metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Di- μ_3 -chlorido-tetra- μ_2 -chloridodichloridobis(dimethylformamide- κO)hexakis(1*H*-imidazole- κN^3)tetracadmium

Run-Qiang Zhu

Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China Correspondence e-mail: zhurungiang@163.com

Received 21 August 2011; accepted 16 September 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.028; wR factor = 0.069; data-to-parameter ratio = 20.4.

The centrosymmetric molecule of the title complex, [Cd₄Cl₈(C₃H₄N₂)₆(C₃H₇NO)₂], contains four Cd^{II} atoms, six imidazole, two dimethylformamide and eight chloride ligands. The structure shows a novel chloride-bridged tetranuclear cadmium quasi-cubane cluster. The coordination geometry of all Cd^{II} atoms is distorted octahedral, with the two metal atoms in the asymmetric unit in different coordination environments. One of the Cd²⁺ ions is coordinated by five Cl⁻ ions and by one N atom from an imidazole ligand, while the second is coordinated by three chloride ligands, two N atoms from two imidazole ligands and one O atom from a dimethylformamide molecule. Intermolecular N-H···Cl hydrogen bonds link the molecules into a two-dimensional polymeric structure parallel to the *ab* plane.

Related literature

For general background to ferroelectric compounds with metal-organic frameworks, see: Ye et al. (2009); Zhang et al. (2009).

Experimental

Crystal data

 $[Cd_4Cl_8(C_3H_4N_2)_6(C_3H_7NO)_2]$ V = 2114.6 (8) Å³ $M_r = 1287.92$ Z = 2Monoclinic, $P2_1/c$ Mo $K\alpha$ radiation a = 8.2540 (17) Å $\mu = 2.53 \text{ mm}^$ b = 12.290(3)Å T = 293 Kc = 21.119 (4) Å $0.30 \times 0.25 \times 0.20 \text{ mm}$ $\beta = 99.23(3)$

Data collection

Rigaku SCXmini diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) $T_{\min} = 0.472, T_{\max} = 0.603$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.028$	237 parameters
$wR(F^2) = 0.069$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.34 \text{ e} \text{ Å}^{-3}$
4833 reflections	$\Delta \rho_{\rm min} = -0.66 \ {\rm e} \ {\rm \AA}^{-3}$

21502 measured reflections

 $R_{\rm int} = 0.037$

4833 independent reflections

4241 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2A\cdots Cl2^{i}$ $N4-H4A\cdots Cl1^{ii}$ $N6-H6A\cdots Cl2^{iii}$	0.86	2.44	3.226 (3)	152
	0.86	2.45	3.212 (3)	148
	0.86	2.63	3.314 (3)	137

Symmetry codes: (i) -x, -y, -z + 1; (ii) -x + 1, -y + 1, -z + 1; (iii) x - 1, y, z.

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97.

The author is are grateful to the starter fund of Southeast University for financial support to buy the X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2402).

References

Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.

- Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Ye, H. Y., Fu, D. W., Zhang, Y., Zhang, W., Xiong, R. G. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 42-43.
- Zhang, W., Cheng, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 12544-12545.

Acta Cryst. (2011). E67, m1416 [doi:10.1107/S1600536811037834]

Di- μ_3 -chlorido-tetra- μ_2 -chlorido-dichloridobis(dimethylformamide- κO)hexakis(1*H*-imidazole- κN^3)tetracadmium

R.-Q. Zhu

Comment

The title compound (I) was prepared from imidazole and cadmium(II) chloride in DMF. The solid state structure of (I) at 298 K shows a novel centrosymmetric tetranuclear cadmium quasi-cubane cluster with a $Cd_4(Cl)_2(\mu-Cl)_4(\mu_3-Cl)_2$ core structure surrounded by six imidazole and two DMF molecules (Fig. 1). There are two different coordination environments about the Cd centers: Cd(1) is coordinated by one imidazole ligand, four bridging and one terminal Cl ions, and Cd(2) is coordinated by one O atom from DMF, two N atoms from two imidazole ligands and three bridging Cl ions. The shortest intra-molecular Cd(1)—Cd(1 A) separation is 4.103 (5) Å.

In the tetranuclear cluster, the cadmium atoms are connected by six Cl atoms among which the Cl1 and Cl3 atoms act as bridges between Cd(1) and Cd(2) centers, and the Cl(4) atom is a node to connect two Cd1 and one Cd2 together. The bond length Cd1–Cl2 to the terminal Cl ligand of 2.5475 (10) Å is shorter than the mean values of Cd–Cl(μ) [2.654 (2) Å] and Cd–Cl(μ 3) [2.729 (2) Å] bond lengths.

In order to check a possibility of a structural phase transitions in compound (I), we measured its temperature-dependent dielectric constant. Large dielectric anomalies usually indicate structural changes such as paraelectric-to-ferroelectric phase transitions. Unfortunately, the dielectric constant of compound (I) goes smoothly in the temperature range 93–273 K, suggesting no distinct phase transitions occurring in this temperature range (Ye *et al.*, 2009; Zhang *et al.*, 2009).

Experimental

The mixture of $CdCl_2$ (2.27 g, 10 mmol) and imidazole (2.76 g, 40 mmol) in DMF was stirred for several days at room temperature. Colourless needle-like crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of the solution at room temperature over 2 weeks.

Refinement

Positional parameters of all H atoms were calculated geometrically and the H atoms were set to ride on the C atoms and N atoms to which they were bonded, with $U_{iso}(H)=1.2 U_{iso}(C, N)$ and $1.5U_{iso}(C)$ for methyl H atoms. C—H atoms were included with bond distances ranging from 0.98 to 1.00 Å and N—H hydrogen atoms were included with the N–H distance set to 0.84 Å.

Figures

Fig. 1. The molecular structure of the title complex with displacement ellipsoids shown at the 50% probability level. Symmetry codes for the atoms with the A label: -x, 1 - y, 1 - z.

$Di-\mu_3$ -chlorido-tetra- μ_2 -chlorido-dichloridobis(dimethylformamide- κO)hexakis(1*H*-imidazole- κN^3)tetracadmium

Crystal data

$[Cd_4Cl_8(C_3H_4N_2)_6(C_3H_7NO)_2]$	F(000) = 1248
$M_r = 1287.92$	$D_{\rm x} = 2.023 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 4835 reflections
a = 8.2540 (17) Å	$\theta = 2.5 - 27.5^{\circ}$
b = 12.290 (3) Å	$\mu = 2.53 \text{ mm}^{-1}$
c = 21.119 (4) Å	T = 293 K
$\beta = 99.23 \ (3)^{\circ}$	Prism, colourless
V = 2114.6 (8) Å ³	$0.30\times0.25\times0.20\ mm$
Z = 2	

Data collection

Rigaku SCXmini diffractometer	4833 independent reflections
Radiation source: fine-focus sealed tube	4241 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.037$
CCD_Profile_fitting scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)	$h = -10 \rightarrow 10$
$T_{\min} = 0.472, \ T_{\max} = 0.603$	$k = -15 \rightarrow 15$
21502 measured reflections	$l = -27 \rightarrow 27$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.028$	H-atom parameters constrained
$wR(F^2) = 0.069$	$w = 1/[\sigma^2(F_o^2) + (0.0349P)^2 + 1.0319P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\rm max} = 0.002$
4833 reflections	$\Delta \rho_{max} = 0.34 \text{ e} \text{ Å}^{-3}$
237 parameters	$\Delta \rho_{min} = -0.66 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.1022 (4)	0.0007 (3)	0.59318 (17)	0.0415 (8)
H1	0.1309	-0.0205	0.5542	0.050*
C2	0.0277 (4)	-0.0083 (3)	0.68722 (18)	0.0457 (9)
H2	-0.0036	-0.0348	0.7247	0.055*
C3	0.0450 (4)	0.0970 (3)	0.67154 (16)	0.0380 (8)
Н3	0.0275	0.1563	0.6969	0.046*
C4	0.5413 (4)	0.2881 (3)	0.57582 (18)	0.0416 (8)
H4	0.5389	0.2891	0.5316	0.050*
C5	0.6345 (5)	0.2923 (4)	0.6781 (2)	0.0559 (10)
H5	0.7043	0.2964	0.7172	0.067*
C6	0.4692 (4)	0.2792 (3)	0.66852 (18)	0.0484 (9)
H6	0.4053	0.2730	0.7008	0.058*
C7	-0.5008 (4)	0.4395 (3)	0.38982 (19)	0.0429 (8)
H7	-0.5052	0.4478	0.4333	0.051*
C8	-0.5764 (5)	0.4230 (3)	0.2874 (2)	0.0582 (11)
H8	-0.6402	0.4178	0.2470	0.070*
C9	-0.4130 (5)	0.4196 (3)	0.30070 (17)	0.0457 (9)

Н9	-0.3428	0.4114	0.2707	0.055*
C10	0.3020 (4)	0.1635 (3)	0.43669 (16)	0.0384 (8)
H10	0.2958	0.2363	0.4245	0.046*
C11	0.3797 (6)	-0.0201 (3)	0.4151 (2)	0.0638 (12)
H11A	0.3284	-0.0347	0.4519	0.096*
H11B	0.4930	-0.0415	0.4239	0.096*
H11C	0.3249	-0.0605	0.3790	0.096*
C12	0.4289 (8)	0.1321 (5)	0.3439 (3)	0.096 (2)
H12A	0.3740	0.0932	0.3072	0.144*
H12B	0.5449	0.1192	0.3485	0.144*
H12C	0.4078	0.2086	0.3382	0.144*
Cd1	-0.10174 (3)	0.428101 (17)	0.415237 (10)	0.02728 (7)
Cd2	0.14449 (3)	0.254846 (17)	0.557490 (11)	0.02742 (7)
N1	0.0926 (3)	0.1030 (2)	0.61219 (12)	0.0322 (6)
N2	0.0649 (4)	-0.0674 (2)	0.63767 (16)	0.0480 (8)
H2A	0.0647	-0.1373	0.6353	0.058*
N3	0.4108 (3)	0.2763 (2)	0.60408 (13)	0.0319 (6)
N4	0.6769 (4)	0.2984 (3)	0.61908 (17)	0.0502 (8)
H4A	0.7747	0.3073	0.6108	0.060*
N5	-0.3653 (3)	0.4301 (2)	0.36550 (13)	0.0318 (6)
N6	-0.6315 (4)	0.4356 (3)	0.34380 (19)	0.0549 (9)
H6A	-0.7325	0.4402	0.3490	0.066*
N7	0.3690 (4)	0.0952 (2)	0.40063 (15)	0.0433 (7)
O1	0.2472 (3)	0.13812 (19)	0.48519 (11)	0.0423 (6)
Cl1	-0.04823 (9)	0.61386 (6)	0.35684 (4)	0.02980 (16)
Cl2	0.00339 (10)	0.31740 (6)	0.32819 (4)	0.03436 (17)
C13	-0.14308 (9)	0.25405 (6)	0.48437 (4)	0.03149 (17)
Cl4	0.19278 (8)	0.44090 (6)	0.48833 (3)	0.02730 (15)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.053 (2)	0.0290 (17)	0.042 (2)	-0.0073 (16)	0.0058 (16)	-0.0043 (15)
C2	0.045 (2)	0.052 (2)	0.038 (2)	-0.0087 (17)	0.0011 (16)	0.0146 (17)
C3	0.0392 (18)	0.0418 (19)	0.0326 (18)	-0.0001 (15)	0.0045 (14)	0.0006 (15)
C4	0.0326 (18)	0.046 (2)	0.048 (2)	0.0014 (16)	0.0132 (15)	0.0057 (17)
C5	0.043 (2)	0.066 (3)	0.054 (3)	-0.002 (2)	-0.0067 (18)	-0.003 (2)
C6	0.041 (2)	0.065 (3)	0.040 (2)	-0.0048 (18)	0.0077 (16)	-0.0007 (18)
C7	0.0342 (18)	0.044 (2)	0.052 (2)	-0.0048 (15)	0.0136 (16)	0.0018 (16)
C8	0.040 (2)	0.067 (3)	0.059 (3)	0.001 (2)	-0.0162 (19)	-0.002 (2)
C9	0.042 (2)	0.062 (2)	0.0334 (19)	-0.0014 (18)	0.0045 (15)	-0.0018 (17)
C10	0.047 (2)	0.0311 (17)	0.0377 (19)	0.0053 (15)	0.0091 (15)	-0.0054 (14)
C11	0.078 (3)	0.042 (2)	0.072 (3)	0.019 (2)	0.014 (2)	-0.007 (2)
C12	0.143 (5)	0.082 (4)	0.080 (4)	0.007 (4)	0.071 (4)	0.001 (3)
Cd1	0.02655 (12)	0.02762 (12)	0.02745 (13)	-0.00098 (9)	0.00362 (9)	-0.00129 (9)
Cd2	0.02759 (12)	0.02543 (12)	0.03022 (13)	0.00193 (9)	0.00767 (9)	0.00044 (9)
N1	0.0365 (14)	0.0279 (13)	0.0323 (15)	-0.0019 (11)	0.0058 (11)	0.0029 (11)
N2	0.0547 (19)	0.0268 (15)	0.060 (2)	-0.0064 (14)	0.0004 (16)	0.0056 (14)

N3	0.0283 (13)	0.0317 (14)	0.0369 (15)	0.0022 (11)	0.0090 (11)	0.0024 (11)
N4	0.0294 (16)	0.0476 (19)	0.074 (2)	-0.0023 (14)	0.0098 (15)	0.0005 (17)
N5	0.0266 (13)	0.0353 (14)	0.0334 (15)	-0.0027 (11)	0.0047 (11)	-0.0015 (11)
N6	0.0235 (15)	0.053 (2)	0.088 (3)	-0.0017 (14)	0.0089 (16)	0.0052 (18)
N7	0.0524 (18)	0.0368 (16)	0.0440 (17)	0.0076 (14)	0.0178 (14)	-0.0062 (13)
01	0.0542 (15)	0.0369 (13)	0.0385 (14)	0.0081 (11)	0.0156 (11)	-0.0038 (10)
Cl1	0.0327 (4)	0.0265 (4)	0.0323 (4)	-0.0034 (3)	0.0117 (3)	-0.0020 (3)
Cl2	0.0418 (4)	0.0305 (4)	0.0335 (4)	-0.0011 (3)	0.0144 (3)	-0.0021 (3)
Cl3	0.0327 (4)	0.0306 (4)	0.0313 (4)	-0.0037 (3)	0.0057 (3)	0.0020 (3)
Cl4	0.0249 (3)	0.0298 (4)	0.0277 (4)	0.0005 (3)	0.0058 (3)	-0.0008 (3)

Geometric parameters (Å, °)

C1—N1	1.326 (4)	C10—H10	0.9300
C1—N2	1.330 (5)	C11—N7	1.450 (5)
C1—H1	0.9300	C11—H11A	0.9600
C2—C3	1.349 (5)	C11—H11B	0.9600
C2—N2	1.350 (5)	C11—H11C	0.9600
С2—Н2	0.9300	C12—N7	1.440 (5)
C3—N1	1.374 (4)	C12—H12A	0.9600
С3—Н3	0.9300	C12—H12B	0.9600
C4—N3	1.320 (4)	C12—H12C	0.9600
C4—N4	1.332 (5)	Cd1—N5	2.259 (3)
C4—H4	0.9300	Cd1—Cl2	2.5486 (9)
C5—N4	1.349 (5)	Cd1—Cl3	2.6426 (9)
C5—C6	1.357 (5)	Cd1—Cl1	2.6651 (9)
С5—Н5	0.9300	Cd1—Cl4	2.6671 (11)
C6—N3	1.369 (4)	Cd1—Cl4 ⁱ	2.7920 (9)
С6—Н6	0.9300	Cd2—N1	2.272 (3)
C7—N5	1.308 (4)	Cd2—N3	2.275 (3)
C7—N6	1.332 (5)	Cd2—O1	2.350 (2)
С7—Н7	0.9300	Cd2—Cl3	2.6158 (12)
C8—C9	1.333 (5)	Cd2—Cl1 ⁱ	2.6400 (9)
C8—N6	1.350 (6)	Cd2—Cl4	2.7762 (9)
С8—Н8	0.9300	N2—H2A	0.8600
C9—N5	1.368 (4)	N4—H4A	0.8600
С9—Н9	0.9300	N6—H6A	0.8600
C10—O1	1.225 (4)	Cl1—Cd2 ⁱ	2.6400 (9)
C10—N7	1.313 (4)	Cl4—Cd1 ⁱ	2.7920 (9)
N1—C1—N2	110.5 (3)	Cl3—Cd1—Cl4	85.09 (3)
N1-C1-H1	124.7	Cl1—Cd1—Cl4	90.80 (3)
N2—C1—H1	124.7	N5—Cd1—Cl4 ⁱ	88.92 (7)
C3—C2—N2	106.3 (3)	Cl2—Cd1—Cl4 ⁱ	175.27 (2)
С3—С2—Н2	126.9	Cl3—Cd1—Cl4 ⁱ	89.43 (3)
N2—C2—H2	126.9	Cl1—Cd1—Cl4 ⁱ	85.84 (3)
C2—C3—N1	109.4 (3)	Cl4—Cd1—Cl4 ⁱ	82.58 (3)
С2—С3—Н3	125.3	N1—Cd2—N3	97.08 (9)

D—H···A		<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
Hydrogen-bond geometry (Å, °)					
Symmetry codes: (i) $-x$, $-y+1$, $-z+1$.					
Cl2—Cd1—Cl4	93.71 (3)				
N5—Cd1—Cl4	171.43 (7)		Cd2—Cl4—Cd1 ⁱ		90.75 (3)
Cl3—Cd1—Cl1	174.11 (2)		Cd1—Cl4—Cd1 ⁱ		97.42 (3)
Cl2—Cd1—Cl1	91.30 (3)		Cd1—Cl4—Cd2		93.53 (3)
N5—Cd1—Cl1	89.68 (7)		Cd2—Cl3—Cd1		97.92 (3)
Cl2—Cd1—Cl3	93.18 (3)		Cd2 ⁱ —Cl1—Cd1		96.66 (3)
N5—Cd1—Cl3	93.76 (7)		C10—O1—Cd2		127.5 (2)
N5—Cd1—Cl2	94.83 (7)		C12—N7—C11		117.7 (3)
H12B—C12—H12C	109.5		C10—N7—C11		121.3 (3)
H12A—C12—H12C	109.5		C10—N7—C12		120.9 (4)
N7—C12—H12C	109.5		C8—N6—H6A		126.3
H12A—C12—H12B	109.5		C7—N6—H6A		126.3
N7—C12—H12B	109.5		C7—N6—C8		107.4 (3)
N7—C12—H12A	109.5		C9—N5—Cd1		124.4 (2)
H11B-C11-H11C	109.5		C7—N5—Cd1		129.7 (2)
H11A—C11—H11C	109.5		C7 - N5 - C9		105 9 (3)
N7_C11_H11C	109.5		$C_{1} = 1 + - \Pi_{1} + \Lambda_{1}$ C5 = N4 = H4 A		125.8
$H_{11} = C_{11} = H_{11} = H_{11}$	109.5		C4—IN4— $C3C4$ —N4—H4A		106.5 (5)
N7 C11 H11D	109.5		$C_0 = N_0 = C_0 Z$		120.3(2)
N/	11/./		C4 - N3 - Cd2		128.2(2) 126.5(2)
U1—C10—H10	117.7		C4 - N3 - C6		105.3 (3)
01—C10—N7	124.7 (3)		C2—N2—H2A		125.8
N5—C9—H9	125.5		C1—N2—H2A		125.8
C8—C9—H9	125.5		C1—N2—C2		108.4 (3)
C8—C9—N5	109.0 (4)		C3—N1—Cd2		127.7 (2)
N6—C8—H8	126.5		C1—N1—Cd2		126.9 (2)
С9—С8—Н8	126.5		C1—N1—C3		105.4 (3)
C9—C8—N6	106.9 (4)		Cl1 ⁱ —Cd2—Cl4		86.65 (3)
N6—C7—H7	124.6		Cl3—Cd2—Cl4		83.44 (3)
N5—C7—H7	124.6		O1—Cd2—Cl4		93.66 (6)
N5C7N6	110.7 (3)		N3—Cd2—Cl4		85.51 (7)
N3—C6—H6	125.2		N1—Cd2—Cl4		177.38 (7)
С5—С6—Н6	125.2		Cl3—Cd2—Cl1 ⁱ		93.58 (3)
C5—C6—N3	109.6 (3)		$O1$ — $Cd2$ — $Cl1^1$		176.31 (6)
	127.1		N3—Cd2—Cl1 ¹		90.51 (/)
	127.1				$\frac{1}{2}$
NA_C5_H5	105.0 (5)		$\mathbf{N}_{1} \mathbf{C}_{42} \mathbf{C}_{11}^{i}$		90.10(7)
$N_4 - C_5 - C_6$	124.0 105.8 (3)		N_{3} C_{42} C_{13}		107.97(7)
$N_3 - C_4 - H_4$	124.0		N1 - Cd2 - Cl3		94.01 (7)
N3	110.9 (3)		N3—Cd2—O1		85.85 (9)
N1—C3—H3	125.3		NI-Cd2-OI		86.90 (9)
N1 62 H2	105.2		N1 G10 G1		0(00(0)

N2—H2A····Cl2 ⁱⁱ	0.86	2.44	3.226 (3)	152.		
N4—H4A…Cl1 ⁱⁱⁱ	0.86	2.45	3.212 (3)	148.		
N6—H6A…Cl2 ^{iv}	0.86	2.63	3.314 (3)	137.		
Symmetry codes: (ii) $-x$, $-y$, $-z+1$; (iii) $-x+1$, $-y+1$, $-z+1$; (iv) $x-1$, y , z .						

Fig. 1

