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Hepatocellular carcinoma is the fifth most common cancer worldwide and the second most lethal, following lung cancer. Currently
applied therapeutic practices rely on surgical resection, chemotherapy and radiotherapy, or a combination thereof. These treatment
options are associated with extreme adversities, and risk/benefit ratios do not always work in patients’ favor. Anomalies of the
epigenome lie at the epicenter of aberrant molecular mechanisms by which the disease develops and progresses. Modulation of
these anomalous events poses a promising prospect for alternative treatment options, with an abundance of felicitous results
reported in recent years. Herein, the most recent epigenetic modulators in hepatocellular carcinoma are recapitulated on.

1. Introduction

Hepatocellular carcinoma (HCC) is a notoriously aggressive
cancer with high global prevalence rates and is the next most
common perpetrator of cancer-related death following pul-
monary carcinomas, with annual mortality rates of the order
of 800,000 deaths [1]. HCC develops in a backdrop of a
chronic liver disease that ultimately results in liver fibrosis
and cirrhosis, which are consequential HCC risk factors.
Hepatitis C and B, aflatoxins, alcoholic liver disease, and
nonalcoholic steatohepatitis are all commonly encountered
chronic inflammatory hepatopathologies that predispose to
HCC. Depending on the etiology, disparate molecular
dysregulation patterns arise, all converging on promoting
malignancy. The loss of cell cycle restraints, incapacity to
senesce, and disarrayed apoptosis [2] are among such dysreg-
ulated mechanisms, which could well be the result of genetic
as well as epigenetic alterations.

The epigenome constitutes heritable features of the
genetic material out with the DNA sequence. Specific epige-
netic patterns are important for the maintenance of cellular
integrity and gene expression patterns associated with health.
In this capacity, the epigenetic fingerprint functions to guar-
antee proper and timely expression of genetic information,

and its alteration aggravates pernicious cellular changes,
many of which predispose to cancer [3]. Herein, a compen-
dium of the most recent work addressing epigenetic modula-
tors in the context of HCC is presented.

1.1. What Is Epigenetics? Epigenetics is a term that was first
coined by Conrad Waddington, and it literally means “above
genetics” [4]. It entails changes to cellular phenotypes, which
are not dependent on alterations of the genetic code (DNA
sequence). However, unanimity regarding the definition of
epigenetics has thus far been elusive, and debates in this
regard have been inconclusive at best [5].

As previously mentioned, the most recognized of epige-
netic mechanisms involve chromatin remodeling. Chromatin
is the macromolecule by virtue of which the genetic material
can be packed inside cells’ nuclei. It is composed of nucleo-
somes: DNA wound around histone protein octamers. In
its compact form, the heterochromatin, the genetic material
is relatively inaccessible for replication and the genes within
are largely silent. The euchromatin on the other hand is a
relaxed form of chromatin where the DNA is more accessible
and genes are more or less actively expressed [5]. It can thus
be easily concluded that regulation of chromatin condensa-
tion plays a role in regulating gene expression and the
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resulting phenotypes. Chromatin-modifying enzymes are
key players in effecting such restructuring and subsequent
modifications to DNA and the histone scaffolding on which
it is wound.

CpG islands are clusters of CpG dinucleotides predomi-
nantly found in the promoter regions of genes. Generally,
methylation of the 5-carbon in the cytosine of these CpG
islands shields the promoter from the transcription machin-
ery to the end result of a controlled gene expression. On the
other hand, demethylation of these regions within gene
promoters allows for the recruitment of the transcription
machinery and the gene is essentially “on.” Such functional-
ity is predominantly reserved for DNA methyltransferases.
That being said, promoters containing CpG islands account
for only 70% of the promoters in the genome. Interaction
with the remaining 30% is orchestrated by modifications to
the histone proteins, regulated—to a large extent—by histone
deacetylases [5]. The disruption of these mechanisms can
thus lead to aberrations in gene expression, which in many
cases can initiate or promote oncogenesis. For example, the
promoters of genes, which are normally turned off, are
usually found hypomethylated in cancer.

1.2. Epigenetic Modulators. Options for epigenetic therapies
in HCC can be enumerated as follows: inhibitors of DNA
methyltransferases, regulators of histone methyltransferases,
demethylases, acetyltransferases, and—most prominently—
deacetylases. Another major class of epigenetic modulators
is represented in noncoding RNAs. Below, the most eminent
and clinically established classes are explored comprehen-
sively to afford an encyclopedic overview of the current status
of epigenetic recourse for HCC therapy. However, due to
scarcity of data, several agents such tacedinaline, romidepsin,
some helicases, and other enzymes viz. acireductone dioxy-
genase 1 are not discussed.

2. DNA Modifications

2.1. DNA Methyltransferases (DNMTs). The implication of
epigenetic changes in HCC, specifically aberrant patterns of
DNAmethylation, has recently been recognized as a primary
contributor to disease onset and progression [6]. As a conse-
quence of such epigenetic anomalies, key tumor suppressors
may be silenced or oncogenes activated, resulting in the initi-
ation of tumorigenesis. DNA methylation is mediated by a
conserved class of catalytic proteins known as DNA methyl-
transferases (DNMTs). DNMTs are key players of the
epigenome. DNMTs come in two primary categories, main-
tenance (DNMT1) and de novo DNMTs (DNMT3a and
DNMT3b) [7]. Although the distinction is not absolute, it
does hold contemporarily.DNMT1,DNMT3a, andDNMT3b
function by catalyzing the transfer of a methyl group from
S-adenosyl-L-methionine, the universal methyl donor to a
5′-cytosine on DNA [8]. Moreover, several other DNMTs
do exist (such as DNMT2 and DNMTL); however, they
remain relatively undefined despite having demonstrated
a role in HCC [9].

Despite the widely suggested distinction that DNMT1
functions as the maintenance methyltransferase andDNMT3a

and DNMT3b mediate de novo methylation (predominantly
during embryonic development), the notion has been chal-
lenged as of late, with DNMT1 recognized as a contributor
to de novomethylation while maintenance functions are medi-
ated by DNMT3a and DNMT3b in concert withDNMT1 [10].
Notwithstanding the above-mentioned classification, these
enzymes do not function individually and their interaction is
crucial to the creation and maintenance of appropriate meth-
ylation patterns. The alteration of such coordination has in
fact been associated with cancer development [11].

2.2. DNMT1. DNMT1 is the most common subtype in adult
cells [12]. Normally, DNMT1 functions to maintain methyl-
ation patterns of CpG sites within promoters. This is
achieved by DNMT1 accessing hemi-methylated DNA
during replication, priming the daughter unmethylated
strand for methylation. However, anomalous DNMT-
mediated methylation jeopardizes typical gene expression
patterns as a result of increased or decreased accessibility of
CpG-rich promoters. HCC and its adjacent tissues have
demonstrated notably different DNA methylation patterns
[6]. Where the noncancerous neighboring tissues display
uniform and stable methylation patterns, HCC exhibits a
marked heterogeneity. According to the reported results,
HCC tissues manifest reduced methylation of CpG regions.
Table 1 shows a snippet of the reported signature of methyl-
ated genes in HCC, which is reportedly capable of differenti-
ating HCC samples from neighboring tissues. A former study
showed that DNAmethylation of CpG island-associated pro-
moters silenced gene expression and defined 222 drivers of
epigenetic changes exhibiting this negative correlation. A
preponderance of these candidate drivers was found to be
enriched in inflammatory responses, a number of metabolic
processes, and oxidation-reduction reactions. A set of reliable
and robust candidates was also defined (Table 1).

Neurofilament, heavy polypeptide (NEFH) and sphingo-
myelin phosphodiesterase 3 (SMPD3) were also defined as
tumor suppressor genes that were hypermethylated and
silenced in HCC [13]. The results obtained from the gain of
function experiments revealed diminished cellular prolifera-
tion, whereas those of knockdowns restored tumor invasive-
ness and migratory capacities. Conversely, hypomethylation
of the fetal promoters of the oncogene, IGF2, gave way to
its overexpression, imparting virulent phenotypes [14].
DNA methylation has also been inculpated in the dysregula-
tion of several long noncoding RNAs (lncRNAs), which have
been awhile associated with HCC. The histone methyltrans-
ferase enhancer of zeste homolog 2 (EZH2), which catalyzed
the trimethylation at lysine 27 of histone H3, has been proven
to silence TCAM1P-004 and RP11-598D14.1: two tumor-
suppressing long noncoding RNAs [15]. This has been sup-
posed to be assisted by Yin Yang 1 (YY1), which purportedly
aids in recruiting EZH2 to promoters of target genes [16].
The downregulation of these lncRNAs correlated with tumor
progression owing to the inhibition of their moderation of
the mitogen-activated protein kinase (MAPK), tumor protein
p53 (p53), and hypoxia-inducible factor 1-alpha (HIF1-α)
pathways [15]. As would be expected, upregulation of histone
methyltransferases might just be the driver for neoplastic
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events, given their downstream action on key promoters. By
way of instance, SET domain bifurcated histone lysine methyl-
transferase 1 (SETDB1), an H3K9-specific methyltransferase,
has been reported to exhibit the most substantial increase in
HCC in comparison to other epigenetic regulators [17].
SETDB1 was shown to owe its overexpression in HCC to a
gene duplication event, with an additional copy of chromo-
some 1q21 [17]. However, other anomalous events were dis-
covered to contribute to its elevated levels, such as regulation
by microRNAs (discussed below), or transcriptional activa-
tion such as this mediated by specificity protein 1 (SP1) [17].

2.3. DNMT3. Contrary to DNMT1, DNMT3a and DNMT3b
do not recognize hemimethylated DNA. They do not pro-
duce or maintain particular patterns of methylation [18],
and they are not specifically associated with replication sites
[19] as DNMT1. Rather, they mediate de novo methylation
as mentioned previously. Additionally, it has been assumed
that these DNMTs employ mechanisms different from
DNMT1 to access the heterochromatin [20], given the fact
that they were found not to be associated with replication
sites.

DNMT3 has been implicated in hepatocarcinogenesis. It
has been expressly associated with hypermethylation of
promoters controlling 22 tumor suppressor genes [21].
DNMT3b also exhibited a 4-fold increase of expression in
HCC when compared to healthy livers, which correlated with
poorer prognosis [21], which corroborates assumptions that
DNMT3 subtypes become overexpressed in cancer after hav-
ing been downregulated postcellular differentiation [22].

In HCC of HBV etiology, the normally silenced metasta-
sis-associated protein 1 (MTA1) gene was upregulated by
recruitment of DNMT3a and DNMT3b leading to hypome-
thylation of its promoter and increasing the tumor metasta-
tic disposition [23]. Additionally, DNMT3b was elsewhere
reported to be overexpressed by telomerase reverse transcrip-
tase (TERT) in HCC. The resulting anomalous methylation
patterns prompted activation of AKT [24]. Apart from its
methylating capacity, DNMT3b was found to directly target
metastasis suppressor 1 (MTSS1), by direct binding to its
promoter [25].

The implication of DNMT3a in HCC has also been cor-
roborated. In a study by Zao et al., DNMT3a knockdowns
displayed arrested cellular proliferation. Microarray analysis
revealed concomitant upregulation of 153 genes, the prepon-
derance of which bears CpG islands in their promoters.
Among these activated genes was the tumor suppressor
PTEN gene [26]. Moreover, DNMTa guided a conjectured
distinction in the epigenetic dysregulation between different
forms of liver cancer, where nonfibrolamellar HCC displayed
significantly higher levels of DNMTa compared to the fibro-
lamellar variant [27]. This discrepancy was suggested to
betray divergent epigenetic mechanisms in different HCC
subtypes.

2.4. DNMT3L. Structurally similar and functionally comple-
mentary to DNMT3a and DNMT3b is DNMT3L, which,
despite lacking intrinsic catalytic activity, enhances the bind-
ing of the former to S-adenosyl-L-methionine, the donor of

Table 1: Aberrant methylation patterns in hepatocellular
carcinoma (HCC). A comprehensive list of genes, which were
dysregulated in HCC due to aberrant methylation patterns.

Gene Methylation pattern Ref.

ACSL4 Hypomethylation

[217]
ALDH3A1 Hypomethylation

APOA5 Hypermethylation

CLDN15 Hypomethylation

CDKN2A Hypermethylation [6]

CYP7A1 Hypomethylation [217]

DEFB119 Hypomethylation
[6]

DPP6 Hypomethylation

ENDOD1 Hypermethylation

[217]EZR Hypermethylation

GLUL Hypomethylation

GZMB Hypomethylation [6]

MIR21 Hypomethylation [218]

Myo1g Hypermethylation [219]

NEFH Hypermethylation [13]

NKX3-2 Hypermethylation

[6]NDRG2 Hypermethylation

PDE1A Hypomethylation

PHYHD1 Hypermethylation [217]

PRH2 Hypermethylation [6]

RASSF1A Hypermethylation [220]

RP11-598D14.1 Hypermethylation [15]

SCAND3 Hypermethylation [219]

SPP1 Hypomethylation [217]

SPRR2A Hypomethylation [6]

SLC25A47 Hypermethylation [6]

SLC25A47 Hypermethylation [217]

SLC39A12 Hypomethylation [6]

SMPD3 Hypermethylation [13]

SFN Hypomethylation [217]

SGCA Hypomethylation
[6]

TBX4 Hypermethylation

TCAM1P-004 Hypermethylation [15]

TKT Hypomethylation [217]

VTRNA2-1 Hypermethylation [221]

ZPBP Hypermethylation [6]

ACSL4: Acyl-CoA Synthetase Long Chain Family Member 4; ALDH3A1:
Aldehyde Dehydrogenase 3 Family Member A1; APOA5: Apolipoprotein
A5; CLDN15: Claudin-15; CDKN2A: cyclin-dependent kinase inhibitor 2A;
CYP7A1: Cytochrome P450 Family 7 Subfamily A Member 1; DEFB119:
Defensin β 119; DPP6: Dipeptidyl peptidase 6; ENDOD1: Endonuclease
Domain Containing 1; EZR: Ezrin; GLUL: Glutamate-Ammonia Ligase;
GZMB: Granzyme B; MIR21: microRNA-21; Myo1g: Myosin 1g; NDRG2:
N-myc downstream-regulated gene family member 2; NEFH: Neurofilament,
heavy polypeptide; NKX3-2: NK3 Homeobox 2; PDE1A: Phosphodiesterase
1A; PHYHD1: Phytanoyl-CoA Dioxygenase Domain Containing 1; PRH2:
Proline-rich protein HaeIII subfamily 2; RASSF1A: Ras association domain
family 1 isoform A; SCAND3: SCAN domain containing 3; SFN: Stratifin;
SGCA: α-sarcoglycan; SLC25A47: Solute Carrier Family 25 Member 47;
SLC39A12: Solute carrier family 39 member 12; SMPD3: sphingomyelin
phosphodiesterase 3; SPP1: Secreted Phosphoprotein 1; SPRR2A: Small
proline-rich protein 2A; TBX4: T-box 4; TKT: Transketolase; VTRNA2-1:
Vault RNA 2–1; ZPBP: Zona pellucida binding protein.
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the methyl group. Understanding the role of DNMT3L in full
requires further analysis [28].

Given all of the above, it is clear that modifying any of
these anomalies could potentially serve as a therapeutic
modality in HCC. Below the major DNMT inhibitors with
reported activity in HCC are outlined.

2.5. DNMT Inhibitors.Herein, the most prominent inhibitors
of DNMT in HCC are outlined. Despite the fact that—in
many instances—DNMT inhibitors may not be selective for
one subtype over the other, the following is reported accord-
ing to what the original account relayed. DNMT inhibitors
are summarized in Table 2.

2.6. 5-Azacytidine. 5-Azacytidine (5-AZA) is a synthetic ana-
log of the nucleoside cytidine and an established inhibitor of
DNMT1, marketed under the name Vidaza. In the context of
HCC, treatment with 5-AZA conduced to tumor regression
and a shift to a more differentiated phenotype, which was
associated with regional demethylation of CpG regions
upstream of the liver-specific genes SLC10A1, CYP3A4,
ALB, andmiR-122, which were downregulated pretreatments
[29]. Additionally, this epigenetic modulation boosted the
effects of sorafenib. 5-AZA triggered demethylation of 5-
hydroxymethylcytosine (5hmC) via the ten-eleven transloca-
tion proteins 2 and 3 [30]. DNMT1 inhibition by 5-AZA was
also found to synergize with immunotherapy via encourag-
ing trafficking of T-cells to the tumor microenvironment
secondary to a 5-AZA-induced upregulation of chemokine
genes [31]. 5-AZA has been determined to be potentiated
by sundry supplementation, such as vitamin C [32] and alen-
dronate [33]. More recently, 5-aza-2′-deoxycytidine (5-Aza-
CdR), a derivative of 5-AZA, was reported to downregulate
DNMT1, DNMT3a, and DNMT3b [34].

2.7. Decitabine.Decitabine (5-aza-2′-deoxycytidine) is another
analog of cytidine that also acts by blocking DNMT1. Decita-
bine was reported to demethylate the promoter of the
p16INK4A gene, the product of which functions to regulate
the cyclin-dependent kinases 4 and 6, leading to an upsurge
of p16INK4A transcripts with ensuing G1 cell cycle arrest
and a rise of the senescence-associated β-galactosidase [35].
Expression levels of PRSS3 were also reported to rise in
decitabine-treated cells [36]. The desilencing of PRSS3
decelerated cellular proliferation due to inhibition of two
cyclin/CDK complexes and downshifted migration through
silencing matrix metalloproteinase 2 (MMP2). A phase
I/II clinical trial [37] scrutinized the efficacy of decitabine
and its safety in advanced HCC. Western blots from
patients’ peripheral blood mononuclear cells (PBMCs)
indicated decreased levels of DNMT1 in decitabine-treated
participants.

2.8. Guadecitabine. Guadecitabine is a dinucleotide deriva-
tive of decitabine in which the latter is attached to a deoxy-
guanosine is by a phosphodiester bridge. Guadecitabine is
commonly designated as SGI-110 and exhibits a more sus-
tained systemic effect than its parent compound. Demethyla-
tion and activation of the tumor suppressor genes DLEC1,
RUNX3, and CDKN2A were observed following SGI-110
treatment of Huh7 and HepG2 cells. Although its demethy-
lating effects were compromised in the presence of the his-
tone H2A variant, macroH2A1, SGI-110 was still capable of
restricting tumor growth, unlike decitabine [38]. Potentia-
tion of the cytotoxicity of the platinum-based antineoplastic
oxaliplatin was reported when a pretreatment of SGI-110
was coadministered [39]. The mechanistic basis of such a
sensitization involves counteracting the extensive methyla-
tion of targets within the Wnt/EGF/IGF signaling loop.

Table 2: DNA methyltransferase (DNMT) inhibitors in HCC. The table shows the most prominent DNMT inhibitors, the changes in the
targets of the inhibited DNMTs, and the resulting effects on the tumor.

DNMT inhibitor DNMT targets affected Effect Ref.

5-Azacytidine SLC10A1, CYP3A4, ALB, and miR-122 Inhibits tumor growth [29]

Decaitabine
p16INK4A (activation) G1 cell cycle arrest [35]

PRSS3 (activation) Inhibits proliferation and migration [36]

Guadecitabine (SGI-110) DLEC1, RUNX3, and p16INK4A Inhibits tumor growth [38]

Zebularine
CDK2, Bcl-2, and phosphorylation of Rb (inhibition) and

p21WAF/CIP1 and p53 (activation)
Inhibits proliferation and induces apoptosis [42]

SGI-1027 Bcl-2 (inhibition) and BAX (activation) Induces apoptosis [222]

CM-272
E-cadherin, CYP7A1, FBP1, GNMT, and

MAT1A (activation)
Inhibits proliferation and decreases

adaptation to hypoxia
[223]

EGCG (Y6) P-gp and HIF1-α (inhibition)
Inhibits proliferation and reverses

doxorubicin-resistance
[53]

Genistein
CYP1A1, CYP1B1, and p-AMPK (activation) and CYP26A1

and CYP26B1 (inhibition)
Inhibits proliferation (at a 10-40 μM
concentration) and induces apoptosis

[44]

ALB: albumin; BAX: Bcl-2-like protein 4; Bcl-2: B-cell lymphoma 2; CDK2: cyclin-dependent kinase 2; CYP1A1: cytochrome P450 1A1; CYP1B1: cytochrome
P450 1B1; CYP26A1: cytochrome P450 26A1; CYP26B1: cytochrome P450 26B1; CYP3A4: cytochrome P450 3A4; CYP7A1: cholesterol 7α-hydroxylase-1;
DLEC1: deleted in lung and esophageal cancer 1; FBP1: fructose-1,6-bisphosphatase; GNMT: glycine-N-methyl transferase; HIF1-α: hypoxia-inducible factor
1-α; MAT1A: methionine-adenosyltransferase 1A; p16INK4A: cyclin-dependent kinase inhibitor 2A; p21WAF/CIP1: cyclin-dependent kinase inhibitor 1;
p53: tumor protein p53; p-AMPK: phosphorylated AMP-activated protein kinase; P-gp: P-glycoprotein 1; Rb: retinoblastoma; RUNX3: RUNX Family
Transcription Factor 3; SLC10A1: sodium/bile acid cotransporter.
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2.9. Zebularine. In HepG2 cells cultured at high densities,
zebularine, a more stable and less toxic analog of 5-AZA
[40], demonstrated a progressive escalation of expression of
differentiation-associated genes and fomented apoptosis.
shRNA-induced DNMT1 knockdown annulled these effects
[41]. Paradoxically, contrary reports indicated that zebular-
ine had negligible influence on DNAmethylation in the same
cell line [42]. Despite the previous report, zebularine did
affect several cytotoxic events, which have been attributed
to mechanisms other than DNMT inhibition. Zebularine
was found to inhibit histone deacetylases (HDACs) alongside
DNMT genes in LS 174T cells [43]. DNMT1, DNMT3a, and
DNMT3a as well as Class I HDACs and Class II HDACs were
downregulated with a concomitant elevation in the expres-
sion of p21Cip1/Waf1/Sdi1, p27Kip1, and p57Kip2 on treat-
ment with zebularine, albeit to a more modest extent in
comparison with trichostatin A. In the same study, it was
observed that both agents acted synergistically to substan-
tially increase apoptosis. It would thus seem propitious to
examine these regulatory loops more closely in HCC.

2.10. Genistein. Genistein (GE) is an isoflavone derived from
soybean and is characterized by its propensity to bind the
estrogen receptor. GE upregulated cytochromes 1A1 and
1B1 in HT29 cells and downregulated cytochromes 26A1
and 26B1 [44]. In Hep3B cells, GE increased levels of phos-
pho-AMPK, which mitigated inflammatory processes and
consequent liver damage [45]. In concert with trichostatin
A (TSA), GE restored the expression of the DNA methyl-
transferases DNMT1, DNMT3a, and DNMT3b in HepG2
cells [46]. GE exhibited biphasic effects at different concen-
tration ranges, where at a low concentration of 1μM, it
encouraged cellular growth, while at higher concentration
within the range of 10-40μM, GE had antiproliferative
effects. Proapoptotic effects were evident at all concentra-
tions, unlike TSA, whose effects were observable only follow-
ing a 3-day long treatment [47].

2.11. Epigallocatechin-3-Gallate (EGCG). EGCG is the most
abundant catechin in green tea that—among other flavo-
noids and catechins—has repeatedly been reported to possess
tumor chemopreventive and antineoplastic effects in HCC
[48]. EGCG has been shown to interact with the following
amino acid residues within the catalytic domain of DNMT:
P-1223, C-1225, S-1229, E-1265, and R-1309 [49, 50]. More-
over, catechol-containing polyphenols, of which EGCG is
a member, inhibit DNMTs by mediating a rise in SAM
O-methylation via catechol-O-methyltransferase. Alterna-
tively, SAM levels were increased following disruption of
the folate cycle secondary to dihydrofolate reductase inhibi-
tion by catechol-containing polyphenols. Direct inhibition
of DNMTs by this class of compounds can also occur regard-
less of the methylation pattern [49, 50].

Additionally, EGCG has been shown to mediate a meta-
bolic shift away from glycolysis in HCC cells, thereby pro-
moting apoptosis and stunting cellular proliferation [51].
Mechanistically, this action has been attributed to its sup-
pression of phosphofructokinase activity, whereby cellular
stress is effected, ultimately culminating in programmed cell

death. What is more, EGCG synergistically acted to amelio-
rate the antiproliferative effects of sorafenib [51]. Synergy
between EGCG and metformin, the famous antidiabetic
biguanide, has also been reported [52]. An EGCG/metformin
combination therapy was associated with a significant reduc-
tion in glypican-3, survivin, cyclin D1, VEGF, and the long
noncoding RNA AF085935 and an elevation of the levels of
caspase 3 [52]. Another study examined the therapeutic
effects of Y6, a chemically modified form of EGCG [53].
Again, and similar to its parent compound, Y6 efficiently
curbed cellular proliferation. Additionally, it engendered a
reversal of doxorubicin resistance in resistant BEL-7404 cells.
The antiproliferative and antiapoptotic effects of Y6 corre-
lated with reduced P-glycoprotein 1 (P-gp) and HIF1-α on
the mRNA and protein levels and was exacerbated in groups
receiving Y6/doxorubicin combination therapy, compared to
those on doxorubicin monotherapy. A compendium of stud-
ies reporting disease-modifying capabilities of EGCG in HCC
can be found in a recent review by Bimonte et al. [48].

Other inhibitors of DNMT such as hydralazine, procain-
amide, and RG108 have been tested for their efficacy in
cancer [11] but are yet to be examined as potential therapies
in HCC.

3. Histone Modifications

Chromatin is formed by the assembly of nucleosomal units,
which are formed by the wounding of DNA around histone
proteins. For accessing of genetic information, the highly
packed chromatin has to be unwound. Chromatin modifica-
tions viz. methylation and acetylation are key controllers of
this stipulation and thus play a crucial role in gene expression
(Figure 1).

Histone modifications comprise sundry alterations to
histone proteins including methylation (histone methyl-
transferases and histone demethylases), acetylation (histone
acetyltransferases and histone deacetylases), ubiquitination,
sumoylation, and phosphorylation [54]. The disruption of
any of these modification patterns entails repercussions that
may very well conduce to malignancy. However, for the pur-
pose of this review, we elected to center this discourse on his-
tone deacetylases (HDACs) given the abundance of data and
the corroborated efficiency of HDAC inhibitors in preclinical
and clinical settings [55]. Other reviews can be consulted for
in-depth discussion of histone modifications and their impli-
cations in cancer [56–59].

Histone acetylation is controlled by two classes of
enzymes: histone acetyltransferases (HATs) and histone dea-
cetylases (HDACs). HATs catalyze the acetylation of lysine
residues, whereas HDACs function to remove these acetyl
groups [60].

As a result of acetylation, interaction between the histone
octamers and DNA is compromised due to the neutralization
of the positively charged lysine residues. The weakening of
this interaction gives way to a transcriptionally permissive
state of chromatin. HDACs promote an opposite effect,
where the euchromatin state is favored as a consequence of
retrieval of the positive charges on lysine residues, restoring
the histone-DNA interaction [61]. A balance between HAT
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and HDAC activity ensures the maintenance of normal pat-
terns of gene expression, and its disruption is often noted
in many malignancies including HCC [62].

3.1. HDACs. There are around 18 HDACs, many of which
have been shown to deacetylate nonhistone proteins [63].
Given the above, the centrality of HDACs to chromatin
accessibility and control of gene expression [64] is obvious,
and assumptions that HDACs constitute tumor suppressors
or target for therapy are not only well-grounded but also
experimentally evident.

In HCC, dysregulation of HDACs has been multiplied
reported. By way of instance, HDAC1 and HDAC2 were
found to be overexpressed in HCC patients of Southeast
Asian origin and was associated with higher rates of mortal-
ity. Inhibition of these HDACs in vitro inhibited cellular pro-
liferation [65]. The upregulation of HDAC1 and HDAC2 was
found to suppress fructose-1,6-bisphosphatase (FBP1), a key
enzyme in glycolysis [66], and HDAC2 was further reported
to modulate genes involved in the cell cycle and apoptosis
[67]. HDAC3 was recently demonstrated to be centrally
implicated in hepatocarcinogenesis. Following a ubiquitina-
tion event, it dissociates from the c-Myc promoter, whereby
K9 of histone H3 (H3K9) becomes acetylated and c-Myc is
made transcriptionally available [68]. Elimination ofHDAC3
inhibited the trimethylation of H3K9 that occurs subsequent
to the HDAC3-mediated deacetylation of this residue, arrest-

ing the contingent double-strand break repair mechanism
and resulting in the accretion of bad DNA [69].

Interestingly, HDACs were also shown to counter cell
migration. Acetylation of H3K4 and H3K56 within the Snail2
promoter was markedly reduced in EMT thanks to HDAC1
and HDAC3 [70]. It is worthy to note that G9a, a histone
H3 lysine 9 (H3K9) methyltransferase, has been recently rec-
ognized as vital for such Snail2-mediated inhibition of E-cad-
herin and consequent repression of mesenchymal properties
[71]. It has even been targeted for therapy by administering
its inhibitor, UNC0646, in nanodiamonds, which reduced
H3K9 methylation and tumor invasiveness [72].

That being said, therapeutic inhibition of HDACs may
sometimes prove problematic because of interference with
various pathways [56] and, as evident above, for the bidirec-
tional functionality it has sometimes demonstrated. It is thus
of essence to dedicate some efforts to better understand and
characterize the complex regulatory role of HDACs so as to
determine their amenability to therapeutic targeting and
define in what direction should therapeutic strategies be
pursued.

3.2. HDAC Inhibitors. HDAC inhibitors (HDACi) are a
group of agents that are useful in resolving aberrant patterns
of deacetylation, modulating chromatin accessibility, the lack
of which is often an inciting factor for tumorigenesis [73].
Below the most prominent HDACis are outlined (Table 3).
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4. Hydroxamates

4.1. Trichostatin A. TSA is one of the most studied hydroxa-
mate HDAC inhibitors. Following inhibition of HDACs 1, 2,
and 3 by TSA, apoptotic protease-activating factor 1 (Apaf1)
was determined to become upregulated, which leads to the
stimulation of mitochondrial caspase-driven apoptosis of
the HLE and HLF HCC cell lines [74]. TSA was also found
to restore the expression level of H2Aub, an H2A posttran-
slationally ubiquitinated at lysine 119, which is diminished
in HCC. Simultaneously, TSA modulated the rates of
H3S10 phosphorylation, which were inversely correlated
with H2Aub in HCC [75]. In addition to ubiquitin-specific
peptidase 21 (ups21), which is responsible for the downregu-
lation of H2Aub above, CYLD is another (lysine 63) deubi-
quitinase involved in the development of HCC. Contrary to
Ups21, it is the inadequacy of CYLD that is associated with
malignancy. TSA was shown to raise CYLDmRNA and pro-
tein levels in Huh7 and HepG2 cells [76]. Overexpression of
ligands of NKGD2 was noted following TSA treatment. It
thus exerted its cytotoxic effect through stimulating natural
killer (NK) cells to eliminate HCC cells [77]. Alternatively,
the proapoptotic activity of TSA could be modulated by reg-
ulatory RNA species such as the long noncoding RNA, lncRNA-
uc002mbe.2, which was increased post-TSA-treatment [78].
The proposed mechanism delineates an interaction between
lncRNA-uc002mbe.2 and heterogeneous nuclear ribonucleopro-
tein A2B1 (hnRNPA2B1) which instigates the stimulation of
p21 and reduction of phosphorylated AKT. TSA has been used

in conjunction with other agents such as sorafenib for enhanc-
ing therapeutic outcomes [79].

4.2. Resminostat. Resminostat is a pan-HDACi (inhibits both
nuclear and cytoplasmic HDACs). In HepG2, SMMC-7721
and HepB3 cells, resminostat incited mitochondrial depolar-
ization and apoptosis via the mitochondrial permeability
transition pore pathway. It also evoked the production of cas-
pase 9 and cytochrome c [80]. The cytotoxic effects of resmi-
nostat were reinforced by inhibitors of themammalian target
of rapamycin (mTOR), which has been characterized as a
resistance factor of resminostat [81]. The synergistic effects
of resminostat with sorafenib have been repeatedly studied.
The combination proved safe and effective. Resminostat
shifted the cells from a mesenchymal to an epithelial phe-
notype, which better sensitized the cells to subsequent
sorafenib treatment [82]. That being said, further investi-
gation into the advantage of this combination is required.
While an exploratory clinical study corroborates the above
observations [83], another phase I/II study refuted an
added utility of resminostat supplementation over sorafe-
nib monotherapy [84].

4.3. Panobinostat (PANB). Another potent pan-HDACi is
PANB. Studies have shown that PANB affected a negative
interference with DNMTs (as outlined in Table 2) and an
ensuing impedance of methylation of classically hyper-
methylated genes, such as APC and RASSF1A [85]. PANB
encouraged an increase of autophagic factors Beclin1 and

Table 3: Histone deacetylase (HDAC) inhibitors in HCC. The table shows the most prominent HDAC inhibitors that have been studied in
HCC, their cellular targets, and their antitumor effects.

Hydroxamates
HDACi Target(s) Effect Ref.

Trichostatin A
Apaf1 and H2Aub (activation) Promotes apoptosis [74]

ULBP1/2/3 and MICA/B (Activation) Inhibits tumor cell growth [77]

Resminostat Caspase 9 and cytochrome c (activation)
Promotes mitochondrial depolarization

and apoptosis
[80]

Panobinostat
Beclin1, Map1LC3B, and p53 (activation) and p73

nuclear translocation
Promotes autophagy [86]

Vorinostat (SAHA)
HIF-α (inhibition) Initiating tumor hypoxia [73]

DR5 (activation) and c-Flip (inhibition) Sensitization to TRAIL-induced apoptosis [224]

Quisinostat (±sorafenib)
c-Caspase 3, c-Caspase 9, c-PARP, and Bax (activation)
and Bcl-xL, Bcl-2, survivin, PI3K-p110, PI3K-p85, and

p-AKT (inhibition)
Inducing G0/G1 phase arrest and apoptosis [225]

Cyclic peptides

Romidepsin p-Erk and p-JNK (activation)
Induces cell cycle arrest in the G2/M phase

and apoptosis
[226]

Aliphatic fatty acids

Valproic acid Nrf2 (inhibition) Sensitization to proton irradiation [94]

Valproic acid (+DOX) AKT/mTOR (inhibition) Increases ROS and induces autophagy [95]

Sodium butyrate p-AKT andmTOR (inhibition) and CYLD (activation) Increases ROS and induces autophagy [99], [76]

Bax: Bcl-2-associated X protein; Bcl-2: B-cell lymphoma 2; Bcl-xL: B-cell lymphoma extra large; c-Caspase 3: cleaved caspase 3; c-Caspase 9: cleaved caspase 9;
c-PARP: cleaved Poly (ADP-ribose) polymerase; CYLD: CYLD lysine 63 deubiquitinase; DOX: doxorubicin; DR5: death receptor 5; mTOR: mammalian target
of rapamycin; Nrf2: nuclear factor erythroid 2-related factor 2; p-AKT: phosphorylated protein kinase B; p-Erk: phosphorylated extracellular-signal-regulated
kinase; PI3K-p110: phosphatidylinositol 3-kinase subunit p110; PI3K-p85: phosphatidylinositol 3-kinase subunit p85; p-JNK: phosphorylated c-Jun N-terminal
kinase; ROS: reactive oxygen species.
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Map1LC3B, which concomitantly presented with the appear-
ance of quasiautophagosome clusters along with the nuclear
translocation of p53 and p73 in HepG2 and Hep3B cells,
respectively, and regulation of DRAM1 [86]. Ingeniously,
18F probes have been used as PET tracers to monitor angio-
genic progression following PANB therapy, through imaging
of integrin αvβ3. These PET scans revealed a substantially
reduced uptake in HepG2 but not in HT29 neoplasm, in
response to therapy in nude mice [87].

4.4. Vorinostat (VORN; SAHA). Beyond chromatin unwound-
ing, evidences have been provided that substantiate a role of
VORN in initiating tumor hypoxia. Ostensibly, VORN-
mediated acetylation of heat shock protein 90 (Hsp90), a chap-
erone ofHIF-α, hinders its nuclear translocation and forestalls
its transcriptional activity [73]. As a result, levels of several
downstream hypoxia-triggered molecules come to be defi-
cient. VORN was used as an adjuvant to a number of antican-
cer drugs such as oxaliplatin [88] and the mTOR inhibitor,
sirolimus [89]. Compared to 5-aza-2′-deoxycytidine (5-Aza-
CdR), VORN exhibited superior apoptotic effects which was
coincident with its inhibition of HDAC1. However, a combi-
nation of the two achieved maximal apoptosis of LCL-PI 11
cells [34].

4.5. Belinostat. Belinostat has been studied extensively but
sporadically in different cancer types, mostly on hematologic
malignancies. Despite its consistently promising results, beli-
nostat remains underinvestigated in HCC. Hereunder, most
of the reports on belinostat use in HCC are summarized. A
multicenter phase I/II study aimed at determining the drug
pharmacokinetic and toxicity profiles constitutes one major
such report. The outcomes of the study were favorable in
terms of disease stabilization (assessed via histoscores) and
high tolerance to the drug, which is reflected in its outspread
pharmaceutical window [78]. When combined with the
checkpoint inhibitors anti-PD-1 and anti-CTLA-4 antibod-
ies, belinostat potentiated the latter but not the former. The
synergy was credited to a drop of regulatory T cells and a
boosted IFN-γ production by T cells in the tumor microenvi-
ronment [90]. Withal, PD-L1 inhibition was proposed, given
its observed overexpression on antigen-presenting cancer
cells and its retarded expression on effector T cells. Boron-
incorporating prodrugs of belinostat have been propounded
for improving its potency against solid tumors [91]. The pro-
drug form manifested superior bioavailability. However, the
efficacy of this form remains to be examined in HCC.

5. Aliphatic Fatty Acids

5.1. Valproic Acid (VPA).VPA, a class I and IIa HDACi, has a
certain favorability to it, given its reasonable cost and wide
safety margin. VPA demonstrated antineoplastic effects in
PLC/PRF5 and HepG2 cells [92]. Moreover, VPA was shown
to mediate a dissemination of its anticancer activity through
its indirect modulation of cell-free DNA. This rather unique
study was conducted under the hypothesis that cfDNA can
mediate intercellular signaling. The cfDNA derived from
VPA-treated cells induced glycolysis in naïve HepG2 cells.

Subsequent analysis of the cfDNA from these cells revealed
altered characteristics. As such, it was suggested that VPA
treatment can be temporarily propagated across cells via their
released cfDNA [93]. VPA rendered Hep3B cells more vul-
nerable to proton irradiation, protracting the actuated DNA
damage, and promoted irradiation-mediated apoptosis [94].
Curiously, VPA increased irradiation-induced reactive oxy-
gen species (ROS) production and silenced nuclear factor ery-
throid 2-related factor 2 (Nrf2), which is quickly becoming a
marker of radioresistance. VPA has been used in combina-
tion with doxorubicin [95] and sorafenib [96] and boosted
the cytotoxic effects of cytokine-induced killer cells [97].
Recently, VPA was assessed alongside zebularine as to the
effect on Suppressor of cytokine signaling 1 (SOCS-1) and
Suppressor of cytokine signaling 3 (SOCS-3) expression [98].
Despite both suppressing cellular growth, only VPA demon-
strated an apoptotic effect and correlated with an upregula-
tion of SOCS-1 and SOCS-3.

5.2. Sodium Butyrate. Butyrate is among the short chain fatty
acids that are produced as a result of the anaerobic fermenta-
tion undergone by gut microbiota, and its benefits in
restraining tumor growth have been documented. The
sodium salt of butyrate has been explored as an epigenetic
modulator in various malignancies. However, there remains
a need for exploring its utility in HCC. Elevation of ROS
and consequent autophagy were noted in Huh7 cells follow-
ing butyrate treatment. Levels of phosphorylated AKT and
mTOR were positively inhibited, which gave to a dependent
rise in ATG5, Beclin1, and LC3-II, with subsequent assem-
bly of the autophagosome machinery [99]. Otherwise, as
noted with TSA (above), butyrate spurred on the expres-
sion of the deubiquitinase CYLD in Huh7 and HepG2 cells
(Kotantaki & Mosialos, 2016).

6. Noncoding RNAs

6.1. MicroRNAs. MicroRNAs (miRNAs) are probably the
most frequently studied biomolecules in cancer, and for a
good reason. Given their integral role in gene expression
manipulation, abnormal miRNome lies at the heart of the
genetic dysregulation that predisposes to oncogenesis.
miRNAs are encoded mostly in intergenic regions of the
genome and are transcribed by RNA polymerase II. Follow-
ing transcription, a primary RNA transcript forms a hairpin
loop with terminal single-stranded extensions (Figure 2).
Both the 5′ and 3′ extensions are cleaved off by a micropro-
cessing complex made up of DROSHA, a class 2 RNase III
and its accessory protein DGCR8, yielding what is referred
to as a precursor miRNA (pre-miRNA) (Figure 2). The pre-
miRNA is exported to the cytoplasm shuttled through
nuclear pores by the transporter exportin 5 (Figure 2). In
the cytoplasm, the pre-miRNA is recognized by the TRPB2-
bound enzyme Dicer, another RNase III, which clips off the
loop, producing a double-stranded miRNA (ds-miRNA or
miR/miR∗ duplex) (Figure 2). The Argonaut protein, Ago2,
interacts with Dicer to bind the ds-miRNA, unwinding the
miRNA duplex, releasing the passenger strand that is
degraded and retains the guide strand (Figure 2), which is
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15-25 nucleotides long [100, 101]. Along with Ago2, the
guide strand interacts with a group of proteins forming the
RNA-induced silencing complex (RISC) which constitutes
the active silencing species. Complementarity with the 3′
UTR of target mRNAs determines which are marked for
silencing, which is further reinforced by near-perfect comple-
mentarity of the mRNA with the miRNA seed sequence. The
bound mRNA may be degraded or its translation impeded,
turning off the mRNA-encoding gene. Hereinafter, some of
the most therapeutically bioactive miRNAs are explored.

6.2. miR-126. miR-126 was shown to target EGFL7 and VEGF
in HCC tissues, lowering their expression [102]. Gain of
function studies demonstrated that this regulatory mecha-
nism resulted in significant reduction of tumor size and
weight as well as a decreased microvascular density of trans-
planted neoplasms. Other studies further corroborated the
antiangiogenic role of miR-126. miR-126-transfected HepG2
cells were transplanted in nude mice in parallel with a control
group receiving a transplant of nontransfected cells. Postre-
section analysis revealed lower VEGF expression levels in
the miR-126 group compared with controls as well as rela-

tively reduced tumor volumes [103]. Du and colleagues
[104] reported similar findings for the 3p arm of miR-126.
According to the results of their experiments, miR-126-3p
gain of function inhibited expansion of tumor vasculature
and reduced microvascular density and capillary tube
formation. Low-density lipoprotein receptor-related protein 6
(LRP6) and phosphoinositide-3-kinase regulatory subunit 2
(PIK3R2) were identified as the direct targets, and their
silencing occasioned similar effects to those brought about
by overexpression ofmiR-126-3p. Beyond its effects on tumor
vascularization, miR-126 has manifested antiproliferative
and antiapoptotic functionalities. Zhao et al. [105] reported
sex-determining region Y-box 2 (SOX2) as a putative target
of miR-126. miR-126 mimics correlated with downregulated
levels of SOX2 and subsequent cell cycle arrest and apoptosis
in HepG2 cells. In addition to the above, miR-126 repressed
metastatic capability of HCC. A negative correlation between
miR-126 and ADAM metallopeptidase domain 9 (ADAM9)
has been established in hepatitis B virus-related HCC [106].
Upregulation of miR-126 attenuated ADAM9 expression
and consequently inhibited tumor migration and reduced
instances of metastases. Ectopic expression of miR-126 was
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associated with failure of miR-126-trasnfected SMMC-7721
cells to achieve pulmonary colonization in vivo [107]. The
miR-126-3p/PIK3R2/LRP6 regulatory loop mentioned above
has also been proven to result in the suppression of cellular
migration, ECM invasion, and tumor metastasis [104].

6.3. miR-148a. miR-148a has recently been shown to post-
transcriptionally regulate the expression of transferrin recep-
tor 1 (TFR1) [108]. Given the negative correlation observed,
an increase in miR-148a levels is surmised to downregulate
TLR1 in HCC, resulting in reduced uptake of transferrin-
bound iron by the cancer cells, which consequently leads to
a drop in cellular iron levels, suppressing proliferation. The
closely related miR-148b is purported to directly target Rho-
associated protein kinase 1 (ROCK1) to similar antiprolifera-
tive effects [109]. Other endeavors indicated that miR-148a
mimics might be implicated in the regulation of hepatocytic
differentiation via regulating the IKKα/NUMB/NOTCH
pathway [110]. Furthermore, miR-148a positively correlated
with the expression of E-cadherin and downregulated mesen-
chymal markers, i.e., vimentin, fibronectin, andN-cadherin in
hepatoma cells, by binding and inhibiting Met and attenu-
ating its downstream signaling, ultimately resulting in
decreased nuclear accumulation of SNAIL [111]. As such,
miR-148a was effective in discouraging EMT and suppress-
ing pulmonary metastasis. A number of studies sought to
examine the role of microRNAs in regulating hepatic stellate
cells (HSCs), to outstanding outcomes. miR-148a was shown
to target and inhibit growth arrest-specific gene 1 (Gas1)
mRNAs, thwarting Hedgehog signaling and preventing bio-
genesis of autophagosomes, which manifested as enhanced
autophagy and apoptosis of HSCs [112]. Interestingly, miR-
148a itself has been shown to be epigenetically regulated in
HCC. By virtue of its hypermethylated CpG island, miR-
148a is typically silenced in HCC cell lines [113]. Ironically,
DNMT1, an established target of miR-148a, is the DNA
methyltransferase that mediates such hypermethylation.
DNMT1 is upregulated in HCC, and thus, it downplays its
primary regulator by a negative feedback loop. Fortunately,
ectopic expression of miR-148a abrogates the inhibitory
effects ofDNMT1, permitting its regulatory role to take effect.

6.4. miR-199a. miR-199a-3p prompted a diminution of
malignant nodular size and numbers in a transgenic mouse
model that is prone to developing HCC, coinciding with a
downregulation of its putative targets: p21 activated kinase
4 (PAK4) and mTOR, and hence a drop in the levels of
FOXM1, replicating effects observed following treatment
with sorafenib [114]. Targeted delivery of miR-199a-3p to
neoplasms in nude mice displayed similar auspicious out-
comes. Mimics of the 3p arm ofmiR-199a were encapsulated
in bionic acid- (BA-) functionalized peptide-based nanopar-
ticles (NPs). Hepatospecific delivery was achieved through
the high affinity interaction between BA and the asialoglyco-
protein receptors, which are overly expressed in HCC cells.
Mirroring mTOR inhibition in vitro, apoptotic and antipro-
liferative events were noted, following IV administration of
the NPs [115]. Preceding in vitro analysis had additionally
exposed an upregulation of PUMA secondary to a rise in

ZHX1 levels, concurring with repressed growth. Increased
cell death was paralleled by Bcl2 tapering off and accretion
of cleaved caspase 3 and Bax [116]. Both arms of miR-199a
positively modulated E-cadherin through inhibition of its
Notch1-mediated suppression [117], which also suggests a
role for miR-199a in checking EMT. miR-199a-5p was also
shown to restrain metastatic disposition by silencing Snail1
[118]. The biotherapeutic activity of the 5p arm extends well
beyond its regulation of E-cadherin. Upwards of EMT, intro-
ducing miR-199a-5p stifled clathrin heavy chain (CTLC)
expression arresting cellular growth in vitro and xenograft
mice models [119]. Moreover, VEGF-initiated cell prolifera-
tion was reportedly halted posttreatment with miR-199a-5p,
thanks to its modulation of the nitroreductase, NOR1 [120].

6.5. miR-503. Several studies reported antimetastatic effects
ofmiR-503 through dampening the expression of various tar-
gets such as WEE1 [121], PRMT1 [122], and ARHGEF19
[123]. Decelerated cellular growth, inducement of apoptosis,
and sensitization to chemotherapy were all events associated
withmiR-503 gain of function and were collateral to its mod-
ulation of its determined targets viz. eukaryotic translation
initiation factor 4E (EIF4E) [124] and insulin-like growth
factor 1 receptor (IGF-1R) [125].

6.6. miR-101. miR-101 has been a confirmed tumor suppres-
sor and recurrently reported as a downregulated species in
HCC. Marked clampdown of tumor growth has been linked
to the modulation of the HGF/c-MET axis by miR-101-3p
[126].miR-101 also attenuated the expression of the zinc-fin-
ger protein 217 (ZNF217), a potent effector of malignant
immortalization [127]. Further, vasculogenic mimicry, an
insidious mechanism of de novo vasculogenesis by which
cancer resists angiogenic arrest, was undermined by miR-
101 mimics, which sabotaged TGF-β and SDF1 signaling in
cancer-associated fibroblasts and impaired VE-cadherin
expression [128]. Similar to miR-503, miR-101-3p also tar-
geted WEE1, which was shown to sensitize Huh7 and PLC5
to radiotherapy, an effect that is partially abrogated in HCC
by the lncRNA nuclear-enriched abundant transcripts 1 and
2 (NEAT1 and NEAT2) [129]. On top of that, miR-101 sub-
verted the TGF-β1-instigated build-up of extracellular matrix
(ECM), reversing hepatic fibrosis, and blunted the levels of
phosphorylated PI3K, mTOR, and Akt [130]. As with other
epigenetic modulators, miR-101 has been tried as a part of
several combinatorial regimens. Synergy was reported with
liposomal doxorubicin [131] and the lncRNA LINC00052,
which promoted the expression of the 3p arm of miR-101
that restricted the expression of SRY-related HMG-box gene
9 (SOX9) [132].

As is evident in Figure 2 and Table 4, different miRNAs
have common targets and inevitably a single target can be
regulated by more than one miRNA, which creates an elabo-
rate regulatory network and sometimes complicate the utili-
zation of miRNAs for diagnostic and therapeutic purposes.

6.7. Long Noncoding RNAs.Another major class of nonprotein-
coding RNAs that is central to HCC and which is gaining
significant attention as of late is long noncoding RNAs
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(lncRNAs). lncRNAs are a bit longer than miRNAs with a
transcript length of more than 200 nucleotides [133].
lncRNAs have been extensively researched for their role in
HCC pathogenesis and their therapeutic potential. As will
be exposited shortly, a number of lncRNAs function by
what is known as miRNA sponges, which basically involves
buffering the action of miRNAs on their target mRNAs.

Given the comprehensive nature of this review, only
some of the most recent reports involving lncRNA in HCC
are discussed below. However, detailed information about
earlier reports can be found in the following reviews:
[134–136]. Additionally, the following bibliographic data
[134–214] afford an extensive exposition of the most recent
HCC lncRNA-oriented work. Beside the compendious run-
through below, Table 5 affords an encyclopedic overview of
the lncRNAs studied in these resources which were not dis-
cussed in the text for practical reasons.

6.8. GAS8-AS1. It was recently reported that both the GAS8
gene and its resident lncRNA, GAS8-AS1, act as tumor
suppressors and manifest a significantly low expression in
HCC tissues, which correlated with poor prognosis [157].
GAS8-AS1 was curiously found to mediate the transcription
of GAS8. It was essential in maintaining chromatin in an
uncondensed state by recruiting the H3K4 methyltransferase
MLL1 and its accessory protein WD-40 repeat protein 5
(WDR5). This leads to the potentiation of RNA polymerase
II and enhanced transcription of GAS8. The above molec-
ular events suppressed oncogenesis and impeded HCC
development.

6.9. FENDRR. FOXF1 adjacent noncoding developmental
regulatory RNA (FENDRR), another lncRNA that was found
to be downregulated in HCC, was recently advocated as a
potential therapeutic approach to arrest HCC progression
and discourage metastasis. Ectopic expression of FENDRR
was reported to check malignant growths in vitro and
in vivo, as well as repressing HCC migration and invasion.
This was purported to occur via epigenetic regulation of
glypican-3 (GPC3). Through interacting with the GPC3 pro-
moter and subsequently leading to its methylation, FENDRR
functions to silence GPC3, counteracting the latter’s onco-
genic effects [168].

6.10. CASC2c. Cancer susceptibility candidate 2c (CASC2c) is
one of three lncRNA transcripts produced by the alternative
splicing of cancer susceptibility 2 (CASC2). Inherently
silenced in HCC, the overexpression of CASC2c resulted in
the suppression of proliferation of HCC cells, while inducing
apoptosis. These effects coincided with lowered phosphory-
lated extracellular signal-regulated kinase 1/2 (p-ERK1/2)
and β-catenin levels [201].

6.11. miR503HG. miR503HG, the host gene of miR-503 (see
above), has been found to be significantly downregulated in
HCC [141]. This silencing was closely related to survival rates
and duration until tumor recurrence and is thus conjectured
to be a prognostic biomarker. The gain of function abrogated
the invasion and metastasis of HCC cells. miR503HG was
also found to promote the degradation of the heterogeneous

nuclear ribonucleoprotein A2/B1 (HNRNPA2B1) by ubiquiti-
nation and subsequent proteasomal degradation, which con-
sequently led to the destabilization of p52 and p65 transcripts
and ultimately suppressed NF-κB signaling in HCC. Given
their innate interplay and their common effect on HCC cells,
miR503HG and its resident microRNA (miR-503) could
cooperatively function to stymie migration of HCC cells.

6.12. LINC00467. LINC00467, another lncRNA that was
found to be downregulated in HCC, has been studied as a
potential therapeutic target thanks to its role as an antagomir
formiR-9-5a, which targets peroxisome proliferator-activated
receptor alpha (PPARA) for silencing [140]. LINC00467
ectopically expressed in HCC cells conduced to antiprolifer-
ative effects and, like miR503HG, checked migration and
invasion. The authors propose a pivotal implication of the
LINC00467/miR-9-5p/PPARA loop in the initiation and pro-
gression of HCC.

6.13. Linc-GALH and UC001kfo. Contrary to the above-
mentioned lncRNAs, which are downregulated in HCC and
which are considered tumor suppressors, other lncRNAs
are oncogenic, with anomalously high expression in HCC.
Linc-GALH and UC001kfo were recently reported to be
upregulated in HCC. Linc-GALH was surmised to regulate
methylation of Gankyrin and hence its expression [190].
Mechanistically, this was proposed to occur via deubiquiti-
nating DNMT1. This promoted migration and invasion in
HCC cells and was rescinded in silencing experiments.
Increased expression of UC001kfo correlated with tumoral
macrovascular invasion (MVI) and TNM staging of HCC,
with higher levels predisposing to poorer prognoses [179].
UC001fko boosted tumor proliferation and EMT, presum-
ably through targeting alpha-smooth muscle actin (α-SMA).
The authors indicate the potential of UC001kfo to serve as a
prognostic marker as well as a target for therapy.

6.14. LINC00346. LINC00346 was shown to be aberrantly
upregulated in HCC [139]. LINC00346 enhanced the
expression of WD Repeat Domain 18 (WDR18) by virtue of
competitively binding to miR-542-3p, a downregulated
tumor suppressor in HCC cells. This sponging effect leads
to the activation of the Wnt/β-catenin pathway. As such,
LINC00346 could be a viable target in HCC therapy, where
its inhibition is presumed to unmask the anticancer effects
of miR-542-p.

6.15. LINC00978. Both tumor tissues and serum samples
from HCC patients manifested an exaggerated expression
of LINC00978 [69]. Serum levels of this lncRNA could even
distinguish between HCC patients and patients with hepatitis
or cirrhosis. LINC00978 was reported to promote cellular
proliferation, migration, and invasion, wherein its knock-
down arrested the cell cycle and encouraged apoptosis. The
authors unveiled the mechanistic basis of such effects to
involve binding of LINC00978 to EZH2, leading to its buildup
at the promoter regions of E-cadherin and p21 genes, which
leads to these genes becoming silenced subsequent of
EZH2-mediated H27K3 trimethylation. The validity of this
regulatory circuit was confirmed by the abrogation of
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LINC00978 knockdown’s inhibitory effects in E-cadherin and
p21 knockdowns.

6.16. NEAT1. Nuclear-enriched abundant transcript 1
(NEAT1) is another lncRNA that is upregulated in HCC
[138]. Silencing of NEAT1 compromised cell viability and
was shown to be proapoptotic in HepG2 and Huh7 cells.
Again, as with other lncRNA/miRNA-negative correlations,
NEAT1 exhibited an opposite trend of expression to miR-
129-5p in HCC. Ectopic expression of NEAT1 suppressed
miR-129-5p via modulating the valosin-containing protein
(VCP)/IκB axis to the overall result of encouraging cellular
proliferation.

6.17. ANRIL, LINC01296, and LINC01224. Similarly,
antisense noncoding RNA in the INK4 locus (ANRIL),
LINC01296, and LINC01224 were all overexpressed in HCC
and mediated their oncogenic effects through inhibition of
microRNA signaling axes. ANRIL’s prooncogenic effects
were found to rely on its suppression of miR-384, which tar-
gets signal transducer and activator of transcription 3
(STAT3) [214]. These correlations were observed both
in vitro and in vivo. LINC01296 regulated themiR-26a/PTEN
axis, resulting in tumor progression also in vitro and in vivo
[137]. Similarly, an upswing of LINC01224 in HCC was
correlated with a silenced miR-330-5p and a consequent
upregulation of its target, checkpoint kinase 1 (CHEK1)
[212]. LINC01224 knockdowns exhibited a concurrent
downregulation of CHEK1, owing to its binding to and inhi-
bition of miR-330-5p, leading to tumor regression.

6.18. ZFAS1. HCC tissues exhibited an increased level of
ZFAS1, compared to neighboring normal tissues [69]. The
proliferative capacity of the tumor was substantially compro-
mised subsequent of ZFAS1 silencing, and its overexpression
had a gainful effect on tumor growth. The authors report that
the tumor suppressor miRNA, miR-193a-3p, was elevated in
ZFAS1 knockdowns which, confirmed by luciferase reporter
assay and correlation analysis, suggested that the proonco-
genic role of ZFAS1 relied on the suppression of miR-
193a-3p.

6.19. CRNDE. The colorectal neoplasia differentially expressed
(CRNDE) lncRNA has recently been proven to be yet another
prooncogenic lncRNA in HCC [210]. Its overexpression was
associated with an enhanced proliferative and migratory
competence of HCC cells, not to mention an ameliorated
resistance to chemotherapy. CRNDE was determined to
inhibit the Hippo pathway and encourage the EZH2-,
SUV39H1-, and SUZ12-mediated inhibition of tumor sup-
pressor genes viz. large tumor suppressor 2 (LATS2) and
CUGBP Elav-like family member 2 (CELF2).

6.20. MALAT1. MALAT1 is a notoriously tumorigenic
lncRNA implicated in many cancers. Recently, Chang et al.
[209] proposed exploiting a MALAT1/Wnt regulatory loop
for therapeutic purposes in HCC. They reported that
MALAT1 knockdowns evidenced a suppression of canonical
Wnt signaling and impaired tumorsphere formation, which
was coincident with a decline in CD90+ and CD133+ cells,

which consolidated the hypothesis thatMALAT1 plays a vital
role in promoting stemness in HCC cells.

7. Future Perspective

Despite the thorough study of epigenetic modulators, their
extension to the clinical setting stands far from realizable.
Further research mindful of the efficacy versus long-term
toxicity/of these alternative strategies should be advocated.
Studies looking into the pharmacokinetics of these agents
as well as others seeking efficient targeted delivery with min-
imal systemic side effects are warranted. Addressing the
adaptability of these modes of treatment to the clinic can
bring us a long way, especially with the dosing curtailment
of the highly toxic agents afforded by the concomitant use
of the suggested alternatives, which, in some instances, may
completely replace current debilitating treatments. As was
mentioned, various exploratory clinical studies were carried
out, but these need to be seen through to subsequent trial
phases and on larger populations. Fortunately, the possible
risk posed by a preponderance of these modulators is not sig-
nificant to impede but should embolden such undertakings.

In addition to the clinical application, endeavors oriented
to further our understanding of the elaborate epigenome and
its regulation remain imperative. New epigenetic mecha-
nisms are still being discovered contemporarily and progress
in the field could do with pursuing modulators of these and
assessing their benefits over the already defined ones. For
example, decreased crotonylation of histone lysines has been
recently incriminated in the progression of HCC [215]. This
discovery should prompt several spin-offs in which the
enhancers of crotonylation are suggested and assessed for
therapeutic utility. Several defined modulatory agents such as
histone demethylases (specifically Jumonji lysine demethy-
lases) and helicases (HELLS) [216] among others also remain
underresearched in HCC and should thus constitute a future
research direction in HCC therapeutics.

8. Conclusion

The modulation of the altered epigenome in HCC is a prom-
ising therapeutic strategy. Verified potency and tenability to
formulation demands for maximal systemic effects render
many of the hereinabove nominated agents an intriguing
recourse that could be subsequently implemented in clinical
settings as a standalone curative or a potentiating adjuvant.
It would also remain of equal importance to examine if these
modulators can act in parallel to attenuate metastasis. More
importantly, validating the use of these modulators in the
treatment of HCC with different etiologies will aid in paving
the road for personalized medicine together with the
advancements in the pharmacogenomics/pharmacogenetics
field. This holistic approach is forecasted to lower the success
barrier, at least in part, in the treatment of HCC.
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