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Abstract

Recent studies demonstrated expression and activity of the intracellular cortisone-cortisol shuttle 11beta-hydroxysteroid
dehydrogenase type 1 (11beta-HSD1) in skeletal muscle and inhibition of 11beta-HSD1 in muscle cells improved insulin
sensitivity. Glucocorticoids induce muscle atrophy via increased expression of the E3 ubiquitin ligases Atrogin-1 (Muscle
Atrophy F-box (MAFbx)) and MuRF-1 (Muscle RING-Finger-1). We hypothesized that 11beta-HSD1 controls glucocorticoid-
induced expression of atrophy E3 ubiquitin ligases in skeletal muscle. Primary human myoblasts were generated from
healthy volunteers. 11beta-HSD1-dependent protein degradation was analyzed by [3H]-tyrosine release assay. RT-PCR was
used to determine mRNA expression of E3 ubiquitin ligases and 11beta-HSD1 activity was measured by conversion of
radioactively labeled [3H]-cortisone to [3H]-cortisol separated by thin-layer chromatography. We here demonstrate that
11beta-HSD1 is expressed and biologically active in interconverting cortisone to active cortisol in murine skeletal muscle
cells (C2C12) as well as in primary human myotubes. 11beta-HSD1 expression increased during differentiation from
myoblasts to mature myotubes (p,0.01), suggesting a role of 11beta-HSD1 in skeletal muscle growth and differentiation.
Treatment with cortisone increased protein degradation by about 20% (p,0.001), which was paralleled by an elevation of
Atrogin-1 and MuRF-1 mRNA expression (p,0.01, respectively). Notably, pre-treatment with the 11beta-HSD1 inhibitor
carbenoxolone (Cbx) completely abolished the effect of cortisone on protein degradation as well as on Atrogin-1 and MuRF-
1 expression. In summary, our data suggest that 11beta-HSD1 controls glucocorticoid-induced protein degradation in
human and murine skeletal muscle via regulation of the E3 ubiquitin ligases Atrogin-1 and MuRF-1.
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Introduction

Glucocorticoid excess is associated with central obesity, insulin

resistance, arterial hypertension and skeletal muscle atrophy.

Intracellular glucocorticoid signaling is pre-receptor-controlled by

11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1)

which activates cortisol from the hormonally inactive cortisone.

Increased 11beta-HSD1 activity has been associated with

symptoms of the metabolic syndrome. Although obese individuals

have normal cortisol plasma levels, intracellular glucocorticoid

action in liver and adipose tissue were shown to be increased in

some publications due to high 11beta-HSD1 expression levels and

activity [1], [2], [3]. Transgenic mice over-expressing 11beta-

HSD1 specifically in adipose tissue gained weight and developed

insulin resistance and dyslipidemia [4]. In contrast, 11beta-HSD1

knockout mice were resistant to obesity and hyperglycemia under

a high-fat diet [5].

In adipose tissue and liver, the function of 11beta-HSD1 is well

studied but data about its role in skeletal muscle are sparse

although it is well known that glucocorticoids induce muscle

atrophy by inhibition of protein synthesis and induction of protein

degradation [6], [7]. Very recently, expression and activity of

11beta-HSD1 was shown to be increased in skeletal muscle of

diabetic individuals [8] and pharmacological inhibition of 11beta-

HSD1 reversed cortisone-disturbed insulin signaling in skeletal

muscle cells [9]. 11beta-HSD1 was also suggested to be involved in

the differentiation of skeletal myoblasts to mature myotubes due to

an increasing 11beta-HSD1 expression during the differentiation

process, shown in the skeletal muscle C2C12 cell line [10], [11].

Despite those convincing data that 11beta-HSD1 is functionally

active in skeletal muscle, the underlying role of this enzyme for

muscle atrophy associated pathways is still unclear. Glucocorti-

coids are well established to induce skeletal muscle proteolysis

primarily by activating the ubiquitin-proteasome-system (UPS)

and increasing the expression of the two E3 ubiquitin ligases

Atrogin-1 and MuRF-1 [12], [13], [14], [15].

We therefore analyzed in the skeletal muscle cell line C2C12

and in primary human myotubes whether 11beta-HSD1 controls
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glucocorticoid-induced protein degradation and whether this effect

is attributed to an increased expression of the E3 ubiquitin ligases

Atrogin-1 and MuRF-1.

Materials and Methods

Cell Culture
The C2C12 murine myoblast cell line and primary human

myoblasts were grown under standard conditions. For C2C12,

growth medium consisted of Dulbecco’s modified Eagle’s medium

(DMEM) including 4.5 g/L glucose and stable glutamine,

supplemented with 10% fetal calf serum (FCS). Primary human

myoblast cultures were isolated by protease digestion from fresh

muscle biopsies (collagenase II, dispase1, trypsin/EDTA) and

expanded in skeletal muscle growth medium including supplement

mix (PromoCell, Heidelberg, Germany), 10% FCS, glutamine

(3 mM) and gentamycin (40 mg/ml). All cultures were enriched in

myoblasts by immuno-magnetic cell sorting using anti-CD56/

NCAM antibody coated magnetic beads (Miltenyi Biotech,

Bergisch Gladbach, Germany). Purity of the myoblast preparation

was checked by staining with an anti-desmin antibody revealing

more than 95% desmin-positive cells. All experiments were

performed between passage P5 and P15 after isolation to avoid

premature replicative senescence. Differentiation of myoblasts into

myotubes was initiated at approximately 90% confluence by

switching to differentiation medium containing 2% horse serum

(D0, day 0 of differentiation). For stimulation experiments,

myotubes were serum-starved and on day six of differentiation

(D6) 30–60 min pre-treated with 10 mM carbenoxolone (Sigma-

Aldrich Chemie GmbH, Munich, Germany), followed by

incubation with 1 mM cortisone (Sigma-Aldrich Chemie GmbH,

Munich, Germany) and 1 mM dexamethasone (Sigma-Aldrich

Chemie GmbH, Munich, Germany) for sixteen hours.

Real-time PCR
Total RNA was isolated using a commercial RNA isolation kit

(Roche Diagnostics GmbH, Mannheim, Germany). cDNA was

also synthesized according to manufacturer’s protocol (Applied

Biosystems, Darmstadt, Germany). Real-time PCR (RT-PCR) was

analyzed using Power Sybr Green (Applied Biosystems, Darm-

stadt, Germany) on a 7300 Real-Time PCR System (Applied

Biosystems, Darmstadt, Germany) or by TaqMan Technology

(Applied Biosystems, Darmstadt, Germany). All experiments were

performed at least in triplicate. The PCR primer sequences will be

provided upon request.

11beta-HSD1 activity assay
11beta-HSD1 activity was measured as described previously

[16]. Briefly, we determined the conversion of radioactively

labeled [3H]-cortisone to [3H]-cortisol. Cells were incubated with

0.1 mCi 1,2-[3H]-Cortisone (American Radiolabeled Chemicals,

Inc., St. Louis, USA) at 37uC and 5% CO2 for at least four hours

in serum-free DMEM. Then, medium supernatant was collected

and cells were lysed with 50 mM NaOH. An aliquot of cell lysate

was used to determine DNA concentration in a photometer at

260 nm. Supernatant and cell lysate were mixed with 2–3 volumes

of ethyl-acetate (Merck, Darmstadt, Germany) by shaking and

lower hydrophil and upper lipophil phases were separated by

centrifugation. The upper steroid containing phase was fully

evaporated under air, resolved in dichlormethane (Carl Roth

GmbH + Co. KG, Karlsruhe, Germany) and cortisone (E) and

cortisol (F) separated by thin-layer chromatography using

dichlormethane:methanol (75:5) as solvent. [3H]-labeled cortisone

and cortisol were quantified in a beta-counter.

Protein degradation
Proteolysis was measured by determining the rate of release of

trichloroacetic acid (TCA)-soluble proteins radioactively labeled

with [3H]-tyrosine into the media. On day five of differentiation,

cells were pre-labeled with 0.5 mCi L-[3,5-3H]-tyrosine/ml (Bio-

trend GmbH, Köln, Germany) at 37uC and 5% CO2 for two days in

differentiation medium. The cells were washed once with hank’s

buffered salt solution (HBSS) and transferred to non-radioactive

serum-free DMEM containing 2 mM tyrosine for two hours to

exclude proteolysis of short-lived proteins. Then the cells were

washed twice with HBSS and again transferred to non-radioactive

serum-free DMEM containing 2 mM tyrosine. Release of [3H]-

tyrosine was measured after pre-treatment with 10 mM carbenox-

olone for 30–60 min followed by stimulation with 1 mM cortisone

and 1 mM dexamethasone. After 16 hours incubation, culture

medium was transferred to a microcentrifuge tube containing

100 ml bovine serum albumin (BSA) (10 mg/ml). For precipitation,

an equal volume of TCA (20% wt/vol) was added to a final

concentration of 10% (wt/vol) and incubated at 4uC for at least one

hour until overnight. Samples were then centrifuged at 14000 g for

5 min. The supernatant contained the TCA-soluble proteins

(fraction A). The TCA-insoluble proteins in the precipitate were

solubilized in 0.5 M NaOH und 0.1% Triton X100 (fraction B).

The cell monolayer was washed twice with phosphate buffered

saline (PBS) and also solubilized in 0.5 M NaOH and 0.1% Triton

X100 (fraction C). [3H]-labeled tyrosine within the three fractions

was quantified using a beta-counter. Percentage protein degrada-

tion was calculated as 1006[fraction A/(fraction A+B+C)].

Statistics
Results are presented as means 6 SEM. Mann-Whitney-U test

was used to analyze differences between groups. Significance was

considered for p,0.05. All experiments were performed at least in

triplicate.

Results

11beta-HSD1 expression increases during myoblast
differentiation

To test whether 11beta-HSD1 expression depends on the

differentiation process of skeletal muscle cells from myoblasts to

adult myotubes, we measured mRNA expression of 11beta-HSD1

and the differentiation markers Myosin Heavy chain-1 and Myf5

at different time points (day 0 (D0), day 2 (D2), day 4 (D4) and day

(D6)). Expression of Myosin Heavy chain-1 (marker of terminal

differentiation) strongly increased from D0 to D6 (Fig. 1B and 1E)

confirming differentiation into adult myotubes. Additionally, Myf5

mRNA expression (marker of myoblast fusion) reached a plateau

on D2 (Fig. 1C). 11beta-HSD1 mRNA expression was low in

myoblasts (D0) and increased at D6 by factor 351.2648.6

(p,0.01) in C2C12 cells (Fig. 1A) and 4.761.9 (p,0.01) in

primary human myotubes (Fig. 1D), whereas 11beta-HSD1 was

already higher expressed in undifferentiated primary human

myoblasts than in C2C12 myoblasts. In summary, we demonstrate

that 11beta-HSD1 mRNA expression is induced within the

differentiation process of the murine C2C12 cell line, but also in

primary human myoblasts.

11beta-HSD1 controls glucocorticoid-induced proteolysis
and expression of the E3 ubiquitin ligases Atrogin-1 and
MuRF-1

To analyze the role of 11beta-HSD1 on skeletal muscle

proteolysis, we induced 11beta-HSD1 activity by stimulation with

HSD1 and Skeletal Muscle Proteolysis
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cortisone and dexamethasone (positive control) and inhibited it by

carbenoxolone (Fig. 2). We observed an increased proteolysis in

cortisone-treated C2C12 myotubes (E 120.361.7% vs. control,

p,0.001) (Fig. 3). This was paralleled by a cortisone-dependent

increase of the E3 ubiquitin ligases Atrogin-1 (2.8460.4 vs.

control, p,0.01) (Fig. 4A) and MuRF-1 (1.9160.4 vs. control,

p,0.01) (Fig. 4B). We next analyzed the role of 11beta-HSD1 in

the regulation of protein degradation and those E3 ubiquitin

ligases. Indeed, the cortisone-induced increase of protein degra-

dation was completely abolished by pre-inhibition of 11beta-

HSD1 with carbenoxolone (E+Cbx 96.561.3% vs. control,

p,0.001) (Fig. 3). Comparably, inhibition of 11beta-HSD1

completely abolished the effect of cortisone on Atrogin-1

(E+Cbx 1.0560.1 vs. control, p,0.01) and MuRF-1 (E+Cbx

Figure 1. Regulation of 11beta-HSD1 and differentiation markers during differentiation of C2C12 cells and primary human
myoblasts. Data were normalized to mRNA expression of 16s-RiboProtein. Mean 6 SEM of at least three experiments are shown. Relative 11beta-
HSD1 mRNA expression in C2C12 (A). Relative Myosin Heavy Chain-1 mRNA expression in C2C12 cells (B). Relative Myf5 mRNA expression in C2C12
cells (C). Relative 11beta-HSD1 mRNA expression in primary human myoblasts (D). Relative Myosin Heavy Chain-1 mRNA expression in primary
human myoblasts (E). * p,0.05, ** p,0.01, *** p,0.0001.
doi:10.1371/journal.pone.0016674.g001
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0.9460.1 vs. control, p,0.01) (Fig. 4A and 4B). These results were

basically confirmed in primary human myotubes (MuRF-1:

E+Cbx 1.260.3 vs. E 1.960.1, p,0.05), although slightly failing

significance for Atrogin-1 (1.160.2 vs. E 1.460.1, p = 0.3)

(Fig.4C and 4D).

Discussion

Here we demonstrate that 11beta-HSD1 controls glucocorti-

coid-induced protein degradation and transcription of the E3

ubiquitin ligases Atrogin-1 and MuRF-1 in the skeletal muscle cell

line C2C12 and in primary human myotubes. In addition, we

show that 11beta-HSD1 mRNA expression increases during

differentiation of primary human myoblasts to mature myotubes

indicating a role of 11betaHSD1 in differentiation of myocytes.

Atrogin-1 and MuRF-1 are upregulated in various models of

muscle atrophy and are considered to serve as reliable markers of

muscular atrophy [17], [18], [19]. An increased expression of

Atogin-1 and MuRF-1 strongly indicates an enhanced proteolysis

via the UPS, and several studies demonstrated that glucocorticoids

induce muscle proteolysis via Atrogin-1 and MuRF-1 [12], [13],

[14], [17]. This is supported by our results showing glucocorticoid-

induced increases of proteolysis and atrophy signaling. In addition

to existing data our results demonstrate that glucocorticoid-

dependent effects are partially pre-receptor controlled by 11beta-

HSD1. A limitation of our study is the use of carbenoxolone as a

pharmacological 11beta-HSD1 inhibitor. Although carbenoxo-

lone is an established inhibitor of 11beta-HSD1 and we achieved a

near-complete inhibition of 11beta-HSD1 activity in our exper-

iments, we cannot entirely exclude unspecific effects. Clearly, the

confirmation of our results in animal experiments e.g. using mice

with myocyte-specific 11beta-HSD1 knock-out would be highly

desirable. Vice versa, a specific strength of our study is the

confirmation of those results in human myotubes, pointing

towards a physiological relevance of the findings in humans.

Previous studies suggested 11beta-HSD1 mRNA expression in

skeletal muscle [8], [20], [21] and recent data supported that

11beta-HSD1 controls metabolic phenotypes in skeletal muscle

such as insulin sensitivity. Morgan et al. (2009) showed that

pharmacological inhibition of 11beta-HSD1 in mice reversed

cortisone-disturbed insulin signaling pathway in skeletal muscle

cells by blocking amongst others the decrease of Akt/PKB

phosphorylation [9]. The PI3K/Akt pathway is also involved in

the proteolytic signaling cascade in skeletal muscle. Thus, the

activation of the PI3K/Akt pathway is diminished in myotubes

undergoing atrophy [22]. Accordingly, glucocorticoids decrease

Akt/PKB phosphorylation followed by an activation of the

Forkhead box O (Foxo) class transcription factors causing

activation of the Atrogin-1 promoter and a decrease in muscle

fiber size [23]. Our data strongly support that atrophy signaling in

skeletal muscle also depends on pre-receptor controlled mecha-

nisms. Theoretically, the observed effects on atrophy signaling

may depend on the associated metabolic consequences or vice

versa, although this is unlikely given the setting of our studies

which were performed without insulin stimulation. Nevertheless,

this question was not directly addressed and we cannot exclude

that a modification of basal insulin sensitivity may link glucocor-

ticoids, 11beta-HSD1 and atrophy signaling.

In conclusion, our data suggest that 11beta-HSD1 controls

glucocorticoid-induced protein degradation in skeletal muscle by

regulating the expression of the muscle ubiquitin E3 ligases

Atrogin-1 and MuRF-1.

Figure 2. Effects of cortisone, dexamethasone (dexa) and
inhibition of 11beta-HSD1 by carbenoxolone (Cbx) on 11be-
ta-HSD1 activity in C2C12. Mean 6 SEM of at least three
experiments are shown. * p,0.05, ** p,0.01, *** p,0.0001.
doi:10.1371/journal.pone.0016674.g002

Figure 3. Effects of cortisone, dexamethasone (dexa) and
inhibition of 11beta-HSD1 by carbenoxolone (Cbx) on protein
degradation in C2C12 myotubes. Protein degradation was
measured by determining the rate of release of TCA-soluble proteins
radioactively labeled with [3H]-tyrosine into the media. Mean 6 SEM
of at least three experiments are shown. * p,0.05, ** p,0.01,
*** p,0.0001.
doi:10.1371/journal.pone.0016674.g003
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