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It is a sobering thought that as we approach the 21st century, 
cancer remains one of the most prevalent of all carcinomas,
one in eight women in Western societies being expected to de
the disease at some point in her life. Research examining 
factors affecting the development of breast cancer has iden
that steroid hormones are of pivotal importance in directing
growth of these tumours. This knowledge has been exploited
ically, with endocrine treatments which seek to perturb the ste
hormone environment of the tumour cells often promoting ex
sive remissions in established tumours and furthermore prov
significant survival benefits for patients (Nicholson et al, 199
Unfortunately, the beneficial actions of existing endocr
measures are, in part, counteracted by the capacity of the tu
cells to eventually circumvent the need for steroid hormo
allowing them to continue to grow and progress despite 
therapy (Gee et al, 1996; Nicholson et al, 1996). Thus, at pres
tion of breast cancer, current endocrine therapies are not effe
in all patients (de novo endocrine resistance), while initia
responsive tumours will sooner or later progress despite such
ments (acquired resistance), inevitably resulting in patient rel
and, ultimately, death. Identification of the factors and pathw
responsible for the development of these resistant conditio
therefore an important diagnostic and therapeutic goal in ca
research.

One proposed model for such loss of steroid hormone s
tivity in breast cancer in both the de novo and acquired se
suggests that aberrations advantageous to tumour cell g
occur specifically within important growth factor signalling pa
ways, allowing mitogenesis to proceed highly efficiently des
the challenge of endocrine therapy. A new paradigm is 
emerging where knowledge of the tumour expression of gro
factor signalling elements may be prognostically relevan
identifying endocrine responsiveness, and where approp
anti-growth factor signalling therapeutic regimens, in combina
with antihormonal measures, would be expected to be benefic
breast cancer patients (Nicholson et al, 1999a).

In this light, the present review seeks to outline the elabo
molecular biology of oestrogen and growth factor signal
pathway interactions which are likely to play a central role
hormone sensitive breast tumour growth. It subsequently e
ines how changes often occurrent in the breast cancer phen
might severely perturb the balance of such signalling, 
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providing a possible explanatory hypothesis for the tumour gro
associated with the phenomena of de novo and acquired endo
resistance. A discussion of how such data might be therap
cally-exploitable in breast cancer has been published elsew
(Nicholson et al, 1999a, 1999b).

‘Cross-talk’ between steroid hormone and growth
factor signalling pathways influences the growth of
endocrine responsive disease

Many studies have now identified that breast tumours wh
exhibit an effective endocrine response (i.e. complete and pa
response) are often histologically low grade, well-differentia
and notably oestrogen receptor (ER)-positive with a minimal le
of proliferation at presentation (Williams et al, 1986; Bouzu
et al, 1989; Robertson et al, 1989; Nicholson et al, 1991, 1
Locker et al, 1992; Cheung et al, 1997). The 40–50% of br
cancer patients bearing such tumours frequently enjoy a long d
tion of response and survival time (Nicholson et al, 1984). In s
tumours, it is likely that ER signalling is central to mitogene
with steroid hormone occupancy of the receptor efficiently driv
cell growth and survival together with expression of target ge
bearing either oestrogen response elements (ERE) (Nicho
et al, 1999a, 1999b; Seery et al, in press) or composite respo
elements which bind receptors in addition to other transcrip
factors (Diamond et al, 1990). However, it is increasin
proposed that such events proceed most efficiently in an ap
priate growth factor environment, with steroid hormone a
growth factor signalling pathways ‘cross-talking’ to reinforce ea
others’ signalling. While many of the relevant growth factors a
their receptors are expressed by the breast cancer epithelia
themselves, thereby potentially working in an autocrine man
additional paracrine factors may be liberated from the surroun
stroma. In each instance, several potential points of interac
between steroid hormone and growth factor signalling pathw
have been identified. A number of these are detailed below an
illustrated in Figure 1.

The ER is a target for growth factor-induced kinase activity
(Figure 1.1)
Numerous studies have now shown that the ER protein is su
to phosphorylation and activation by several peptide gro
factors (e.g. IGF1 [Aronica and Katzenellenbogen, 1993], E
transforming growth factor-α [TGF-α, Bunone et al, 1996] and
heregulin [Pietras et al, 1995]), events which can subsequ
initiate ERE-mediated gene expression (Ignar-Trowbridge e
1996; Lee et al, 1997). These events are believed to be effect
501
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Oestrogens

GF GFR NTF RE

ER ERE

1
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4
3

5

Figure 1 Cross-talk between ER and growth factor signalling pathways. 
ER, oestrogen receptor; ERE, oestrogen response element; GF, growth
factor; GFR, growth factor receptor; NTF, nuclear transcription factor; RE,
response element
downstream signal transduction molecules such as MAP kin
which has been shown to activate ER possibly by a direct p
phorylation of serine 118 located in the A/B region of the 
(Kato et al, 1995). Additional transduction molecules dem
strated to target the ER to date include casein kinase II, pp90
protein kinase C δ, cyclin A/cdk2, Rho pathway elements a
p60c-src (Ali et al, 1993; Arnold et al, 1994, 1997; Le Goff et
1994; Casalini et al, 1997; Trowbridge et al, 1997; Zwijsen e
1997; Joel et al, 1998; Lahooti et al, 1998; Rubino et al, 1
Tzahar and Yarden, 1998). Significantly, growth factors 
downstream signal transduction pathways appear to differen
lyregulate the two transcriptional activator functions of the 
(i.e. AF-1 and AF-2), with the former being more responsive
EGF, TGF-α and mitogen activated protein (MAP) kina
signalling (Bunone et al, 1996). While activation by these fac
occurs most efficiently in the presence of oestrogens, their pro
tion of AF-1 and AF-2 responses certainly appears adequat
initiating transcription in the absence of the steroid hormone
increasing number of additional cell signalling pathways appe
also impact on the bioactivity of ER, including the pineal horm
melatonin (Ram et al, 1995), neurotransmitters such as dopa
(Gangolli et al, 1997), and second messengers including cA
(Cho and Katzenellenbogen, 1993). An emerging concept
steroid hormone receptors is therefore that they function not 
as direct transducers of steroid hormone effects but, as memb
the cellular nuclear transcription factor pool, also serve as
points of convergence for multiple signal transduction pathw
(McDonnell et al, 1995).

Oestrogens stimulate positive elements of growth factor
signalling pathways, including cell attachment factors which
may facilitate growth factor-directed cell proliferation (Figure
1.2)
Oestrogen sensitivity and endocrine response have been e
sively investigated in experimental models of human breast ca
both in vitro and in vivo. Based on these studies (Gee et al, 1
Nicholson et al, 1996), it is becoming increasingly evident 
oestrogens can promote the autocrine expression of growth f
signalling pathway components (Figure 1.2a), notably TGα
(Bates et al, 1988), IGF-II (Brunner et al, 1993) and growth fa
receptors (e.g. epidermal growth factor receptor [EGFR; Bert
et al, 1989] and IGF-IR [Freiss et al, 1990]), in oestrogen-res
sive (MCF-7 and T47-D) and oestrogen-dependent (ZR-7
human breast cancer cell lines. In the latter instance, the IG
has also been shown to be activated by oestrogen (Richards
1996; Guvakova and Surmacz, 1997), subsequently recru
downstream signalling components, notably including ins
British Journal of Cancer (2000) 82(3), 501–513
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receptor substrate-1 (IRS-1; Richards et al, 1996; Guvakova
Surmacz, 1997), which in turn may be oestrogen-regula
(Westley et al, 1998). Such actions, which are often antagon
by anti-oestrogens (Gee et al, 1996; Nicholson et al, 1996), c
significantly supplement the cellular growth responses dire
primed by oestrogens (Cho and Katzenellenbogen, 1993; Sm
al, 1993). In addition, it appears that oestrogens directly stimu
(while anti-oestrogens inhibit) the tyrosine kinase activities b
of the EGFR-related protein c-erbB-2 (Matsuda et al, 1993) and o
c-src (Migliaccio et al, 1993), the activation of which can prov
important mitogenic signals to epithelial cells (Figure 1.2
through the recruitment of the p21ras/Raf/MAP kinase pathw
(James et al, 1994; Troppmain et al, 1994).

Commonly, the frequency with which a cell divides in vit
is dependent upon its adherence, increasing as cells sprea
over the extracellular matrix. This may not only facilita
increased nutrient uptake, but also the ability of the cell to cap
growth factors, this being particularly evident at focal adhes
contacts which function as sites for priming of intracellular sign
(Weisberg et al, 1997). In this light, oestrogens in addition
stimulating growth factor signalling pathways directly, c
promote cell–cell and cell–matrix adhesion (Millon et al, 198
De Pasquale, 1998), thereby facilitating growth factor direc
cell proliferation. Oestrogens have thus been shown to ind
laminin receptor, together with various extracellular mat
components and cell membrane adhesion proteins (Castro
et al, 1989), events which may be blocked by anti-oestrog
(Millon et al, 1989). Indeed, the anti-oestrogen toremifene 
been shown to inhibit the phorbol ester enhanced α2 β1 integrin-
dependent adhesion of MCF-7 breast carcinoma cells (Maemu
al, 1995).

Oestrogens inhibit negative elements of growth factor
signalling pathways (Figure 1.3)
As well as the positive influences exerted by oestrogens on gr
factor signalling pathways detailed above, it is notable tha
parallel they diminish (while anti-oestrogens induce) the exp
sion of the growth inhibitory factor TGF-β (Knabbe et al, 1987) in
several oestrogen-responsive human breast cancer cell 
Oestrogens thus serve to inhibit the expression of a factor im
cated in the induction of programmed cell death (Perry et al, 1
and which acts through the p38/Jun kinase (JNK) pathway (
1996).

Additionally, however, it is of particular significance th
oestrogens have been reported to inhibit expression of tyro
phosphatases in ER-positive breast cancer cells to increase g
factor mitogenic activity, while both steroidal and non-steroi
anti-oestrogens increase phosphatase activity (Freiss and Vig
1994; Freiss et al, 1998). Tamoxifen, for example, inhibits 
mitogenic activity of EGF by promoting significant dephosphor
ation of EGFR, an effect believed to be ER-mediated (Freiss e
1990; Freiss and Vignon, 1989). It appears that such EG
dephosphorylation is accomplished via an increase in tyro
phosphatase activity, as evidenced not only by an effective in
tion by sodium orthovandate (a broad-spectrum phospha
inhibitor), but furthermore by a time- and dose-dependent incre
in membrane phosphatase activity with the anti-oestrogen (F
and Vignon, 1998). In this light, two tyrosine phosphatases h
been identified which appear to be regulated by oestrogens
anti-oestrogens, LAR and FAP-1 respectively (Freiss et al, 19
© 2000 Cancer Research Campaign
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Oestrogens

EGFR
TRE

ER ERE

Ras/Raf/MAPK
EGF/TGFα

Myc
Cyclin D1

IGF-I/II IGF-1R
AP-1

ER loss/Variants/Subtypes

Figure 2 Changes in breast cancer phenotype which may influence
endocrine response
Significantly, antisense inhibition of FAP-1 expression abolis
the anti-oestrogen-mediated inhibition of growth factor mitoge
activity, although the ‘pure’ anti-oestrogen ICI 182,780 appear
retain inhibitory activity under these conditions suggesting tha
effects of this compound are FAP-1-independent (Freiss e
1998).

The ER interacts with growth factor-induced nuclear
transcription factors, co-activators/co-repressors and
additional proteins to target a diversity of response
elements (Figure 1.4)
An important feature of growth factor signalling is its potentia
activate several profiles of nuclear transcription factors wh
subsequently serve to promote the expression of genes pa
pating in a diversity of end points, including cell cycle progr
sion. For example, in addition to its phosphorylation of the 
protein, growth factor-induced MAP kinase (ERK1/2) direc
activates Elk-1/p62TCF (Gille et al, 1995). This latter transcript
factor subsequently forms a ternary complex with p67SRF (se
response factor) and primes Fos expression via the c-fos serum
response element (Gille et al, 1995). Similarly, JNK (also
member of the MAP kinase family [Paul et al, 1997; Lewis et
1998]) phosphorylates the c-Jun protein which subseque
heterodimerizes with Fos (Minden et al, 1994). The resul
complex, AP-1, is of central importance since it directly targets
12-O tetradecanoyl-phorbol-13 acetate-responsive element (T
RE), a sequence found in the promoters of many genes involv
a plethora of cellular end points, including proliferation a
survival (Pfahl, 1993).

In this light, it has been reported that oestrogens can sig
cantly enhance growth factor induced AP-1 activity in hormo
sensitive breast cancer cells (Phillips et al, 1993). This featu
believed to be a consequence of productive protein–protein i
actions between the ER and the AP-1 complex (Rochefort, 19
a phenomoneon also recently demonstrated to occur betwee
and the transcription factor SP-1 (Porter et al, 1997; Duan e
1998; Sun et al, 1998; Xie et al, 1999). Thus, ER appears ab
activate genes containing AP-1 sites in their promoters (Web
al, 1995), providing a mechanism whereby ER signalling may
markedly diversified. Initial studies suggested that anti-oestrog
antagonized growth factor induced AP-1 activity, with maxim
inhibition by pure anti-oestrogens (Phillips et al, 1993). Howe
subsequent investigations (albeit performed in uterine cells) 
suggested that the tamoxifen–ER complex may also act ago
cally on promoters regulated by the AP-1 site (Webb et al, 19
In contrast to the above, ER may repress the activity of the 
scription factor NF-κB (Nakshatri et al, 1997), which regulate
expression of many cytokines (such as IL-6) and growth fac
(Sharma and Narayanan, 1996). αER-dependent inhibition of IL-6
again appears to be mediated via a direct protein–protein int
tion with NF-κB (Ray et al, 1997).

Finally, it should be remembered that ER/ERE-mediated g
transcription is also significantly enhanced by the recruitmen
several co-activators and/or by overcoming the effects of 
repressor proteins (McDonnell et al, 1992) that may feasibly
regulated by growth factor signal transduction pathways (Hans
et al, 1996; Smith et al, 1996). Indeed, an increasing number o
activators and co-repressors that can interact with the ER 
been described (Parker, 1998), including the co-activators SR
RIP-140 and AIB1 (Anzick et al, 1997; Smith et al, 1997; Par
© 2000 Cancer Research Campaign
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1998), and the co-repressors Ssn6 and SMRT (McDonnell e
1992; Smith et al, 1997; Lavinsky et al, 1998). Of particu
interest is the co-activator CREB-binding protein (CBP)/p3
which is believed to be a component of multiple signalling pa
ways including cAMP signal transduction (Hanstein et al, 19
Smith et al, 1996). Additional proteins also under growth fac
regulation have been shown to interract with the ER including
cell cycle protein cyclin D1 (Lavoie et al, 1996). This protein c
activate ER by direct binding, as well as by recruiting co-activa
of the SRC-1 family to the ER (Zurijsen et al, 1997, 1998).

Steroid hormone and growth factor signalling pathways
influence common growth regulatory genes (Figure 1.5)
In order for cells to proliferate, they initially need to be recrui
into the cell cycle and then be induced to progress throug
These outcomes are orchestrated by at least two series of e
which can be jointly influenced by steroid hormone and gro
factor signalling pathways (Musgrove et al, 1993; Prall et
1998): firstly, the induction of intermediate early response ge
such as c-fos (Morishita et al, 1995; Duan et al, 1998), c-jun
(Morishita et al, 1995; Mohamood et al, 1997) and c-myc(Dubik
and Shiu, 1992; Musgrove et al, 1993), and secondly, the re
tion of G1 cyclins (e.g. cyclin D1) and their partner kinases 
inhibitors which are involved in restriction point contr
(Musgrove et al, 1993; Lukas et al, 1996). Joint activation of th
pathways by oestrogens and growth factors would at a minim
reinforce mitogenic signals to responsive cells, and might e
result in synergistic interactions between overlapping eleme
Additionally, it is likely that steroid hormones (Kyprianou et 
1991) and many growth factors (Amundadottir et al, 1996; We
et al, 1997; Wang et al, 1998) influence the expression of 
survival factors in endocrine responsive cells, such as the b
protein (Huang et al, 1997; Wang et al, 1998).

Changes in the tumour cell phenotype potentially
perturb ‘cross-talk’ between oestrogen and growth
factor signalling pathways in endocrine unresponsive
disease (Figure 2)

The above data generated largely from model systems pro
compelling evidence that many points of convergence exist
oestrogen- and growth factor-mediated signalling pathways,
that it is likely that growth responses in endocrine respon
breast cancers hence proceed more efficiently in a m
oestrogen and growth factor milieu. In such tumours, altho
reductions in input signals from steroid hormones appear suffic
to promote extensive tumour remissions, there is an increa
body of evidence to suggest that phenotypic changes which w
severely perturb the balance of steroid hormone and growth f
British Journal of Cancer (2000) 82(3), 501–513
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504 RI Nicholson and JMW Gee
‘cross-talk’ may underlie the phenomenon of in vivo endocr
unresponsiveness in breast cancer.

EGFR and other members of the erbB receptor tyrosine
kinase family
Clinical data emerging in the late 1980s and early 1990s 
convincingly shown a significant inverse relationship between
expression of the EGFR (reviewed in Klijn et al, 1992; Nichols
et al, 1994) and endocrine sensitivity in breast cancer. Thus, w
patients whose tumours express low levels of EGFR freque
benefit from antihormonal drugs such as tamoxifen, women wh
tumours express unusually high numbers of binding sites
EGF/TGF-α (Nicholson et al, 1989) or significant cell membran
associated EGFR immunostaining (Nicholson et al, 1994) 
largely de novo endocrine unresponsive. Although to some de
these associations may be simply explained by the inverse 
tionship known to exist between the oestrogen and EGFR, with
negativity thus being commonly associated with EGFR positiv
nevertheless a direct involvement of the EGFR in gro
responses in endocrine unresponsive disease has been sug
with increased EGFR levels directly correlating both with eleva
tumour proliferation and poor prognosis (Nicholson et al, 199a,
1997b). Such a growth input would be likely to be pivotal to E
negative/EGFR-positive tumours, since their lack of ster
hormone receptor expression would obviously preclude ste
hormone receptor mitogenic signalling. In addition, such an in
might also be important to the proportion of de novo resistant 
positive tumours maintaining elevated EGFR expression, sinc
absence of second-line responses in such patients similarly 
cates a dislocation from steroid hormone receptor signalling.

Importantly, the inverse association between ER and EGFR
occurs at a cellular level (Sharma et al, 1994b, 1994c), where the
long-term action of oestrogen is to suppress the expression o
EGFR (Berthois et al, 1989). In this light, it has been sugge
that antihormonal measures which deprive breast cancer ce
oestrogens may consequently encourage increased cellular e
sion of the EGFR, a phenomenon perhaps culminating in
development of an acquired endocrine-resistant pheno
deriving an increased growth stimulus from EGFR signalli
Interestingly, this is a common phenotypic feature of endocr
resistant breast cancer cells generated in vitro following ei
long-term exposure to anti-oestrogens or prolonged oestr
deprivation (Gee et al, 1996; Nicholson and Gee, 1996), as e
plified by our own ‘in house’ acquired resistant MCF-7 sub-lin
Surprisingly, clinical and experimental data would suggest 
such cells rarely lose all ER expression in parallel (Gee et al, 1
Nicholson and Gee, 1996; Robertson, 1996), and as such
tumour re-growth hallmarking antihormonal relapse must 
biologically distinct from the 20–30% of tumours displaying 
ER-negative/EGFR-positive endocrine unresponsive phenoty
the time of clinical presentation (Nicholson et al, 1997a,b).

Tumour expression of an additional erbB family member, 
c-erbB2 protein, has similarly been associated with endoc
unresponsiveness (Nicholson et al, 1993). Indeed, tumour
expression of both EGFR and c-erbB2 appears to be assoc
with particularly aggressive phenotypes which lead to poor p
nosis and resistance to endocrine treatment (Nicholson e
1997a, 1997b). This may be a direct result of the formation 
heterodimeric receptor complexes which are highly efficien
their transmittance of mitogenic signals, conferring a cellu
British Journal of Cancer (2000) 82(3), 501–513
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ability to escape the growth restraints exerted by hormo
therapy. In contrast, however, although interactions between e
EGFR or c-erbB2 and an additional family member c-erbB3
synergistically enhance their mitogenic and transforming acti
on 3T3 fibroblast cells in vitro (Alimandi et al, 1995; Wallasch
al, 1995; Tzahar et al, 1996), readily detectable levels of c-erbB3
(and c-erbB4) are surprisingly more frequent in well-differentiate
ER-positive endocrine responsive clinical breast cancer, w
EGFR (and often c-erbB2) expression is at its lowest (Knowlde
et al, 1998). Patterns of expression (and therefore potentially
heterodimeric interactions) of the erbB family members th
appear to vary dramatically between hormone-sensitive an
novo insensitive disease. Given the increased expression of E
and the resultant overt sensitivity to an EGFR selective tyro
kinase inhibitor, ZM 1839 exhibited by our MCF-7 cells emerg
either following long-term antihormonal exposure or prolong
oestrogen deprivation, it is similarly likely that changes in th
receptor patterns are a general feature of the acquired endo
resistant state (McClelland and Nicholson, in preparatio
Importantly, however, second-line endocrine responses occu
many acquired resistant breast cancer patients. Moreover, th
significant expression of the steroid hormone receptor at rela
and in vitro inhibitory studies with the pure anti-oestrogen 
182780 confirm that ER is functional and actively contributo
towards acquired tamoxifen- and oestrogen-resistant breast c
growth. These data thus identify a maintained importance for
(and hence potentially ‘cross-talk’) in acquired resistant gro
that is also potentially EGFR-driven.

TGF-α and other erbB receptor ligands
Enhanced production of TGF-α has been observed in transform
rodent and human fibroblast and epithelial cells, where it may fu
tion as a downstream intermediary in the transformation path
elicited by oncogenes (Salomon et al, 1990). It has been sugg
that TGF-α may act to induce hyperplastic responses in tra
formed breast cells, and thereby act as a promotional age
combination with a normal background of mutational eve
(Matsui et al, 1990; Sandgren et al, 1990). Certainly, TGF-α has
been demonstrated to be present in readily detectable amou
clinical breast cancer specimens (Ciadello et al, 199; Lundy e
1991; Umekita et al, 1992), where its increased expression has
related to primary endocrine insensitivity in ER-positive dise
(Nicholson et al, 1994), possibily through substantial liga
independent activation of the ER as noted to occur experimen
Furthermore, our recent examination of sequential clinical br
cancer biopsy specimens obtained during tamoxifen treatme
also supportive of elevated TGF-α protein expression being
involved in acquired endocrine resistance in ER-positive dise
while diminished expression appears to be a therapeutic featu
those patients exhibiting a good quality and longer duration
initial response (Gee et al, in preparation). Although to date
direct associations have been reported between the cellular l
of TGF-α and ER/ERE-mediated events in vivo, ER-positive a
ER-negative tumours with elevated cellular levels of TGF-α show
an increased growth fraction, as monitored with the Ki-67 antib
(Nicholson et al, 1994, 1997a, 1997b). These data certainly sugge
that elevated expression of this growth factor may comprise
integral part of the driving force behind the growth of many bre
cancers, or may at least confer a significant growth or surv
advantage upon such cells (Nicholson et al, 1994, 1999a, 1999b).
© 2000 Cancer Research Campaign
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Oestrogen and growth factor cross-talk 505
Although no published in vivo data exists which relates 
cellular levels of other ligands for the erbB family of receptor tyro-
sine kinases and endocrine response, multiple studies have s
that breast tumours express variable amounts of EGF 
amphiregulin (ligands for the EGFR), together with heregulin α, β
and γ and betacellulin (ligands for c-erbB3/4 [Lupu et al, 1995,
1996]). In this light, our preliminary examination of releva
ligands for the erbB family has indicated that expression of t
mRNA for heregulin β1 (reported to be the most potent ligand 
the c-erbB3 receptor) is associated with ER and c-erbB3 positivity
in well-differentiated tumour types and is inversely associa
with EGFR (Knowlden et al, in preparation). ErbB signalling
well-differentiated tumour cells would appear, therefore, bia
towards c-erbB3/4, while anomalous increased expression
TGF-α/EGFR/c-erbB-2 in endocrine-insensitive disease m
direct tumour growth response pathways away from their s
reliance on oestrogens, possibly towards substantial lig
independent activation of the ER.

IGF family
Many clinical breast carcinomas contain membrane-bound re
tors for IGFs, and their ligands, IGF-I and IGF-II, are gener
more potent mitogens for human breast cancer cells than e
TGF-α or EGF (Gee et al, 1996, Nicholson et al, 1999a). Indeed,
there is an increasing body of evidence demonstrating that
signalling plays a significant role in growth and survival 
endocrine-responsive cells particularly under steroid-rich co
tions (Arteaga et al, 1989), where synergistic interactions w
oestrogens have been reported (Westley et al, 1989). Addition
both IGF-I and IGF-II reputably influence the in vitro express
of oestrogen-regulated genes such as PR (Cho et al, 1994, G
al, 1998), Fos (Wosikowski et al, 1992) and the novel oestro
regulated gene pLIVI (El-Tanani and Green, 1997b), a gene that
may have a role in directing metastatic spread in ER-pos
disease (Manning et al, 1993, 1995). Although little is direc
known about the IGF receptor family and their influence on c
ical responsiveness of breast cancer to endocrine treatme
correlation has been reported between IGFR-I expression
better clinical outcome (Papa et al, 1993). Potentially, theref
such tumours exhibiting productive interactions between ER 
IGF signalling may be particularly growth-sensitive to ster
hormone withdrawal.

Interestingly, acquired resistance to tamoxifen in vitro
reported to be accompanied by substantial increases in I
binding in MCF-7 cells (Wiseman et al, 1993), while marked ov
expression of IGFR in vitro reduces oestrogen growth requ
ments (Guvakova and Surmacz, 1997). Given the syner
apparent between IGF and oestrogen signalling pathways, 
increases in the IGFR may serve to substantially enhance
partial oestrogenicity which is a feature of tamoxifen, ultimat
allowing tumour cell re-growth during therapy. Similar chang
occuring in vivo in elements of the IGF signalling pathway m
feasibly contribute towards the acquired resistance phenomen
the clinic. Additional elements which may similarly influence t
relationship between endocrine response and IGFs include
presence or absence of specific binding proteins (IGFBPs) w
are known to enhance or suppress IGF signalling. Breast ca
cells have been found to express several IGF-binding prot
some of which are regulated by oestrogens and anti-oestro
(Yee, 1998).
© 2000 Cancer Research Campaign
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Intracellular components of growth factor signalling
pathways
In clinical specimens, Sivaraman et al (1997) demonstrated
hyperexpression of MAP kinase is a feature of clinical bre
cancer. In this light, our own recent studies using antibodies w
detect fully-activated erk1/2 MAP kinase have shown a hig
significant relationship between increased activation and a po
quality and shorter duration of response to the anti-oestro
tamoxifen, as well as with a reduced survival time in ER-posi
patients, while substantial increases also occur at the tim
disease relapse (Gee et al, submitted). As stated above, 
kinase has been shown, in addition to its inherent capacity to i
ence AP-1 and Elk-1 signalling, to activate the ER possibly
direct phosphorylation on Ser-118 located in the A/B region of
ER (Kato et al, 1995). Since this region contains the ligand in
pendent AF-1 domain (Tzukerman et al, 1994), it remains a p
bility that increased levels of activated erk1/2 MAP kinase m
contribute substantially to growth responses via AF-1 driven t
scriptional events originating from unoccupied or indeed a
oestrogen-occupied ER.

Elevated levels and/or activity of additional intracellular mo
cules comprising growth factor signalling pathways have also b
noted in malignant breast, including pp60c-src (Lehrer et
1989), Grb2 (Daly et al, 1994), RHAMM (Wang et al, 1998), R
(Dati et al, 1991; Archer et al, 1995), Raf (Callans et al, 1995)
protein kinase C (PKC) (Gordge et al, 1996). Importantly, i
number of instances, overexpression of such components in
positive, hormone-sensitive breast cancer in vitro following tra
fection of appropriate vectors leads to an altered sensitivit
hormones and antihormonal agents (Van Roy et al, 1990; El-A
et al, 1997). Although the mechanisms underlying these artific
acquired changes in endocrine response have not been fully 
mented, it is notable that both PKCδ and c-src have, like MAP
kinase, have been suggested to target the ER, phosphorylatin
122 (Lahooti et al, 1998) and Y-537 respectively (Arnold et
1997). Such interactions once again raise the possibility 
growth factor-induced kinase activity, in addition to direc
signalling onto specific nuclear transcription factor end poi
may alter the behaviour of the ER protein under oestrog
deprived or antihormone-occupied conditions, thereby genera
resistance to endocrine measures. Antihormone resistance, 
fore, may arise from altered ER phosphorylation patterns in
encing its transcriptional activation.

Nuclear transcription factors
As previously stated, an important element in growth fac
induced cell proliferation is the induction and activation of the A
1 complex (Davis, 1995) and elevated expression of AP-1 act
has been observed in some human breast tumours, as compa
normal adjacent tissue (Linardopoulos et al, 1990). The 
component of AP-1 is thus reported to be elevated in breast ca
(Tinrakos et al, 1994), and importantly there is an increasing b
of in vitro and in vivo evidence to implicate the nuclear transc
tion factor Fos in the control of many processes associated wit
ER-positive neoplastic breast cell, most notably in its acquisi
of endocrine independency and invasive capabilities (Gee e
1995). Thus, we have demonstrated significant associa
between elevated Fos protein expression and increased pro
tion, de novo endocrine insensitivity (Gee et al, 1995) and furt
more a worsened patient outlook in clinical breast cancer (Ge
British Journal of Cancer (2000) 82(3), 501–513
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506 RI Nicholson and JMW Gee
al, 1995), also noted by Bland et al (1995). Furthermore, 
recent examination of sequential clinical breast cancer bio
specimens obtained during tamoxifen treatment is also suppo
of elevated Fos protein expression being involved in both prim
and ER-positive acquired endocrine resistance (Gee et al, 1
while diminished Fos expression appears to be a therap
feature of patients with a good quality and longer duration
response. Our clinical findings demonstrating therape
increases in the Fos component of the AP-1 complex assoc
with endocrine resistance are mirrored by limited in vitro stud
As such increased AP-1 DNA binding activity has been obse
to be a feature of tamoxifen-resistant ER-positive breast ca
cells in vitro (Dumont et al, 1996), whilst prolonged tamoxif
exposure appears to render this anti-oestrogen agonistic in 
cells via its augmentation of the phorbol ester-inducible exp
sion of a chimeric AP-1 response (Astruc et al, 1995; Badia e
1995). These studies clearly reveal the importance of AP-1
signalling in directing long-term cellular responses to tamoxi
and its agonistic/antagonistic profile.

Sadly, little is known about the relationship between ER 
additional nuclear transcription factors during the developmen
either endocrine insensitivity or acquired resistance. NF-κB/Rel is
present in increased amounts in a proportion of clinical br
cancer specimens (Dejardin et al, 1995; Sovak et al, 1997) an
been linked to tumour progression in vitro (Nakshatri et al, 19
Indeed, its increased expression in two human breast cance
lines has been suggested to lead to an inhibition of apop
(Sovak et al, 1997). Expression of Myb (a transcription factor 
has been linked with cell cycle progression and appears to 
tively influence the expression of cyclin D1 [Sala and Calabre
1992; IGF-1 [Reiss et al, 1991] and bcl-2 [Thompson et al, 19
is commonly increased in ER-positive disease (Guerin et al, 1
Gudas et al, 1995). Finally, the Ets-related transcription fa
PEA3, a nuclear transcription factor primed by c-erbB2, appears
increased in tumours overexpressing this receptor and more
relates to progression in breast cancer (Benz et al, 1997). Gr
factor-directed/constitutive expression of these factors may 
serve to influence endocrine response.

Negative elements of growth factor signalling pathways
TGF-β is the most potent known inhibitor of the progression
normal mammary epithelial cells through the cell cycle (Reiss 
Barcellos-Hoff, 1997). In clinical breast cancer, TGF-β proteins
(Walker and Deering, 1992) or mRNAs (MacCallum et al, 19
are present in many samples examined, usually at significa
higher levels than observed in the normal breast, indicating
such cancers may often be growth-refractory to the inhibi
activity of this factor (Travers et al, 1988, Reiss and Barcel
Hoff, 1997). It is notable, however, that the levels and pattern
expression of TGF-β1–3 are highly variable (MacCallum et a
1994).

In keeping with the reported effects of this growth factor on 
extracellular matrix (Reiss and Barcellos-Hoff, 1997), seve
studies have indicated a positive relationship between TGF-β1 and
both disease progression (Gorsch et al, 1992) and lymph 
metastasis (Walker and Deering, 1992; Reiss and Barcellos-
1997), with TGF-β1 localizing to the advancing epithelial edge 
primary tumours and lymph node metastases (Dalal et al, 19
Similarly, the detection of all three isoforms of TGF-β mRNA in
breast cancer specimens is associated with lymph node inv
British Journal of Cancer (2000) 82(3), 501–513
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ment (MacCallum et al, 1994; Reiss and Barcellos-Hoff, 199
with TGF-β1 mRNA levels being highest in ER-positive disea
(Amoils and Bezwoda, 1997).

Although the relationship between TGF-β and endocrine sensi
tivity of breast cancer has not been been studied in great dep
clinical breast cancer, an early study was performed on 11 pat
who had received tamoxifen for 3–6 months prior to surg
(Thompson et al, 1991). Unexpectedly high levels of TGFβ1
mRNA were found in patients whose tumours increased in 
and were unresponsive to the anti-oestrogen. It is possible
progression during tamoxifen therapy may thus be due to a fa
of the autocrine inhibitory functions of TGF-β1 either alone (as
noted in in vitro [Herman and Katzenellenbogen, 1994]) or
combination with a paracrine stimulation of stromal cells or ang
genesis. Certainly, up-regulation of TGF-β1 mRNA in breast
cancer cells in vitro following their transfection with either v-H
ras or TGF-β1 cDNA (Arteaga et al, 1993) leads to oestrog
growth-independence. Such cells, however, may also s
parallel increases in TGF-α and IGF-1, together with a loss o
growth response to insulin and bFGF (Daly et al, 1995).
contrast to the TGF-β1 clinical data, several studies have not
that the TGF-β2 isoform increases both in tumours and in plas
during tamoxifen therapy in responders, with no increa
recorded in initial progressors (Knabbe et al, 1996; MacCallum
al, 1996). Interestingly, antibodies to TGF-β have been shown in a
recent study to reverse tamoxifen resistance in LCC2 breast ca
cells (Arteaga et al, 1999), strongly implicating the pleotrop
properties of TGF-β in the development of this condition.

Genetic events in growth factor expression and cell cycle
control
Breast cancer cells, in common with other tumour types, 
subject to genetic alterations, notably including those targe
growth factor-associated pathways and cell cycle control elem
and it is likely that such genetic changes would serve to mark
influence cellular response to their steroid hormone and a
hormone environment (Dorssers and van Agthoven, 1996; O
et al, 1998).

To date multiple activated oncogenes have been identifie
breast cancer, together with the loss of several suppressor 
activities (Walker et al, 1997). These include an amplification
the c-erbB2 oncogene (Seshadri et al, 1993; Ross and Fletc
1998), which potentially directly alters the balance of grow
factor signalling through the erbB family of receptor tyrosine
kinases (see ‘The ER is a target for growth factor-induced kin
activity’), and elevated expression of the Ras oncogene (Dati e
1991; Watson et al, 1991), which in culture not only increases
cellular output of several autocrine growth factors, but also se
to activate the ras/raf/MAP kinase signalling cascade (Janes 
1994). Altered signal transduction in such cells would thus se
to promote an increased expression and activity of mult
nuclear transcription families (Gille et al, 1995; Whitmarsh et
1996; Wasylyk et al, 1998), potentially including the stero
hormone receptors themselves (Kato et al, 1995).

Significantly, c-myc is also overexpressed in many brea
tumours, where it relates to an increased proliferative activ
elevated tumour grade and disease spread to unfavourable
(Kreipe et al, 1993). In our own unpublished series, Myc exp
sion is particularly prominent within ER-positive de novo progr
sive disease. Although the precise molecular mechanisms w
© 2000 Cancer Research Campaign
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Oestrogen and growth factor cross-talk 507
lead to such elevated expression of Myc remain to be establi
it is certainly interesting that Myc expression in clinical mate
correlates with that of TGF-α and activated erk 1/2 MAP kinase
Indeed, both TGF-α and MAP kinase are signalling paramete
which have been shown to impinge on and synergize with My
the control of proliferation in many cancers both in vivo and
vitro (Amundadottir et al, 1996; Gupta and Davis, 1994; N
and Dickson, 1998; Santoni-Rugiu et al, 1998). Additiona
TGF-α has also been reported to be a survival factor for mamm
tumour cells that overexpress Myc, thereby potentially enab
increased Myc-directed cell proliferation to occur (Nass et
1996), while limiting any apoptosis-inducing activity known 
be an additional feature of this nuclear transcription fac
(Amundadottir et al, 1996). Since Myc has been shown to m
the effects of oestradiol in promoting S phase entry (Prall e
1998), it is certainly feasible that Myc expression, together w
other altered elements of growth factor signalling, may be
considerable importance in modifying endocrine response.

Additionally, our recent collaborative studies performed w
Professor Robert Sutherland (Garvan Institute, Sydney) h
demonstrated that the proportion of breast cancers overexpre
the key cell cycle protein cyclin D1 is much greater than 
previously been appreciated from gene amplification studies o
chromosome 11q13 locus, suggesting that aberrant trans
tional/translational regulation is relatively common within su
tumours (Hui et al, 1996). In this light, while many ER-posit
tumours certainly overexpress the mRNA coding for the cell c
protein cyclin D1 (Buckley et al, 1993; Hui et al, 1996; Kenny
al, submitted), interestingly its elevated expression marks a s
ened disease-free interval, decreased time to local recurrenc
metastasis, and poor patient survival characteristics. Gro
factors signalling via erk 1/2 MAP kinase (Lavoie et al, 1996) 
Myc (Santoni-Rugui et al, 1998) appear to contribute (toge
with steroid hormones [Sutherland et al, 1995]) to the regulatio
cyclin D1. An important element in this event may be the euk
otic initiation factor 4E (eIF4E), which is involved in regulation 
cyclin D1 expression (Flynn and Proud, 1996) and is controlle
Ras/MAP kinase (Flynn and Proud, 1996; Sunenberg and Gin
1998) and Myc signalling (Jones et al, 1996). In this light, i
interesting that eIF4E is similarly overexpressed in breast c
noma (Sorrells et al, 1998), where its expression again relat
poor patient prognosis (Kerekatte et al, 1995; Li et al, 1997, 19
It is certainly feasible that the elevated erk 1/2 (and/or M
activity frequently observed in ER-positive, progressive dise
may contribute to the marked proliferative capacity associ
with resistance via increased positive influences on cyclin 
Indeed, overexpression of cyclin D1 in ER-positive breast ca
cells in vitro has been shown in one study to subsequently a
unrestricted passage through the cell cycle, which can con
resistance to growth inhibition by antioestrogenic agents (Wilc
et al, 1997b).

Interestingly, TGF-α has been observed to dramatically enha
c-myc-induced hepatocarcinogenesis in a transgenic mouse m
with the resultant hyperproliferative responses being not o
associated with raised cellular expression of cyclin D1, but 
with significant changes in additional components of cell cy
regulation (e.g. intense Rb hyperphosphorylation and incre
E2F activity [Santoni-Rugui et al, 1998]). Clearly, aberrations
growth factor signalling are likely to impinge on several k
growth/survival regulatory elements, thereby potentially inf
© 2000 Cancer Research Campaign
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encing tumour growth and hence steroid hormone/antihorm
response. Such positive effects on cell cycle progression ma
further aided by the reduced expression of the downstream m
ator of p53, p21/WAF-1, in many de novo endocrine-resis
patients (Nicholson et al, 1997c; McClelland et al, 1998).

Finally, BRCA1 expression may also play a role in influenc
endocrine response in view of recent results that have shown
its mRNA levels are indirectly elevated in breast cancer cell
response to oestrogen (Spillman and Bowcock, 1996; Marks 
1997), while familial mutation associates with an endocrine u
sponsive phenotype (Osin et al, 1998). Indeed, we have rec
shown that BRCA1 and ER gene expression are closely assoc
in clinical breast cancer, where low levels of BRCA1 express
mark a propensity of the tumours to metastasize to distant 
(Seery et al, 1999).

ER loss, receptor variants/mutations and sub-types
ER negativity is a relatively common event comprising so
20–30% of breast tumours at presentation, and is predictably 
ciated with de novo endocrine resistance (Campbell et al, 1
Nicholson et al, 1986, 1995; Merkel and Osborne, 19
Robertson et al, 1992). Although the origins of the ster
hormone receptor-negative phenotype at presentation are a
unknown (Ferguson and Davidson, 1997), TGF-α/EGFR/c-erbB2
signalling, and the intracellular transduction elements M
kinase, PKC and AP-1, all appear of significance in relation
growth responses (Nicholson et al, 1997a, 1997b). Relevant muta-
tions in the ER gene resulting in an inability to transcribe ER
likely to be extremely rare in breast cancer (Ferguson et al, 19
However, a number of potential mechanisms preventing the 
cient transcription or translation of the ER gene resulting in a 
of ER protein expression may exist. These mechanisms includ
transcriptional inactivation by hypermethylation of the CpG isla
in the regulatory region of the ER gene (Falette et al, 19
Ottaviano et al, 1994; Lapidus et al, 1996); (ii) altered expres
of transacting factors responsible for ER transcription (deCon
et al, 1995); and (iii) abnormalities in ER translation or synthe
of an unstable receptor protein (Ferguson and Davidson, 19
Alternatively, ER-negative tumours may feasibly arise from 
selective outgrowth of a sub-population of steroid receptor-n
tive cells which are likely to exist in the normal breast epitheli
(Walker et al, 1991, 1992), although such selective outgrowt
reported to be very infrequent in vivo (Dowsett, 1996).

Although recent studies have revealed the ER protein ma
subject to several mutations, as well as the generation of se
truncated or exon deleted variant forms (Dowsett et al, 19
Murphy et al, 1997) which theoretically may alter its functiona
and ability to interact with growth factor signalling elemen
(Murphy et al, 1997), in practice the ER mutations and varia
that have been noted in vivo are unlikely to provide a gen
mechanism for resistance to tamoxifen therapy in ER-pos
disease (Karnik et al, 1994; Daffada et al, 1995). However, t
may be a role in breast cancer for the relatively recently-ident
ER sub-type (Dotzlaw et al, 1997; Leygul et al, 1998), ERβ, and
its variants (Lu et al, 1998; Vladusic et al, 1998). In contras
ERα (previously referred to as ER in the current text), wild-ty
ERβ promotes AP-1 activity in the presence of anti-oestrog
(Paech et al, 1997), while showing differential effects on ER
mediated events (Watanabe et al, 1997; McInerney et al, 1998
co-activator selectivity (Suen et al, 1998). Moreover, interacti
British Journal of Cancer (2000) 82(3), 501–513
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508 RI Nicholson and JMW Gee
between ERα/ERβ and other nuclear receptor interacting prote
which serve as co-activators and co-repressors of ER trans
tional activity may change during breast cancer progression
contribute to endocrine failure (Berns et al, 1998; Lavinsky e
1998). Unfortunately, although such proteins are often phosph
lated and thus potentially subject to growth factor-related kin
activation, virtually no clinical data is available in this subject ar

Model of endocrine response and new therapeutic
targets

Increasing knowledge of the molecular biology of ER and gro
factor signalling is providing new ideas regarding the mechani
of action of hormones and antihormones, and moreover pos
explanatory hypotheses for the tumour growth associated with
phenomena of de novo and acquired endocrine resistanc
simplified working model for the transition of endocrine-respo
sive breast cancer to endocrine insensitivity/resistance has 
compiled in summary of the data presented in this review.

In hormone-sensitive breast cancer cells, it is likely that exte
signals generated by steroid hormones and stimulatory gro
factors act to induce/activate several classes of nuclear trans
tion factors (e.g. steroid hormone receptor, Fos, Jun, Myc, E
etc.). These influence patterns of gene expression leading t
gain of positive influences on cell cycle regulation (e.g. cyclin D
and the suppression of negative influences (e.g. TGF-β). In the
presence of adequate steroid hormone and growth factor 
signals, cells are perceived to be recruited into the cell cycle
successfully progress through it. Equivalent pathways main
cell survival. Although it is likely that cross-talk between ster
and growth factor pathways enables efficient growth signall
reductions in the input signals originating from steroid hormo
appear sufficient to reduce proliferation and induce program
cell death, thereby leading to tumour remissions. In this mo
differences between endocrine responses exhibited by norma
cancerous cells would be expected to be minimal if oncog
events occurred in those cellular pathways which either act to 
the extent of growth, but still require an input signal for grow
(i.e. which normally maintain tissue size and architecture thro
negative feedback and homeostasis mechanisms), or facilit
more efficient use of input signals from steroid hormones.

In cancers unresponsive to current endocrine measures (F
3), we postulate that further alterations have occurred in th
elements of growth factor signalling pathways which:

1. Have a positive influence on steroid hormone receptor
signalling and which facilitate the biological functions of the
ing
et al,
 of

port
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receptor in a lowered endocrine environment (or indeed in 
presence of antihormones which show oestrogen-like activ
such as tamoxifen). Retention of the ER protein in such ce
(as a continued orchestrator of growth responses) would fa
tate additional responses to endocrine measures which act
different mechanisms (i.e. aromatase inhibitor/pure anti-
oestrogen substituting for tamoxifen). Such second line
responses certainly occur in over 50% of women with acqu
resistant disease who have benefited from a first-line
endocrine response.

2. Circumvent the cellular requirement for steroid hormones v
by-passing those elements of their response pathways whi
impinge on cell proliferation and survival i.e. post-receptor
mechanisms. Such phenotypic/genotypic changes may be
severe enough to override the importance of ‘cross-talk’ an
hence effectively dislocate growth from a reliance on the
steroid hormone receptor. Importantly, the majority of patie
who fail to respond to one form of endocrine therapy de no
rarely respond to another, suggesting that the influence of 
ER in their tumour cells is entirely nullified or circumvented
the time of presentation. This mechanism may also accoun
the eventual development of acquired resistance to multipl
endocrine measures.

3. Provide a mitogenic input for tumours lacking ER. ER nega
tivity is predictably associated with de novo endocrine resis
tance, comprising ~20–30% of breast tumours at presentat
Although it is as yet unknown if such a phenotype arises fro
aberrant loss of the steroid hormone receptor or from selec
outgrowth of steroid hormone receptor negative cells, the
regulation of such tumours is severed from the steroid
hormone environment and they appear wholly dependent o
elements of growth factor signalling.

Based on the above model, it is clear that while the presen
ER within tumours obviously offers an opportunity for respons
those antihormonal measures which directly target the ER, o
elements of the complex breast cancer phenotype are like
dictate the quality and duration of response and to be involve
relapse mechanisms. In the future, the identification of th
elements is thus likely to be not only of great prognostic valu
identifying those women likely to benefit from existing endocr
measures, but should promote the development of novel th
peutic strategies designed to delay the appearance of, treat, o
reverse endocrine resistance, thereby severely compromisin
disease process (Nicholson et al, 1999a, 1999b). These might
potentially include the targeting of:

i. Any continued use of steroid hormone receptor signalling
ii. Aberrant growth factor signalling
iii. Cross-talk between (i) and (ii)
iv. Genetic aberrations within additional growth regulatory

components.

Although the fulfilment of these strategies will be a challeng
goal for those involved in breast cancer research (Nicholson 
1999a, 1999b), success should significantly extend the value
endocrine measures and improve patient survival.
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