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Abstract: This paper addresses ground target tracking (GTT) for airborne radar. Digital terrain
elevation data (DTED) are widely used for GTT as prior information under the premise that ground
targets are constrained on terrain. Existing works fuse DTED to a tracking filter in a way that adopts
only the assumption that the position of the target is constrained on the terrain. However, by kine-
matics, it is natural that the velocity of the moving ground target is constrained as well. Furthermore,
DTED provides neither continuous nor accurate measurement of terrain elevation. To overcome
such limitations, we propose a novel soft terrain constraint and a constraint-aided particle filter.
To resolve the difficulties in applying the DTED to the GTT, first, we reconstruct the ground-truth
terrain elevation using a Gaussian process and treat DTED as a noisy observation of it. Then, terrain
constraint is formulated as joint soft constraints of position and velocity. Finally, we derive a Soft
Terrain Constrained Particle Filter (STC-PF) that propagates particles while approximately satisfying
the terrain constraint in the prediction step. In the numerical simulations, STC-PF outperforms the
Smoothly Constrained Kalman Filter (SCKF) in terms of tracking performance because SCKF can
only incorporate hard constraints.

Keywords: tracking filter; particle filter; soft constraint; DTED (digital terrain elevation model);
gaussian process

1. Introduction

Ground tracking radars mounted on airborne platforms play a key role in many
applications, especially those for military purposes; surveillance, airstrike, and escort
missions done by aircraft commonly require precise tracking of ground targets. In several
modern military campaigns, ground moving target indicator (GMTI) radar on-board the
Joint Surveillance Target Attack Radar System (STARS) has been proven strategically and
tactically significant [1]. Accordingly, algorithms that track ground targets running on
radars are becoming more important. Although there have been great advances in target
tracking, tracking ground targets is still a challenging problem. The reason is that the
characteristics of ground target tracking are different from those of tracking other types of
targets. (e.g., high clutter, terrain obscuration, etc.) [2].

Because exploiting appropriate assumptions other than the state-space model can help
to improve the statistical inferences of the system [3], many studies have tried to introduce
useful assumptions to ground target tracking. They can be classified based on two criteria
of what or how assumptions were applied.

Based on the first criteria, existing studies can be classified into two further categories.
The first category considers the behavior characteristics of the ground target that are
distinguished from those of airborne targets. Fosbury [4] and Kastella [5] each created
the terms ‘trafficability’ and ‘hospitability of maneuver’, which represent how easily a
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vehicle can go through a particular area. These notions adaptively modify the target
dynamics so that the dynamics can reflect the tendency of the target to prefer directions
with small gradients. The second category involves empirical constraints. For instance, in
the work of Streller [6], ground targets are assumed to move along the infrastructure such
as roads, bridges, etc. More specifically, the assumption encourages the prior probability
density which is propagated by the system model to align with the road network. The
same assumption is utilized in the works of Pannetier [7,8]. The works of Mallick [9] and
Kim [10] are also classified into the same category and share the same motivation as ours.
To compensate for inaccurate GMTI measurements, both utilized the assumption that the
position of a ground target is restricted to the terrain surface. This idea can be extended
even further by adding another assumption that the velocity of the target is tangent to the
terrain surface, which allowing the system to estimate the velocity more precisely [11,12].

From an other perspective, existing studies can be classified based on the second crite-
ria, namely, how assumptions are applied. The first category involves modifying the target
dynamics so that it can reflect the tendency of the target. Similar to the aforementioned
works [4–6,13], the system dynamics of the filter are adaptively modified. In other words,
external knowledge is embedded in the state-space model. Thus, we have the freedom
to control only the tendency of a target. The second category involves transforming the
assumption into a state constraint. This type of approach explicitly limits the state of a
target to a specific subspace ([7,8] for example).

Extensive studies have attempted to deal with such constrained state estimation prob-
lems [11], including the methods that do not rely on the state-space model [14,15]. In the
case of linear system dynamics and linear constraints, the following methods are applicable:
model reduction [16], perfect measurement [17–19], estimate [20]/system [21]/gain [22]
projection, pdf truncation [22], etc. If either system dynamics or constraint is nonlinear,
the combination of linearization and linear methods is an available option. Other possible
choices are variants of the Unscented Kalman Filter (PUKF [12,23], ECUKF [12], 2UKF [24],
etc.), variants of the Particle Filter [25–28] (CLIP, COMP [29]), and the Smoothly Con-
strained Kalman Filter (SCKF) [30]. Moreover, many works in the literature have paid
attention to state estimation problems with soft constraints [18,19,31–34]. Soft constraints,
conditions that the state approximately satisfies, are utilized in most practical engineering
applications [11,33] because uncertainty may appear during the transformation of external
knowledge into the constraint. For example, in the case of ground target tracking con-
strained to a road, the roadmap may be inaccurate. Among promising methods dealing
with soft constraints, some regard the degree of constraint satisfaction as measurement and
extend the likelihood function [18,19,31,32,35]. Especially, this approach can be intuitively
extended to a nonlinear soft constraint; scPF (soft-constrained Particle Filter) [35] is a good
example. scPF has the advantage of preserving the nonlinearity of the constraint because
it is based on an SIR (Sequential Importance Resampling) particle filter. However, scPF
is not sample-efficient because the constraint is reflected by the generalized likelihood.
More specifically, while particles are propagated through the system dynamics, they can
be scattered in a direction that does not satisfy the constraint. Therefore, the propagated
particles that do not satisfy the constraint would be given a low likelihood and eventually
vanish, which makes the whole algorithm inefficient.

Thus, in this paper, we propose a particle filter that considers the stochastic terrain
constraint. The term ‘terrain constraint’ not only represents the assumption that the position
of a ground target should be located on the terrain surface but also that the velocity vector
of the target should be tangent to the terrain surface. Contributions are the following:

• We propose a sample-efficient particle filter to which the terrain constraint can
be applied. The proposed algorithm is named Soft Terrain Constrained Particle Filter
(STC-PF). Given the assumption of target motion, STC-PF performs sampling in a
direction for which the state satisfies the constraint during the propagation step. As
a result, STC-PF is more sample-efficient than scPF. Furthermore, in the numerical
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simulations, STC-PF using soft terrain constraint outperforms Smoothly Constrained
Kalman Filter (SCKF)[30] using hard constraint in terms of tracking performance.

• Using a Gaussian process, terrain constraint is formulated as a soft position con-
straint along with a soft velocity constraint. Because kinematics states that position
and velocity is not independent, a constraint on the position of a target implies that
the velocity of the target will be constrained as well. Therefore, terrain constraint
includes both position constraint and velocity constraint. Furthermore, terrain con-
straint requires exact terrain elevation and its gradient at an arbitrary position, but
DTED (Digital Terrain Elevation Data) [36] cannot provide them. To overcome this
issue, we model the ground-truth terrain elevation with a Gaussian process (GP) and
treat DTED as a noisy observation [37] of it.

Technically, we used SRTM (Shuttle Radar Topography Mission). However, we will
use the term DTED and SRTM interchangeably as they both are data that map terrain
elevation of the entire globe.

The structure of this paper is as follows: In Section 2, tracking of a ground target
with a terrain constraint is formulated. Section 3 presents the proposed algorithm, STC-PF.
Section 4 provides detailed explanations, the results, and a discussion of the numerical
simulation. Finally, in Section 5, we conclude.

2. Problem Formulation

In this section, tracking of a ground target with terrain constraint is formulated as a
constrained state estimation problem.

Consider a system described by the following state-space model:

xk+1 = f(xk) + wk (1)

yk = g(xk) + nk (2)

where xk is the system state vector at time k, yk the measurement vector, f the system
function, g the observation function, wk the process noise vector, and nk the measurement
noise vector. The system state vector xk ∈ R6 consists of the position (xk, yk, zk) and the
velocity (vx,k, vy,k, vz,k) in local Cartesian coordinates at time k. The system function is a
possibly nonlinear function but is assumed to be a constant velocity model in this paper.
yk ∈ R3 is the measurement, which consists of range, azimuth angle, and elevation angle
measured from the radar. wk ∼ N(0, Q) is white Gaussian process noise, and nk ∼ N(0, R)
is white Gaussian measurement noise. Subsequently, Equations (1) and (2) are realized
as follows:

xk+1 =

[
I3×3 ∆t · I3×3
03×3 I3×3

]
xk + wk (3)

yk =


√

x2
k + y2

k + z2
k

arctan yk
xk

arcsin zk√
x2

k+y2
k+z2

k

+ nk. (4)

The final goal of the state estimation problem is to infer the state sequence of the
dynamical system x0:k from the series of observations y1:k.

Now, the terrain constraint can come into play to incorporate the additional informa-
tion that the state-space model cannot reflect. The terrain constraint not only represents the
assumption that the position of a ground target should be located on the terrain surface
but also that the velocity vector of the target should be tangent to the terrain surface. Both
assumptions can be transformed into state constraints as follows:

hk = h̄(λk, ϕk)

vh,k = ∇h̄(λk, ϕk) ·
[

vλ,k vϕ,k
]T (5)



Sensors 2021, 21, 6902 4 of 19

where λk, ϕk, and hk are the latitude, longitude, and altitude (LLA) of the target at time k.
h̄(λ, ϕ) is ground-truth terrain elevation at latitude λ and longitude ϕ. Note that we do not
have direct access to h̄, but only noisy observations,

D = {DTED(λi, ϕi)|i = 1 · · ·ND} (6)

such that
DTED(λ, ϕ) = h̄(λ, ϕ) + ε(λ, ϕ). (7)

3. Soft Terrain Constrained Particle Filter

In this section, the newly proposed algorithm, Soft Terrain Constrained Particle
Filter (STC-PF) is derived. In Section 3.1, mathematical modeling of ground-truth terrain
elevation is presented. Then, we propose a technique for the transformation of velocity
between the LLA coordinates and the local Cartesian coordinates in Section 3.2. Necessary
assumptions required for algorithm derivation are described in Sections 3.3. After the
algorithm derivation in Section 3.4, we show the similarity between STC-PF and scPF [35]
in Section 3.5.

3.1. Modeling of Ground-Truth Terrain Elevation

Although the terrain constraint (Equation (5)) requires the ground-truth elevation, it
is almost impossible in practice to retrieve it at an arbitrary position. The reason is that
DTED provides neither accurate ground-truth terrain elevation (Equation (7)) nor terrain
elevation at arbitrary positions. (Equation (6)) This challenge can be met by reconstructing
the ground-truth terrain elevation with a Gaussian process (GP) and treating the DTED as
independent observations:

h̄ ∼ GP(m(λ, ϕ), k((λ, ϕ), (λ′, ϕ′)))
DTED(λ, ϕ) = h̄(λ, ϕ) + ε
ε ∼ N(0, σDTED)

(8)

where the observation noise σDTED can be estimated from the work of Rodriguez [37].
(see Appendix B) Because GP assigns a probability for each possible terrain, the terrain
constraint becomes stochastic. An advantage of this approach is that it enables us to
compute the gradient of h̄ analytically, which is required to apply the velocity constraint.
(Equation (5)) More strictly, joint predictive distribution for ground-truth terrain elevation
and its gradient can be expressed in a closed-form, (detailed description is in Appendix A)

h̄,∇h̄ |DTED ∼ N(µ̄, Σ̄) (9)

provided that the kernel function is differentiable. Figure 1 shows an example of prediction
results when zero mean function and squared exponential kernel are utilized.

m(λ, ϕ) = E
[
h̄(λ, ϕ)

]
= 0

k((λ, ϕ), (λ′, ϕ′)) = E
[(

h̄(λ, ϕ)−m(λ, ϕ)
)(

h̄(λ′, ϕ′)−m(λ′, ϕ′)
)]

= α exp
(
− 1

2
[

λ− λ′ ϕ− ϕ′
]
Γ
[

λ− λ′

ϕ− ϕ′

]) (10)
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Figure 1. GP Prediction Example.

3.2. Velocity Transformation

Another major challenge when applying the terrain constraint to the filter is that the
conversion of velocity between the local Cartesian coordinates and the LLA coordinates
is not straightforward. More specifically, the terrain constraint (Equation (5)) requires the
velocity in LLA coordinates.

This challenge can be met by multiplying the Jacobian, which is obtained by numerical
differentiation. Additionally, because velocity in local Cartesian coordinates is relative
while that in LLA coordinates is absolute, the velocity of the radar Vlla,ownship should be
added (or subtracted) after (or before) multiplying by the Jacobian. ∂λ

∂t
∂ϕ
∂t
∂h
∂t


rel

=


∂λ
∂x

∂λ
∂y

∂λ
∂z

∂ϕ
∂x

∂ϕ
∂y

∂ϕ
∂z

∂h
∂x

∂h
∂y

∂h
∂z


 ∂x

∂t
∂y
∂t
∂z
∂t


= Jxyz2llaVxyz

Vlla = Jxyz2llaVxyz + Vlla,ownship

(11)

Conversion from LLA to local Cartesian can be done in a converse way.

Vxyz = Jlla2xyz

(
Vlla −Vlla,ownship

)
(12)

where Jlla2xyz = J−1
xyz2lla.

3.3. Assumptions

Regarding the motion of the target, we assume the followings:

1. The vertical position (h) can be determined provided that the horizontal position (λ,
ϕ) is fixed.

2. Then, the vertical velocity (vh) can be also determined when the horizontal velocity
(vλ, vϕ) is fixed.

In Figure 2, assumptions 1 and 2 correspond to the red arrows that inbound to h and
vh, respectively. They comprise the ’elevation model’.
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Figure 2. Bayesian Network Representation of Target Motion.

Due to the recursive Markovian structure, it is possible to infer the current latent state
from the previously inferred latent state and the current measurement. Mathematically, by
Bayes’ rule, the joint distribution of x0:k given y1:k can be expressed as

P(x0:k|y1:k) ∝ P(yk|λk, ϕk, hk)
·P(λk, ϕk, vλ,k, vϕ,k|xk−1)
·P(hk|λk, ϕk) · P(vh,k|λk, ϕk, vλ,k, vϕ,k)
·P(x0:k−1|y0:k−1)

(13)

The dynamic model P(λk, ϕk, vλ,k, vϕ,k|xk−1) and the likelihood model P(yk|λk, ϕk, hk)
are found in the above equation. Respectively, they correspond to the blue arrows and the
green arrows in Figure 2. Note that the measurement yk is only affected by the position of
the target (λk, ϕk, hk), as stated in Equation (4).

3.4. Algorithm

The proposed algorithm is based on the SIR(Sequential Importance Resampling)
particle filter. In the SIR algorithm, which forms the basis of most sequential Monte Carlo
(MC) filters [38], the posterior probability density function P(x0:k|y1:k) is characterized by
the set of support points {xi

0:k}
Np
i=1 (or particles) and the corresponding weights {wi

k}
Np
i=1,

where Np is the number of particles [39]. The posterior density at time k is approximated as

P(x0:k|y1:k) ≈
Np

∑
i=1

wi
kδ(x0:k − xi

0:k) (14)

such that
Np

∑
i=1

wi
k = 1, (15)

where δ(·) represents the Dirac delta function. We assume that the particles are sampled
from a well-known proposal distribution,

xi
0:k ∼ q(xi

0:k|y1:k). (16)



Sensors 2021, 21, 6902 7 of 19

Then, by the principle of importance sampling, the corresponding weight is calculated as

wi
k ∝

P(xi
0:k|y1:k)

q(xi
0:k|y1:k)

. (17)

Because we have freedom to choose the proposal distribution, we consider a proposal
distribution that has a form of

q(x0:k|y1:k) = q(xk|x0:k−1, y1:k)q(x0:k−1|y1:k−1). (18)

In other words, one can draw new support points xi
0:k ∼ q(x0:k|y1:k) by augmenting

each of the previous support points xi
0:k−1 ∼ q(x0:k−1|y1:k−1) with the new state xi

k ∼
q(xk|x0:k−1, y1:k).

Starting from Equation (17),

wi
k ∝ wi

k−1
P(xi

0:k|y1:k)

P(xi
0:k−1|y1:k−1)

q(xi
0:k−1|y1:k−1)

q(xi
0:k|y1:k)

. (19)

Together with Equation (18) and the recursive relation (Equation (13)), the weight
update equation can be simplified.

wi
k ∝ wi

k−1

P(yk|λi
k, ϕi

k, hi
k) · P(λ

i
k, ϕi

k, vi
λ,k, vi

ϕ,k|x
i
k−1) · P(h

i
k|λ

i
k, ϕi

k) · P(v
i
h,k|λ

i
k, ϕi

k, vi
λ,k, vi

ϕ,k)

q(xi
k|x

i
0:k−1, y1:k)

(20)

A further assumption regarding the proposal distribution,

q(xi
k|x

i
0:k−1, y1:k) = P(λi

k, ϕi
k, vi

λ,k, vi
ϕ,k|x

i
k−1) · P(h

i
k|λ

i
k, ϕi

k) · P(v
i
h,k|λ

i
k, ϕi

k, vi
λ,k, vi

ϕ,k) (21)

yields
wi

k ∝ wi
k−1 · P(yk|λi

k, ϕi
k, hi

k) (22)

This means that the weight of each particle is updated proportionally to its corre-
sponding likelihood. Note that the above weight update equation implicitly includes the
normalization given by Equation (15).

The proposed algorithm, STC-PF, is summarized in Algorithm 1. In a vanilla SIR PF,
the next state is propagated through the dynamic model only. In contrast, in STC-PF, the
next state is propagated through the dynamic model first and then propagated through the
elevation model (line numbers 5 and 6 in Algorithm 1).

In Figure 3, a detailed implementation of the elevation model propagation is shown. It
is worth mentioning that elevation model propagation can be accelerated by two techniques:
parallelization and use of local data during the GP inference. Because the propagation pro-
cess for each particle does not require information on other particles, it can be parallelized.
Furthermore, during the GP inference, only the neighborhood data of DTED are utilized.
The range of the neighborhood is defined by the spatial window size L.
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Algorithm 1: Soft Terrain Constrained Particle Filter (STC-PF).
Result: Trajectory of Support Points

1 initialization of support points {xi
0, wi

0}
Np
i=1 ;

2 for k = 1 . . . T do
3 get new measurement yk;
4 for i = 1 . . . Np do
5 propagate through the dynamic model

λi
k, ϕi

k, vi
λ,k, vi

ϕ,k ∼ P(λk, ϕk, vλ,k, vϕ,k|xi
k−1);

6 propagate through the elevation model h̄,∇h̄ |DTED ∼ N(µ̃, Σ̃)
hi

k = h̄(λi
k, ϕi

k)

vi
h,k = ∇h̄(λi

k, ϕi
k) ·
[

vi
λ,k vi

ϕ,k

]T

 ;

7 update the weight ŵi
k ∝ wi

k−1P(yk|λi
k, ϕi

k, hi
k);

8 normalize wi
k = ŵi

k/(∑
Np
j=1 ŵj

k);
9 end

10 (Optional) Resampling (e.x. multinomial resampling);
11 end

3.5. Remark on an Existing Work

As mentioned in Section 1, from a mathematical perspective, the proposed algorithm
(STC-PF) is similar to scPF (soft-constrained Particle Filter) [35]. Similar to STC-PF, scPF
is based on the SIR particle filter; however, the two differ in the sense that scPF utilizes
generalized likelihood.

ŵi
k ∝ wi

k−1P(yk|xi
k)P(Ck|xi

k) (23)

where P(Ck|xi
k) is a pseudo-measurement that represents how much the given state xi

k
satisfies the constraint. If Equation (21) is replaced by

q(xi
k|x

i
0:k−1, yi

1:k) = P(λi
k, ϕi

k, vi
λ,k, vi

ϕ,k|x
i
k−1), (24)

then the weight update rule is also changed.

wi
k ∝ wi

k−1 · P(yk|λi
k, ϕi

k, hi
k) · P(h

i
k|λ

i
k, ϕi

k) · P(v
i
h,k|λ

i
k, ϕi

k, vi
λ,k, vi

ϕ,k) (25)

Thus, the generalized likelihood function can be identified by equating the elevation
model with the pseudo-measurement. As a result, scPF can be reduced to STC-PF as long
as the assumption for target motion holds.



Sensors 2021, 21, 6902 9 of 19

Figure 3. Implementation of Elevation Model Propagation.

4. Simulation
4.1. Scenario and Parameter Settings

To evaluate STC-PF, numerical experiments are performed with the following scenario:
The radar is mounted on an aircraft that flies at a speed of 70 m/s at a height of 2500 m.
The radar tracks a single target that moves along the surface at a speed of 25 m/s. (see
Figure 4) The simulation runs for 100 s. Furthermore, to reflect the uncertainty in DTED, a
noisy version of DTED is created. More specifically, iid zero-mean Gaussian noise with
variance σDTED is sampled and added for each data entry in DTED. Because it is reasonable
to bound the uncertainty of DTED, sampled noise is clipped to 50 m if its absolute value
exceeds 50 m.

Figure 4. Trajectory in WGS84 LLA (0.05 degree interval).
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Values of parameters used in the simulation are listed in Table 1. Detailed explanation
about the choice of GP hyper-parameters is in the Appendix B. The simulations are per-
formed with two settings that differ in the value of σDTED. The reasonable value for σDTED
is 3.77 m, which is inferred from [37]. However, another setting whose σDTED is 1.89 m is
also used to observe the sensitivity of the key parameter.

Table 1. Parameter Setting.

Name Value

σDTED (m) 3.77, 1.89
α 100

Γ (deg−2) diag
[

1
(2.78e−4)2

1
(2.78e−4)2

]
L (arcsec) 13 (≈ 390m)

∆t (s) 1.0

Initial Cov.
[

1e2(m2) · I3×3 03×3
03×3 10(m2/s2) · I3×3

]
Np 1e4

Q


20(m) · I3×3 03×3

2(m/s) 0 0
03×3 0 2(m/s) 0

0 0 5(m/s)


2

R
(
diag

[
10(m) 0.1(deg) 0.1(deg)

])2

4.2. Baseline Methods

To compare STC-PF with other filters that can incorporate nonlinear constraints,
the Smoothly Constrained Kalman Filter (SCKF) is implemented as well [30]. Note that
‘Smoothly Constrained’ in the name of SCKF does not mean soft constraint. Because SCKF
can incorporate only deterministic constraints, it requires approximations of ground-truth
terrain elevation that require h and ∇h to be fixed to specific values. One approach used
for the comparison is to ignore the noise inherent in DTED and use bilinear interpolation
to retrieve the terrain elevation at arbitrary positions.

E(xk) = hk − h̄(λk, ϕk) = 0

Ev(xk) = vh,k −∇h̄(λk, ϕk) ·
[

vλ,k vϕ,k

]T
= 0

h̄(λ, ϕ) ≈ BL(λ, ϕ |DTED)

(26)

where BL(λ, ϕ | DTED) is bilinear interpolation at (λ, ϕ) given DTED. For the compu-
tation of the gradient ∇h̄, central numerical differentiation is used instead of analytic
differentiation to avoid non-differentiable cases.

∂h̄
∂λ

∣∣∣∣
xk

≈ h̄(λk + ∆, ϕk)− h̄(λk − ∆, ϕk)

2∆
(27)

where ∆ is a small constant.
Another method is to use GP mean regression rather than bilinear interpolation.

That is, [
h̄ ∇h̄

]T ≈ µ̄ (28)

where µ̄ is the GP joint mean of h̄ and∇h̄ in Equation (9). This enables us to reconstruct the
most probable ground-truth terrain elevation considering the noise of DTED; however, this
method still cannot consider the uncertainty of the inferred h̄ and ∇h̄ values, in contrast to
STC-PF.
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SCKF requires the Jacobian of the constraint functions:

G(xk) =
∂E
∂x

∣∣∣
xk

=
[

∂E
∂x

∂E
∂y

∂E
∂z

∂E
∂vx

∂E
∂vy

∂E
∂vz

]∣∣∣
xk

Gv(xk) =
∂Ev
∂x

∣∣∣
xk

=
[

∂Ev
∂x

∂Ev
∂y

∂Ev
∂z

∂Ev
∂vx

∂Ev
∂vy

∂Ev
∂vz

]∣∣∣
xk

(29)

However, it is impossible to differentiate E(xk) and Ev(xk) analytically because they
involve coordinate transformation between local Cartesian and WGS84 LLA. Alternatively,
the derivative can be obtained using the central numerical difference regardless of the
regression method.

∂E
∂x

∣∣∣∣
xk

≈ E(xk + ∆ · ex)− E(xk − ∆ · ex)

2∆
, (30)

where ex is a canonical unit vector whose first component is nonzero. ∂E/∂yk, ∂E/∂zk, and
∂Ev/∂ ◦ can be obtained in a similar way. Because E is not a function of v·,k, corresponding
derivatives automatically become zero.

4.3. Results

To evaluate STC-PF, SCKF using bilinear regression, and SCKF using GP mean re-
gression, 100 Monte-Carlo simulations were carried out for each σDTED value. Tracking
performance is assessed based on timewise RMS (Root Mean Squared) error. For example,
timewise RMS for local Cartesian x position error at time k is

RMSx,k =

√√√√ 1
NMC

NMC

∑
n=1

(xn
k − x̄k)2 (31)

where NMC is the number of repetitions (i.e., 100), xn
k the filter mean value for x position

at time k in the nth trial, and x̄k the ground-truth x position at time k. The time average
(10 ≤ k ≤ 90) for timewise RMS is also computed for evaluation.

Figure 5 shows the timewise RMS for local Cartesian position error and velocity error.
In the figures, SCKF using bilinear regression shows the worst tracking performance. In
terms of time average of RMS position error, as shown in Table 2, the superiority of STC-PF
over SCKF using GP mean regression is clear, although it cannot be identified in Figure 5.
In terms of RMS velocity error, STC-PF distinctly outperforms the other two methods. This
trend also holds for the different parameter setting, namely σDTED = 1.89 m, as shown in
Figure 6 and Table 3.

Figure 5. Timewise RMS for Local Cartesian Position and Velocity Error (σDTED = 3.77 m).
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Table 2. Time Average of Timewise RMS (σDTED = 3.77 m).

SCKF SCKF
STC-PF + +

Bilinear GP

x (m) 9.61 10.9 9.52
y 20.7 34.1 22.4
z 2.77 3.84 3.05

Position 23.0 36.1 24.6

vx (m/s) 0.972 4.10 1.55
vy 1.74 14.0 5.45
vz 1.78 4.16 2.15

Velocity 2.75 15.4 6.15

Figure 6. Timewise RMS for Local Cartesian Position and Velocity Error (σDTED = 1.89 m).

Table 3. Time Average of Timewise RMS (σDTED = 1.89 m).

SCKF SCKF
STC-PF + +

Bilinear GP

x (m) 9.48 11.0 9.63
y 20.5 34.4 23.1
z 2.56 3.96 3.12

Position 22.8 36.4 25.3

vx (m/s) 0.966 3.38 1.11
vy 1.71 14.2 5.97
vz 1.74 3.95 2.22

Velocity 2.69 15.4 6.56

On the other hand, the speed of the algorithms is assessed based on the average pro-
cessing time for a single timestep. STC-PF and SCKF both were implemented in MATLAB
and run on an Intel Core i7-8565U with 16.0GB RAM. Table 4 shows that the baseline
method runs nearly in real time, while STC-PF does not. Nevertheless, with parallel
computing, STC-PF gets much faster and shows the possibility of real time applications.
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Table 4. Average Processing Time for a Single Timestep.

STC-PF SCKF SCKF STC-PF
+ + + +

Single Bilinear GP Parallel

t (s) 43.5 1.18 1.33 14.2

4.4. Discussion

According to the simulation results, the tracking performance of SCKF depends on
the regression method. More specifically, SCKF using GP mean regression has smaller
RMS errors than SCKF using bilinear regression. This result could be due to the regression
method used for target trajectory generation: GP regression, which is suitable for fitting of
a smooth curve, might result in a trajectory closer to the ground-truth trajectory generated
by bicubic spline interpolation.

Meanwhile, the superiority of STC-PF over SCKF in terms of tracking performance
could stem from two factors. The first is that a particle filter is more expressive than a
simple Gaussian filter. Because SCKF assumes that the posterior distribution is a simple
Gaussian, SCKF adjusts its state to meet the constraint at one point. However, unlike SCKF,
particle filters do not assume the form of a posterior distribution. Therefore, STC-PF can
estimate the distribution of the velocity hypothesis for each position hypothesis, so that
the combined hypothesis independently meets the terrain constraint. As a result, the filter
mean value, a weighted sum of each hypothesis, is less biased.

The second reason is that the state estimation with soft constraint is less sensitive to
the uncertainty of the constraint. Conversely, state estimation with hard constraint is very
sensitive to the uncertainty of the constraint. Figure 7 shows that the terrain constraint
(Equation (5)) holds almost perfectly assuming perfect knowledge of the position and
DTED. However, the hard constraint, the GP mean regression, deviates from the ground-
truth value if small amounts of position uncertainty (approximately 30 m in the longitudinal
direction) and DTED noise (σDTED = 3.77 m) are introduced (see Figure 8). In other words,
uncertainty of the horizontal position and DTED can result in a catastrophic state error if a
hard constraint is applied. On the other hand, STC-PF can absorb the error to some degree
as most of the ground-truth value resides inside the two-sigma bound.

Figure 7. GP Prediction Result Without Position Uncertainty and DTED Noise.



Sensors 2021, 21, 6902 14 of 19

Figure 8. GP Prediction Result with both Position Uncertainty and DTED Noise.

Regarding the speed of the algorithm, it is natural that STC-PF consumes more com-
putational resources than SCKF. This is because STC-PF requires expensive computation
for every particle; GP inference whose time complexity is O(n3), where n is the number
of observation points involved in the GP inference. Fortunately, time consumption is
drastically reduced by the virtue of parallel computing, and it can be reduced further by
two measures. One is reducing the number of GP observation points (namely, the spatial
window L in Figure 3) as far as the performance degradation is negligible, and the other is
increasing the number of cores dedicated to the filtering.

5. Conclusions

To sum up, we have proposed a particle filter to improve the performance of ground
target tracking. To estimate the velocity more accurately, not only a position constraint but
also a velocity constraint has been introduced in the terrain constraint. Although DTED
provides terrain elevation of the entire globe, it provides inaccurate values at discrete
positions. Thus, the ground-truth terrain elevation included in the terrain constraint has
been modeled with a Gaussian process, and DTED has been regarded as noisy observa-
tions of it. As a result, terrain constraint has become a soft constraint that can reflect
the uncertainty of DTED. Finally, we have proposed a particle filter, STC-PF, given the
assumption of the motion of the target. STC-PF is based on SIR PF, but the major difference
is that STC-PF uses the elevation model. Due to the elevation model, knowledge of the
horizontal position and velocity of a target enables us to infer the vertical position and
velocity more precisely. In the numerical simulation, STC-PF has been compared with
SCKF which can incorporate hard constraints only. Furthermore, to reflect the uncertainty
in DTED, filters have made use of DTED contaminated by noise, whereas the ground-truth
trajectory of the target is generated by the original DTED. The simulation results showed
that STC-PF outperforms SCKF in terms of RMS error, for two possible reasons. The first is
that particle filters are more expressive than simple Gaussian filters. The second is that the
state estimation with soft constraint is less sensitive to uncertainty of the constraint than
that with hard constraint.
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Appendix A. Derivative of Gaussian Process

A Gaussian process is a collection of random variables, any finite number of which
have a joint Gaussian distribution. A Gaussian process is completely specified by its
mean function and covariance function. The mean function and covariance function are
defined as

m(x) = E[ f (x)],
k(x, x′) = E[( f (x)−m(x))( f (x′)−m(x′))],

(A1)

respectively [40]. Following the most common choice, zero mean function and squared
exponential kernel are used throughout this paper. Namely,

m(x) = 0,
k(xm, xn) = α exp

(
− 1

2‖xm − xn‖2
Γ

)
,

(A2)

where ‖x‖Γ =
√

xTΓx. In most practical applications, we do not have direct access to
function values themselves, only noisy versions thereof:

y = f (x) + ε, (A3)

where ε ∼ N(0, σ). Let X and Y be the concatenation of all observation points and
corresponding measurements, respectively. Given the observation set (X, Y), the predictive
distribution of the function value f ∗ at arbitrary test points X∗ can be derived. Starting
from the joint distribution of the observation set (X, Y) and the test set (X∗, f ∗),[

Y
f ∗

]
∼ N

(
0,
[

k(X, X) + σ2 I k(X, X∗)
k(X∗, X) k(X∗, X∗)

])
. (A4)

Using basic arithmetic operations, Equation (A4) can be transformed into the following
predictive distribution [40]:

f ∗|X∗, X, Y ∼ N(µ, Σ),
where
µ = k(X, X∗)T ·

(
k(X, X) + σ2 I

)−1 ·Y,
Σ = k(X∗, X∗)− k(X, X∗)T ·

(
k(X, X) + σ2 I

)−1 · k(X, X∗).

(A5)

Furthermore, consider the derivative of the given GP. As differentiation is a linear
operator, the derivative of a Gaussian process remains a Gaussian process as long as the

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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kernel function is differentiable [41]. To find the joint probability of the observation set
(X, Y) and the derivative observation set (Xd, Yd), covariance between the function value
and the derivative value as well as covariance among the derivative values should be
described. First, let the derivative of the underlying function be

fd =
[

∂ f (x)
∂x1

. . . ∂ f (x)
∂xD

]T
, (A6)

where D is the dimension of x. Then, the explicit expressions of the new covariance
functions are

cov
(
( f m

d )i, f n) = ∂
∂xi

cov( f m, f n)

= −αγi
(
xm

i − xn
i
)
exp

(
− 1

2‖xm − xn‖2
Γ

)
,

cov
(
( f m

d )i, ( f n
d )j
)

= ∂2

∂xi∂xj
cov( f m, f n)

= αγi

(
δi,j − γj

(
xm

i − xn
i
)(

xm
j − xn

j

))
exp

(
− 1

2‖xm − xn‖2
Γ

)
.

(A7)

Using basic arithmetic operations, the above expression is reduced to vector form:

cov
(

f m
d , f n) = −k(xm

d , xn)Γ
(
xm

d − xn)
= kdx

(
xm

d , xn) ∈ RD×1,
cov
(

f m
d , f n

d
)

= k(xm
d , xn

d )
(

Γ− Γ
(

xm
d − xn

d
)(

xm
d − xn

d
)TΓ

)
= kdd

(
xm

d , xn
d
)
∈ RD×D.

(A8)

Suppose there are N observation points and M derivative observation points,

X =
[

x1 x2 . . . xN ]T ,
Y =

[
y1 y2 . . . yN ]T ,

Xd =
[

x1
d x2

d . . . xM
d
]T ,

Yd =
[
(y1

d)
T (y2

d)
T . . . (yM

d )T ]T .

(A9)

Finally, the joint distribution of the observation set (X, Y) and the derivative obser-
vation set (Xd, Yd) can be described, assuming noise-free observation for the simplicity of
the notation, [

Yd
Y

]
∼ N

(
0, K̃

)
(A10)

where

K̃ =

[
K̃dd K̃dx
K̃xd K̃xx

]
, (A11)

K̃dd = kdd(Xd, Xd) =

 kdd
(
x1

d, x1
d
)

. . . kdd
(

x1
d, xM

d
)

...
. . .

...
kdd
(
xM

d , x1
d
)

. . . kdd
(

xM
d , xM

d
)
 ∈ RMD×MD, (A12)

K̃dx = kdx(Xd, X) =

 kdx
(
x1

d, x1) . . . kdx
(

x1
d, xN)

...
. . .

...
kdx
(
xM

d , x1) . . . kdx
(

xM
d , xN)

 ∈ RMD×N , (A13)

K̃xx = Kxx(X, X) =

 kxx
(

x1, x1) . . . kxx
(
x1, xN)

...
. . .

...
kxx
(

xN , x1) . . . kxx
(
xN , xN)

 ∈ RN×N , (A14)
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and K̃xd = K̃T
dx. Similar to the argument in Equations (A4) and (A5), the joint predictive

distribution of the function value f ∗ and derivative f ∗d at the test point X∗ and derivative
test point X∗d , given the observation set (X, Y) and derivative observation set (Xd, Yd) is[

f ∗

f ∗d

]
|X∗, X∗d , X, Y, Xd, Yd ∼ N

(
µ̃, Σ̃

)
, (A15)

where

µ̃ = K̂0K̃−1
[

Yd
Y

]
,

Σ̃ = K̂1 − K̂0K̃−1K̂T
0 ,

(A16)

and

K̂0 =

[
kxd(X∗, Xd) kxx(X∗, X)
kdd
(
X∗d , Xd

)
kdx
(
X∗d , X

) ],

K̂1 =

[
kxx(X∗, X∗) kxd

(
X∗, X∗d

)
kdx
(
X∗d , X∗

)
kdd
(
X∗d , X∗d

) ].
(A17)

Now, given the sequence of test points, function value and gradient value of each test
point can be inferred together. Because Equations (A15)–(A17) give mean and covariance,
the function value and the slope can be sampled easily as well. If only observations of the
function values are available, then Xd and Yd are empty vectors.

Appendix B. Choice of Hyper Parameters of Gaussian Process

According to the DTED specifications (Department of Defense(2000), Performance
Specification, DTED, MIL-PRF-89020B), linear vertical absolute height error is less than
16 m and circular absolute geolocation error is less than 20 m for 90% of the data. Even
though the global verification of the data is a challenging task, extensive ground truth data
(e.g., Kinematic GPS data, GCPs) has been collected for the verification [37]. Consequently,
it is found that linear vertical absolute height error is 6.2 m and circular absolute geolocation
error is 8.8 m for 90% of the data.

Interestingly, the height error distribution is approximately a Gaussian, within an
order of magnitude. Therefore, we can estimate the standard deviation of the height error
σDTED to be 3.77 (m), because a 90% confidence interval is ±1.65σ.

Other hyper parameters are chosen empirically. Γ is inverse squared of 1 arc second
(≈ 2.78× 10−4 deg) which makes the exponent part of the kernel function
non-dimensional. Finally, α is properly selected so that the predictive mean sufficiently
converges to the ground truth terrain elevation.

Appendix C. Multinomial Resampling

Multinomial resampling was proposed with the first particle filter [42,43]. The multi-
nomial resampling algorithm used in the implementation is illustrated in Algorithm A1.
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Algorithm A1: Multinomial Resampling Algorithm.

Result: new support points {xxi, wwi}Np
i=1

1 for i = 1 . . . Np do
2 ui = rand() // sample from uniform [0, 1);
3 end

4 uo = SORT({ui}Np
i=1) // ascending sort;

5 sumW = 0;
6 i = 0;
7 j = 1;
8 while j <= Np do
9 i = i+1;

10 sumW = sumW + wi;

11 while (j <= Np) && (sumW > uj
o) do

12 xxj = xi;
13 wwj = 1/Np;
14 j = j + 1;
15 end
16 end
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