experimental model. In addition to
stroke rehabilitation systems, this research can be applied in the study of human motion
and movement for behavioral science such as sports activities, root cause of fatigue, cortical-
muscular functional network studies, treatment of dyskinesia and Alzheimer disease and
recognition of human motion intention for movement intention detectors with various
classifiers etc. [14]. Our study is the updated study of functional coupling with delay
time in beta and gamma bands that can be helpful in judging the response time of brain–
muscle signals in patients and in construction of motion intention detectors [13,14]. This
research has the benefit of many real-world applications in daily life in all possible ways.
Furthermore, the results of the current study can give stronger arguments for both previous
studies and current studies of cortical-muscular coupling in neuroscience fields.

In calculation of the linear coherence method, there are some important notes and
limitations. The output results of coherence depend on the windowing and selected filter
design. Thus, suitable window and filter ranges must be chosen in order to achieve the
correct results. Next, the analyzed data need to be cleared artifacts as far as it can be. In
some cases, EMG signals may become the noise for EEG. Thus, we need to choose the
suitable ICA components during preprocessing. For the calculation of nonlinear correlation,
the selection of the bin number is also somewhat complex to obtain the optimized values for
entropy. Mutual information calculation can be quite difficult if the data are non-stationary.
Thus, data needs to be stationary for the calculation of correlation between two signals.
It is necessary to make sure that the data are roughly equally noisy across all conditions,
electrode pairs and subjects groups. Using surface EMG (sEMG) signals may impact the
calculation of signal correlation. Contamination of signals from the neighboring muscles
can cause cross talks in data recording. Thus, the surface EMG (sEMG) has some limitations,
in comparison to using fine wire EMG electrodes [56].

This new experimental paradigm might lead to future investigations such as a hypoth-
esis regarding whether the gamma band in the OL task might relate to visual stimulation,
visuomotor pathways and attention or not. The number of subjects participating in this
study were also small and we need to test with more participants of different ages, real
stroke patients, control subjects and control tasks to obtain an absence of bias. Differ-
ent types of visual stimulations and feedback paradigms still need to be investigated in
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order to explore the effect of attention and visualization on the information processing
during functional coupling [24]. Additionally finding out the effect of motor imagery with
different experiments of kinesthetic and visual for EEG-EMG coupling is also required.
Functional coupling investigation with different types of movement features and classifiers
are important for movement detectors, prosthetic devices and controllers for real-world
applications [13,14,53]. Construction of a brain–muscle functional network in terms of
nonlinear and delay time methods is one of the problems to be explored in future. To
establish the directionality of information flow precisely, it still needs to be investigated
with transfer entropy, DTF, granger causality and other directionality inference methods.

6. Conclusions

This study fulfilled the requirement of a functional coupling study with different
motor task conditions that have not been performed in much of the existing literature.
Depending on the motor tasks executed by the participants, the functional coupling amount
and delay time varied. The results proved that the cortical muscle coupling levels were
high only in the beta and gamma bands, and not in the other three bands during the tasks.
The beta and gamma band frequencies do not highly depend on force levels, according to
the results. In addition, this research demonstrates that a high correlation and association
between two signals occurred when the participants performed the motor tasks of RM
and Inten. The results of the Inten task coupling level were almost the same as those
of the RM task and it was a peculiar and innovative result for almost all subjects. The
new consideration of the MI and OL motor tasks together with the RM and Inten tasks
confirmed that the unclear controversial issues to be cleared, since low signal correlations
occurred in those two tasks. However, as an exception, some subjects showed a slightly
high correlation in the OL task. Thus, the new interesting evidence to study in future will
be whether the attention caused by the OL task will lead to the high coupling of brain
and muscle signals or not, and how it benefits the coupling system. Finally, we explored
the signal propagation delay time with directionality inference. The information can flow
with exact amount of delay time from efferent to afferent and afferent to efferent pathways
when coupling exists. In conclusion, we proved that functional coupling between motor
cortex and muscle was statistically different in all delta, theta, alpha, beta and gamma
bands based on the tasks. Thus, this research showed EEG-EMG functional coupling and
their delay time change according to the task-related performance.
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Appendix A

Table A1. Comparison table for different methods of the state of the art in functional coupling of EEG and EMG.

Ref. Authors Investigated Area Method Strengths and Weakness

[3] Yasunari, H.,
et al., 2010

EEG-EMG coherence
during Isometric
contraction and
its imagery.

Power spectrum.
EEG—Cz, FCz, C1, C2, CPz.
Rectified EMG—right TA muscle.
n = 13

Coherence occurred in motor
imagery conditions.
Uses linear correlation analysis.
Remains controversial issues of
EMG during motor imagery.

[9] James, M., et al.,
2000

Task-dependent
modulation in coherence
between motor cortex and
hand muscles.

Amplitude and phase
correlation method.
MEG—over the left
sensorimotor cortex.
EMG—1DI, AbPB, FDS, EDC.
n = 13

Tests task-dependent modulation
of coherence.
Coherence was much lower level
during isometric grip of the fixed
levers compared to grasp under
complaint conditions.
Remains to investigate with
different motor tasks.

[10] Shinji, O., et al.,
2000

ECoG-EMG coherence
during isometric
contraction in
hand muscle.

Auto spectra and frequency
domain analysis method.
Rectified EMG.
ECoG—mesial and lateral
surfaces of
frontoparietal cortices.
EMG—ECR muscle.
n = 8 (patients with epilepsy)

Coherence occurred only in the 15 ±
3 Hz beta bands.
Time lags were calculated with a
cross-correlogram method.
Time lags range from 10 ms to 22 ms.
Lack of directionality inference and
nonlinear correlation.
Remains to find out the coherence in
other bands.

[22] Wolfgang, O.,
et al., 2006

Gamma range
Cortico-muscular
coherence during dynamic
performance in visuo
motor tasks.

Cortico motor spectral
power method.
EEG—52 electrodes.
Rectified EMG—flexor
digitorum superficialis muscle.
n = 8

Beta band coherences occur during
static force.
Gamma band coherence occurs
during dynamic force.
Uses only linear correlation method.
No include delay time estimation.
Remains task-dependent CMC
investigation.

[34] Seung-Hyun, P.,
et al., 2010

Linear and nonlinear
information flow with time
delay mutual information.

Used surrogate data sets and
experimental data sets.
Investigated CM interaction
during a right wrist
extension tasks.
EEG—29 electrodes.
EMG—Extensor digitorum
communis. n = 7

Well-distinguished linear and
nonlinear information flow.
Requires relatively long stationary
time series data for the analysis.
Needs to improve directionality
inferences with stationarity.

[41] Andreas, W.,
et al., 2012

Time delay mutual
information of the phase as
a measure of functional
connectivity.

Phase lag index and weighted
phase lag index methods.
Making numerical
implementation.
Synthetic data sets by a mutual
amplitude coupled network of
Rossler oscillatior.

Limitations and assumptions existed
as synthetic data sets were applied.
De-correlation step does not respect
a background synchronicity.
Uses a data-driven approach.
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