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Abstract
Genetic studies in Drosophila reveal that olfactory memory relies on a brain structure called

the mushroom body. The mainstream view is that each of the three lobes of the mushroom

body play specialized roles in short-term aversive olfactory memory, but a number of stud-

ies have made divergent conclusions based on their varying experimental findings. Like

many fields, neurogenetics uses null hypothesis significance testing for data analysis. Crit-

ics of significance testing claim that this method promotes discrepancies by using arbitrary

thresholds (α) to apply reject/accept dichotomies to continuous data, which is not reflective

of the biological reality of quantitative phenotypes. We explored using estimation statistics,

an alternative data analysis framework, to examine published fly short-term memory data.

Systematic review was used to identify behavioral experiments examining the physiological

basis of olfactory memory and meta-analytic approaches were applied to assess the role of

lobular specialization. Multivariate meta-regression models revealed that short-term mem-

ory lobular specialization is not supported by the data; it identified the cellular extent of a

transgenic driver as the major predictor of its effect on short-term memory. These findings

demonstrate that effect sizes, meta-analysis, meta-regression, hierarchical models and

estimation methods in general can be successfully harnessed to identify knowledge gaps,

synthesize divergent results, accommodate heterogeneous experimental design and quan-

tify genetic mechanisms.

Author Summary

Genetic analysis of learning in the black-bellied vinegar fly has revealed that a brain struc-
ture called the mushroom body is important to insect memory. The mushroom body con-
tains three lobes with strikingly different shapes. A series of studies have concluded that
the lobes have markedly different relevance to memory. For short-term memory, some
studies have concluded that only a single lobe–the gamma lobe–is required. However,
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others have concluded that at least one of the other lobes is also involved. These studies
used a data analysis method called ‘null hypothesis significance testing’ that may overem-
phasize differences between data. We examined whether estimation statistics, an alterna-
tive data analysis framework, could be used to verify or refute the lobular specialization
hypothesis. Estimation statistics review methods were used to analyze published data on
this topic. The estimation models indicate no evidence for lobular specialization, but
instead show that neurons in all lobes contribute to short-term memory. These results ver-
ify a model in which learning is processed in a distributed manner across the mushroom
body. These findings also demonstrate that estimation methods can be successfully har-
nessed for the analysis of complex experimental research data.

Introduction
Olfactory memory in Drosophila is measured using the classical T-maze olfactory conditioning
assay, where groups of flies are conditioned by pairing an odor with an electric shock and sub-
sequently assessed for their ability to avoid the conditioned odor when given a choice of two
different odors presented at the end of the maze arms. Thirty years of T-maze experiments
have elucidated many of the genetic, molecular and neural mechanisms of olfactory learning
[1–5,9]. A landmark study showed that restoring the adenylyl cyclase gene rutabaga (rut) to a
brain structure called the mushroom body is sufficient for short-term olfactory memory [6],
connecting memory formation to cyclic adenosine monophosphate-mediated plasticity [10].
Experiments using inhibition of synaptic transmission by temperature-sensitive shibire (shi)
[11–13] showed that neurotransmission from the mushroom body is essential [12,14]. Tar-
geted expression of genes in specific neuronal circuits is possible with the use of transgenic
‘driver’ lines [15]. Manipulations based on rut restoration and shi inactivation form the foun-
dation of a large number of studies aiming to further define the role of the mushroom body in
olfactory learning. The mushroom body itself exists as three anatomically distinct lobes, αβ,
α0β0, and γ [16]; studies on middle- and long-term memory (MTM and LTM) have revealed
distinct lobe requirements in the different memory phases [13,17–20]. However, the three
lobes’ specializations remain unclear when it comes to short-term memory (STM). While the
mainstream view is that rut activity in the γ lobes is sufficient to rescue STM [8], some studies
have alternately concluded that rut restoration can only partially rescue [7], or is merely of
importance to STM [6]. There is similar controversy on the role of rut activity in the αβ lobes,
with rut restoration said to have either no effect [8], or to partially rescue STM for certain
odors [7].

Contradictory research results are commonplace as they stem from sampling error and
methodological differences, both unavoidable sources of variability. One concern is the wide-
spread acceptance of weak significance testing power [21]. However, critics of significance test-
ing itself claim that this statistical framework itself accentuates differences. The various
conceptual and practical limitations of significance tests [22] include the inherent volatility of
p-values, even with moderate statistical power [23,24]. Significance testing may also exacerbate
discordance by using an arbitrary threshold to elicit a binary outcome (reject/accept) from con-
tinuous data [25]. To illustrate, a pair of alpha 0.05 tests on two replicated experiments with
identical effect sizes could produce p-values of 0.049 and 0.051: the significance test results are
starkly discordant even though the biological outcome is the same [25]. The reject/accept
dichotomy might also lead to the impression that a substantial (but non-statistically
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significant) effect is irrelevant. Conversely, a highly powered sample size could give the impres-
sion that a minuscule (but statistically significant) effect is of great importance [23].

In medical research, the complementary methods of systematic review and meta-analysis
are routinely used to synthesize evidence from multiple studies and to reconcile divergent find-
ings [26]. Meta-analysis forms part of estimation statistics, an alternative analysis framework
to significance testing. Such approaches are increasingly applied to preclinical research [27,28],
but remain rarely used in basic research fields. Taking a mainstream sub-field of basic neuro-
science as an example, a PubMed search in late 2015 with the phrase “meta-analysis AND
(learning OR memory) AND mouse” identified fewer than ten studies in a field of>38,000
articles. We asked whether meta-analytic methods could be used to address the Drosophila
mushroom body lobular specialization hypothesis. A particular strength of the olfactory T-
maze is its use of hundreds or thousands of animals in a single experiment [29]. In addition,
both the T-maze apparatus and the training regime are largely standardized between labs [29].
These advantages suggested that the published data would not be overwhelmed by weak statis-
tical power or methodological heterogeneity, and thus suitable for meta-analysis.

In the present study, we aimed to evaluate the mainstream view that there is strong lobular
specialization of STM function in the mushroom body, and to assess the extent to which the
varying perspectives on this subject resulted from significance testing’s dichotomization. We
examined the proposals that restoration of rut function to the γ lobes alone is sufficient to res-
cue wild type STM and that only shi function in the γ lobes is necessary for STM. In both cases,
meta-analysis of published studies spanning more than a decade found no evidence for strong
lobular specialization. A subsequent analysis with multi-level meta-regression revealed that
numbers of mushroom body cells explained nearly all transgenic effects. These results support
the idea that associative olfactory information is initially processed in a distributed manner
across the mushroom body. These results also confirm claims made by statistical texts that sys-
tematic review, meta-analysis and related estimation methods can be applied to resolve cur-
rently conflicting data and give new quantitative perspectives to basic research fields like
experimental genetics.

Results

Systematic literature review of rutabaga and shibire interventions in
short-term aversive olfactory memory
The review yielded ten studies that fulfilled the criteria (Fig 1A). Seven studies contained 81
experiments related to rutabaga restoration [6–8,14,30–32], with a total of 748 experimental
iterations and 745 control iterations (see Table 1). Each iteration is the mean of two half-PI
scores, which typically each use 50–100 flies, thus representing an estimated total of 150,000–
300,000 assayed flies. Table 1 also lists the 5 studies that contained 37 experiments related to
shibire-mediated inactivation [7,12,13,17,30], 263 experimental iterations and 265 control iter-
ations, giving a total of 50,000–100,000 flies.

Experimental variability
Despite standardization of aspects of the T-maze, some methodological variation between
studies was observed, including different control genotypes, varying odor pairs, temperatures,
shock voltages, humidity and post-training delay times prior to testing (Table 1). These differ-
ences, along with other uncontrolled variables common to behavioral experiments, would
explain the variability seen in data from control experiments (Fig 1B). We found considerable
heterogeneity in several of the meta-analyses. In the six rut analyses, overall heterogeneity was
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low in three (I2 < 50%), and high in three (I2 > 75%); subgroup heterogeneity (i.e. variance
due to genotype differences) was low in four, and high in two. In the shi analyses, overall

Fig 1. Review overview. A. Flow chart of systematic literature review procedure. The literature was reviewed in a five stage process, starting with a PubMed
search that yielded 279 articles, followed by four screens of increasing detail, reviewing the article title, abstract full text and experimental design. A total of
ten articles, two of which included relevant data for both rutabaga and shibirets experiments, were used in the meta-analyses. B. Histogram of performance
indices for all control experiments identified by the review.

doi:10.1371/journal.pgen.1005718.g001
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Table 1. Characteristics of included experiments. All experiments are listed and identified by their study, figure panel and genotype/s. We name the most
precise genotype possible based on the information given in the original article. Odor pair, range experimental temperature or temperature range, the nature
of the conditioning shock and the relative humidity (RH) are also listed. The time delay between training and testing is listed in minutes; those labelled ‘0*’
were reported as following training ‘immediately.’ Shock is listed in volts; current type is omitted if not reported in the original study. Cells containing a dash
indicate that the information was not found in the original article.

Study Fig. Genotype, Experimental Genotype,
Control

N
(E)

N
(C)

Odor Pair Experimental
Temp. °C

Shock
(V)

Time
(min)

RH
(%)

rutabaga rescue in the αβ (alphabeta) lobes

Zars 2000 1 rut2080/Y; 17d; UAS-rut 17d/+ 6 6 MCH-BEN 25 120 AC 2 -

Zars 2000 1 rut2080/Y; 189Y; UAS-rut 189Y/+ 6 6 MCH-BEN 25 120 AC 2 -

McGuire 2003 S4 rut2080; c739; UAS-rut c739/+ 7 7 OCT-BEN 25 90 3 -

Akalal 2006 3A rut2080; c739; UAS-rut c739/+ 12 12 MCH-BEN 21–25 90 DC 3 60–68

Akalal 2006 3B rut2080; c739; UAS-rut c739/+ 10 10 MCH-OCT 21–25 90 DC 3 60–68

Akalal 2006 3C rut2080; c739; UAS-rut c739/+ 12 12 OCT-BEN 21–25 90 DC 3 60–68

Akalal 2006 3D rut2080; 17d; UAS-rut 17d/+ 24 24 MCH-BEN 21–25 90 DC 3 60–68

Akalal 2006 3E rut2080; 17d; UAS-rut 17d/+ 12 12 MCH-OCT 21–25 90 DC 3 60–68

Akalal 2006 3F rut2080; 17d; UAS-rut 17d/+ 12 12 OCT-BEN 21–25 90 DC 3 60–68

Blum 2009 4B rut2080/Y; c739; UAS-rut +/rut2080;+;UAS-
rut

12 12 MCH-OCT 22 60 2 50

Blum 2009 6A rut2080/Y; c739; UAS-rut +/rut2080;+;UAS-
rut

6 6 MCH-OCT 22 60 2 50

Scheunemann
2012

5A rut1; 17d; UAS-rut wild type 8 8 EA-IA 24 120 AC 3 70

rutabaga rescue in the α’β’ (prime) lobes

Blum 2009 4A rut2080/Y; c305a; UAS-rut +/rut2080;+;UAS-
rut

8 8 MCH-OCT 22 60 2 50

Scheunemann
2012

5A rut1; c305a; UAS-rut wild type 8 8 EA-IA 24 120 AC 3 70

Scheunemann
2012

5A rut1; c320; UAS-rut wild type 8 8 EA-IA 24 120 AC 3 70

rutabaga rescue in the γ (gamma) lobes

Zars 2000 1 rut2080/Y; +; H24/UAS-rut Canton-S 6 6 MCH-BEN 25 120 AC 2 -

Zars 2000 1 rut2080/Y; 201Y; UAS-rut Canton-S 6 6 MCH-BEN 25 120 AC 2 -

McGuire 2003 S4 rut2080/Y; +; H24/UAS-rut +; H24 7 7 OCT-BEN 25 90 3 -

Akalal 2006 2A rut2080/Y; +; H24/UAS-rut +; H24 18 18 MCH-BEN 21–25 90 DC 3 60–68

Akalal 2006 2B rut2080/Y; +; H24/UAS-rut +; H24 18 18 MCH-OCT 21–25 90 DC 3 60–68

Akalal 2006 2C rut2080/Y; +; H24/UAS-rut +; H24 12 12 OCT-BEN 21–25 90 DC 3 60–68

Akalal 2006 2D rut2080; NP1131; UAS-rut +; NP1131 17 17 MCH-BEN 21–25 90 DC 3 60–68

Akalal 2006 2E rut2080; NP1131; UAS-rut +; NP1131 17 17 MCH-OCT 21–25 90 DC 3 60–68

Akalal 2006 2F rut2080; NP1131; UAS-rut +; NP1131 18 18 OCT-BEN 21–25 90 DC 3 60–68

Blum 2009 4A rut2080/Y; 201Y; UAS-rut +/rut2080; +; UAS-
rut

8 8 MCH-OCT 22 60 2 50

Blum 2009 6A rut2080/Y; 201Y; UAS-rut +/rut2080; +; UAS-
rut

6 6 MCH-OCT 22 60 2 50

Scheunemann
2012

5A rut1; NP1131; UAS-rut wild type 8 8 EA-IA 24 120 AC 3 70

rutabaga rescue in all lobes

Zars 2000 1 rut2080/Y; 30Y/UAS-rut Canton-S 6 6 MCH-BEN 25 120 AC 2 -

Zars 2000 1 rut2080/Y; 238Y; UAS-rut Canton-S 6 6 MCH-BEN 25 120 AC 2 -

Blum 2009 3A rut2080; +; UAS-rut; OK107 +/rut2080;+;UAS-
rut

7 6 MCH-OCT 22 60 2 50

Scheunemann
2012

5A rut1; +; UAS-rut; OK107 wild type 8 8 EA-IA 24 120 AC 3 70

(Continued)
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Table 1. (Continued)

Study Fig. Genotype, Experimental Genotype,
Control

N
(E)

N
(C)

Odor Pair Experimental
Temp. °C

Shock
(V)

Time
(min)

RH
(%)

rutabaga rescue in the αβγ lobes

Zars 2000 1 rut2080/Y; +; MB247/UAS-
rut

Canton-S 6 6 MCH-BEN 25 120 AC 2 -

Zars 2000 1 rut2080/Y; c772; UAS-rut Canton-S 6 6 MCH-BEN 25 120 AC 2 -

McGuire 2003 2A rut2080; +; MB247/UAS-rut Canton-S 5 5 OCT-BEN 25 90 3 -

McGuire 2003 2A rut2080; c772; UAS-rut Canton-S 5 5 OCT-BEN 25 90 3 -

McGuire 2003 S4 rut2080; c739; H24/UAS-rut +; c739; H24 7 7 OCT-BEN 25 90 3 -

Schwaerzel 2003 1C rut2080; UAS-rut; MB247 Canton-S 6 6 EA-IA 26 130 3 80

Akalal 2006 5A rut2080; c739; H24/UAS-rut +; c739; H24 6 6 MCH-BEN 21–25 90 DC 3 60–68

Akalal 2006 5B rut2080; c739; H24/UAS-rut +; c739; H24 6 6 MCH-OCT 21–25 90 DC 3 60–68

Akalal 2006 5C rut2080; c739; H24/UAS-rut +; c739; H24 6 6 OCT-BEN 21–25 90 DC 3 60–68

Thum 2007 1D rut2080; +; MB247/UAS-rut MB247/+ 8 8 MCH-OCT 25 90 DC 0* -

Blum 2009 3A rut2080/Y; +; MB247/UAS-
rut

+/rut2080; +; UAS-
rut

7 6 MCH-OCT 22 60 2 50

Blum 2009 3A rut2080/Y; c309; UAS-rut +/rut2080; +; UAS-
rut

7 6 MCH-OCT 22 60 2 50

Blum 2009 6A rut2080/Y; c739/201Y;
UAS-rut

+/rut2080; +; UAS-
rut

6 6 MCH-OCT 22 60 2 50

Scheunemann
2012

5A rut1; MB247/UAS-rut wild type 8 8 EA-IA 24 120 AC 3 70

rutabaga2080

Zars 2000 1 rut2080 Canton-S 6 6 MCH-BEN 25 120 AC 2 -

McGuire 2003 2A rut2080 Canton-S 5 5 OCT-BEN 25 90 3 -

Schwaerzel 2003 1C rut2080 Canton-S 6 6 EA-IA 26 130 3 80

Blum 2009 1A rut2080 rut2080/ + 6 6 MCH-OCT 22 60 2 50

rutabaga2080 with Driver/s

Akalal 2006 3C rut2080; c739 c739/+ 12 12 OCT-BEN 21–25 90 DC 3 60–68

Akalal 2006 2C rut2080; H24 +; H24 18 18 OCT-BEN 21–25 90 DC 3 60–68

Akalal 2006 3F rut2080; 17d 17d/+ 12 12 OCT-BEN 21–25 90 DC 3 60–68

Akalal 2006 5C rut2080; c739; H24 +; c739; H24 6 6 OCT-BEN 21–25 90 DC 3 60–68

Akalal 2006 2A rut2080; H24 +; H24 12 12 MCH-BEN 21–25 90 DC 3 60–68

Akalal 2006 2E rut2080; NP1131 +; NP1131 18 18 MCH-OCT 21–25 90 DC 3 60–68

Akalal 2006 3A rut2080; c739 c739/+ 12 12 MCH-BEN 21–25 90 DC 3 60–68

Akalal 2006 5A rut2080; c739; H24 +; c739; H24 6 6 MCH-BEN 21–25 90 DC 3 60–68

Akalal 2006 3B rut2080; c739 c739/+ 10 10 MCH-OCT 21–25 90 DC 3 60–68

Akalal 2006 2D rut2080; NP1131 +; NP1131 17 17 MCH-BEN 21–25 90 DC 3 60–68

Akalal 2006 3E rut2080; 17d 17d/+ 12 12 MCH-OCT 21–25 90 DC 3 60–68

Akalal 2006 3D rut2080; 17d 17d/+ 24 24 MCH-BEN 21–25 90 DC 3 60–68

Akalal 2006 2F rut2080; NP1131 +; NP1131 18 18 OCT-BEN 21–25 90 DC 3 60–68

Akalal 2006 5B rut2080; c739; H24 +; c739; H24 6 6 MCH-OCT 21–25 90 DC 3 60–68

Akalal 2006 2B rut2080; H24 +; H24 18 18 MCH-OCT 21–25 90 DC 3 60–68

McGuire 2003 2A rut2080; c772 Canton-S 5 5 OCT-BEN 25 90 3 -

McGuire 2003 2A rut2080; MB247 Canton-S 5 5 OCT-BEN 25 90 3 -

McGuire 2003 S4 rut2080; c379 c739/+ 7 7 OCT-BEN 25 90 3 -

McGuire 2003 S4 rut2080; H24 +; H24 7 7 OCT-BEN 25 90 3 -

McGuire 2003 S4 rut2080; c379; H24 +; c739; H24 7 7 OCT-BEN 25 90 3 -

Schwaerzel 2003 1C rut2080; MB247 Canton-S 6 6 EA-IA 26 130 3 80

(Continued)
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Table 1. (Continued)

Study Fig. Genotype, Experimental Genotype,
Control

N
(E)

N
(C)

Odor Pair Experimental
Temp. °C

Shock
(V)

Time
(min)

RH
(%)

rutabaga2080; UAS-rut

Blum 2009 3A rut2080; +; UAS-rut +/rut2080; +; UAS-
rut

6 6 MCH-OCT 22 60 2 50

Blum 2009 4A rut2080; +; UAS-rut +/rut2080; +; UAS-
rut

8 8 MCH-OCT 22 60 2 50

Blum 2009 4B rut2080; +; UAS-rut +/rut2080; +; UAS-
rut

12 12 MCH-OCT 22 60 2 50

Blum 2009 6A rut2080; +; UAS-rut +/rut2080; +; UAS-
rut

6 6 MCH-OCT 22 60 2 50

McGuire 2003 2A rut2080; +; UAS-rut Canton-S 5 5 OCT-BEN 25 90 3 -

Schwaerzel 2003 1C rut2080; +; UAS-rut Canton-S 6 6 EA-IA 26 130 3 80

Thum 2007 1D rut2080; +; UAS-rut MB247/+ 6 6 MCH-OCT 25 90 DC 0* -

Zars 2000 1 rut2080; +; UAS-rut Canton-S 8 8 MCH-BEN 25 120 AC 2 -

rutabaga1; UAS-rut

Scheunemann
2012

5A rut1; +; UAS-rut wild type 8 8 EA-IA 24 120 AC 3 70

rutabaga1

Blum 2009 1A rut1 rut1/+ 6 6 MCH-OCT 22 60 2 50

Scheunemann
2012

5A rut1 wild type 8 8 EA-IA 24 120 AC 3 70

UAS-shibirets inactivation of the αβ (alphabeta) lobes Rest. Perm.

McGuire 2001 2AB c739; UAS-shits1 6 6 OCT-BEN 32 25 90 3 -

Akalal 2006 4A c739; UAS-shits1 6 6 MCH-BEN 32–
35

21–
25

90 DC 3 60–68

Akalal 2006 4B c739; UAS-shits1 10 6 MCH-OCT 32–
35

21–
25

90 DC 3 60–68

Akalal 2006 4C c739; UAS-shits1 6 9 OCT-BEN 32–
35

21–
25

90DC 3 60–68

Akalal 2006 4D 17d; UAS-shits1 6 10 MCH-BEN 32–
35

21–
25

90 DC 3 60–68

Akalal 2006 4E 17d; UAS-shits1 10 10 MCH-OCT 32–
35

21–
25

90 DC 3 60–68

Akalal 2006 4F 17d; UAS-shits1 13 10 OCT-BEN 32–
35

21–
25

90 DC 3 60–68

UAS-shibirets inactivation of the αβγ lobes

Dubnau 2001 3A UAS-shits1/c309 6 6 MCH-OCT 30 20 - 0* -

Dubnau 2001 3A UAS-shits1/c747 6 6 MCH-OCT 30 20 - 0* -

McGuire 2001 2AB MB247; UAS-shits1 6 6 OCT-BEN 32 25 90 3 -

Schwaerzel 2002 3C MB247/UAS-shits1 6 6 OCT-BEN 34 26 - 3 85

Schwaerzel 2002 3C c772/UAS-shits2 6 6 OCT-BEN 34 26 - 3 85

Schwaerzel 2003 1E MB247/UAS-shits1 6 6 EA-IA 34 26 130 3 80

UAS-shibirets inactivation of the γ (gamma) lobes

McGuire 2001 2AB 201Y; UAS-shits1 3 4 OCT-BEN 32 25 90 3 -

Wild type heat effect controls

McGuire 2001 2AB wCS10 6 6 OCT-BEN 32 25 90 3 -

Schwaerzel 2002 3C Canton-S 6 6 OCT-BEN 34 26 - 3 85

Driver heat effect controls

Akalal 2006 4A 17d/+ 6 6 MCH-BEN 32–
35

21–
25

90 DC 3 60–68

(Continued)
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heterogeneity was high in two and moderate in one, while their subgroup heterogeneity values
were 34%, 64% and 80%.

Rutabaga function is required for 60% of wild type learning
We aimed to estimate the learning contribution made by restoring rutabaga function to each
of the three lobes. The meta-analyses on rutabaga experiments produced 6 meta-analytical esti-
mates of the effects of manipulating rut in the mushroom body lobes (Fig 2B). Data pooled
from rut1 and rut2080 reveal that the strong rut hypomorphic alleles reduce learning to 40% of
wild type (-60% [95CI -56, -64]). The forest plot summary in Fig 2A illustrates the individual
effect sizes from 36 experiments and pooled effect sizes of the rut alleles (complete forest plot is
shown in Fig 3). The data exhibit substantial overall heterogeneity (I2 = 76%) and genotype
subgroup heterogeneity (I2 = 88%). This heterogeneity may derive from the methodological
variation noted above, but in the case of the strong rut alleles we note that the weakest effect is
seen in the rut2080; UAS-rut subgroup (-45% [95CI -38, -52]), suggesting leaky expression from

Table 1. (Continued)

Study Fig. Genotype, Experimental Genotype,
Control

N
(E)

N
(C)

Odor Pair Experimental
Temp. °C

Shock
(V)

Time
(min)

RH
(%)

Akalal 2006 4D 17d/+ 10 6 MCH-OCT 32–
35

21–
25

90 DC 3 60–68

Akalal 2006 4B c739/+ 6 10 OCT-BEN 32–
35

21–
25

90DC 3 60–68

Akalal 2006 4E 17d/+ 10 10 MCH-BEN 32–
35

21–
25

90 DC 3 60–68

Akalal 2006 4F c739/+ 10 13 MCH-OCT 32–
35

21–
25

90 DC 3 60–68

Akalal 2006 4C c739/+ 9 6 OCT-BEN 32–
35

21–
25

90 DC 3 60–68

McGuire 2001 2AB 201Y 5 6 OCT-BEN 32 25 90 3 -

McGuire 2001 2AB c739 6 6 OCT-BEN 32 25 90 3 -

McGuire 2001 2AB 247 6 6 OCT-BEN 32 25 90 3 -

Schwaerzel 2003 1E 247/+ 6 6 EA-IA 34 26 130 3 80

UAS-shits heat effect controls

Akalal 2006 4E w; UAS-shits1 10 10 MCH-BEN 32–
35

21–
25

90 DC 3 60–68

Akalal 2006 4A w; UAS-shits1 6 6 MCH-OCT 32–
35

21–
25

90 DC 3 60–68

Akalal 2006 4F w; UAS-shits1 10 13 OCT-BEN 32–
35

21–
25

90DC 3 60–68

Akalal 2006 4D w; UAS-shits1 10 6 MCH-BEN 32–
35

21–
25

90 DC 3 60–68

Akalal 2006 4C w; UAS-shits1 9 6 MCH-OCT 32–
35

21–
25

90 DC 3 60–68

Akalal 2006 4B w; UAS-shits1 6 10 OCT-BEN 32–
35

21–
25

90 DC 3 60–68

Dubnau 2001 3A shits1/+ 6 6 MCH-OCT 30 20 - 0* -

McGuire 2001 2AB UAS-shits1 6 6 OCT-BEN 32 25 90 3 -

Schwaerzel 2002 3C UAS-shits2/+ 6 6 OCT-BEN 34 26 - 3 85

Schwaerzel 2002 3C UAS-shits1/+ 6 6 OCT-BEN 34 26 - 3 85

Schwaerzel 2003 1E UAS-shits1/+ 6 6 EA-IA 34 26 130 3 80

doi:10.1371/journal.pgen.1005718.t001
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the transgene as one possible source (i.e. expression from the UAS-rut transgene independent
of GAL4 transcriptional activation).

Rutabaga restoration to the γ lobes rescues 26% of wild type STM
Some studies have reported that complete rescue requires rut restoration in both αβ and γ
lobes [7], while others report that restoring rut activity in the γ lobe is sufficient to rescue STM,
and that the αβ lobes’ rut activity has little or no STM role [8]. We used the meta-analytic data
to specifically examine the lobular specialization hypothesis (Figs 3–8). The overall rutabaga
loss-of-function effect was used as a reference point to which we compared the lobe restora-
tions, shown in Fig 2B. Restoring rut function to each of the lobes revealed partial rescue: α0β0

rescues by 6% [95CI -1.5, 13.5], αβ rescues by 12% [95CI 2, 22] and γ rescues by 26% [95CI 17,
35]. When rutabaga was restored to both the αβ and the γ lobes, memory was rescued by 52%
[95CI 50, 55]. Restoring rutabaga to all three lobes gave only 1% additional improvement (53%
[95CI 47, 59]) compared to the rescue in the αβ + γ lobes, therefore rut in the α0β0 cells appears
to have a minor effect on STM. Of the enhancer trap drivers included in the γmeta-analysis,
201Y contains a minority of αβ cells [33]. A variant analysis that removed 201Y from the γ
group and reassigned it to the αβ + γ group resulted in weaker effects for both: only 20% [95CI
10, 31] γ rescue, while αβ + γ rescue was reduced to 49% [95CI 46, 52]. Taken together, these
results are incompatible with the hypothesis that restoring rut activity to the γ lobe alone is suf-
ficient to rescue the rut- phenotype. From the lobe perspective, we conclude that normal STM
requires rut function in both αβ + γ lobes.

Heating flies above 30°C impairs short-term memory
Using the temperature-sensitive alleles of shibire to block neurotransmission requires heating
flies to over 30°C, which can lead to additional heat-related effects [20]. Researchers accommo-
date this possibility with separate ‘heat control’ flies that do not express shits. We estimated the
magnitude of this effect by meta-analysis, shown in Fig 9A (the complete forest plot is shown
in Fig 10). Data pooled from 23 such experiments with three types of genotype (wild type,
Driver-GAL4/+ and UAS-shits/+) revealed that the overall effect of heating flies from the per-
missive temperature (20–26°C) to 30–35°C is a 17% [95CI 12, 22] reduction in memory. This
decrement can be expected to affect the UAS-shits inactivation data from the same studies, so
we used 83% of wild type memory in Fig 9B as the zero reference point to estimate the specific
effects of lobe inactivation.

Fig 2. Meta-analyses of rutabagamutant lines and targeted transgenic restoration. Short-termmemory
data are expressed as percentages. A. A summary forest plot of learning changes observed in 340
experiments with rutmutant lines, with subgroups showing the differences between the various rut alleles
and strains. Learning is expressed as a percentage change relative to wild type. The red diamond on the
bottom line indicates that the overall impairment in learning in the rut hypomorphs relative to wild type
controls is -60% [95CI -56%, -64%]. The complete forest plot is given in Fig 3. B. Summary estimates from
the rutmutant meta-analysis and five meta-analyses of lobular restoration experiments. Learning is displayed
as a percentage of wild type learning. The markers indicate the proportion of learning relative to wild type
expressed as a percentage; error bars are 95% confidence intervals. To the right of the markers are numbers
for the amount of rescue (R =) relative to the rut hypomorphs. N(E) and N(C) are the experimental and control
iterations respectively. Except for the α0β0 lobes (p = 0.17), all lobe categories showed a statistically
significant partial rescue of learning (αβ p = 0.029, γ p<1 x 10–45, αβ+γ p = 1.1 x 10–16, all lobes p<1 x 10–
45) when compared with rut learning.

doi:10.1371/journal.pgen.1005718.g002
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Neurotransmission from the αβ + γ lobes accounts for 61% of STM
Inactivating the αβ lobes alone produced a 25% [95CI 14, 37] reduction in STM (Fig 11). Driv-
ers that express in both the αβ and γ lobes reduced performance by 61% [95CI 50, 72] relative
to heated control flies (Fig 12). The best estimate for γ lobe inactivation is a 6% reduction
[95CI 35% reduction, 24% increase] relative to heated controls. This γ lobe estimate appears to
be negligible, but has very wide confidence intervals and is drawn from only a single experi-
ment with three iterations. Surprisingly, the literature review found no<5 min STM data on
the impact of shibirets inactivation of either the entire mushroom body (All lobes) or the α0β0

lobes (empty columns in Fig 9B); at the time of the review the only studies reporting results for
these interventions examined later memory, at 15 min or beyond [20]. The substantial decre-
ment in the αβ lobe inactivation experiments (25% reduction) is incompatible with the idea
that this lobe plays only a negligible role in STM. The paucity of data for γ, α0β0 and All lobes in
STM highlights an area that would benefit from future experimental attention.

Fig 3. Forest plot of rutmutant learning changes. Each data set is identified by the source article and figure panel. This figure is a detailed version of the
same plot in the main article, but uses proportional reductions instead of percentage changes. The subgroups are different driver lines, the red diamond
indicates the overall estimated value range for the percentage change relative to control.

doi:10.1371/journal.pgen.1005718.g003

Fig 4. Forest plot of rut restoration in the αβ lobes. Each data set is identified by the source article and figure panel. The subgroups are different driver
lines, the red diamond indicates the overall estimated value range for the proportional change relative to control.

doi:10.1371/journal.pgen.1005718.g004
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Cell number accounts for the majority of driver variation
Observing high heterogeneity (I2) in some of the meta-analyses, we attempted to identify the
source of variability, and examine the original hypothesis from a different perspective.

Fig 5. Forest plot of rut restoration in the α0β0 lobes. Each data set is identified by the source article and figure panel. The subgroups are different driver
lines, the red diamond indicates the overall estimated value range for the proportional change relative to control.

doi:10.1371/journal.pgen.1005718.g005

Fig 6. Forest plot of rut restoration in the γ lobes. Each data set is identified by the source article and figure panel. The subgroups are different driver
lines, the red diamond indicates the overall estimated value range for the proportional change relative to control.

doi:10.1371/journal.pgen.1005718.g006
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Electrophysiological evidence [34] and anatomical connectivity analysis [35] indicate that the
Kenyon cells, the intrinsic neurons of the mushroom body, are randomly connected to their
olfactory input neurons. The lack of structured connectivity suggests that, for some or all odor-
related functions, individual Kenyon cells are interchangeable; thus raising the possibility that
a cell’s lobular identity might be less important than its participation in a stochastically nomi-
nated odor-responsive ensemble. As three of the seven relevant meta-analyses showed driver
heterogeneity as accounting for more than half of their variance, we asked whether the number
of cells captured by a driver could explain some of the unaccounted variance. We extracted cell
count data from an anatomical study that counted Kenyon cells for many of the drivers [33].
The driver-specific meta-analytic STM estimates were subjected to an initial simple linear
regression against the drivers’ available cell counts in both rut restoration and shits inactivation.
These indicated that cell numbers accounted for about 80% of the driver memory variance (rut
R2 = 0.79 [95CI 0.39, 0.94], p = 2.5 x 10−4; shits R2 = 0.77 [95CI 0.14, 0.96], p = 8.4 x 10−3). As

Fig 7. Forest plot of rut restoration in the αβ and γ lobes. Each data set is identified by the source article and figure panel. The subgroups are different
driver lines, the red diamond indicates the overall estimated value range for the proportional change relative to control.

doi:10.1371/journal.pgen.1005718.g007
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simple linear regression is unable to account for the full complexity of such hierarchical data,
we constructed hierarchical, multivariate, weighted meta-regression models accommodating
other variables that might explain some of the variance induced by differences in experimental
design. These models were also able to account for the clustering of experiments within studies
and for the shared control design in rut experiments, and included weighted estimates for each
driver by the number of contributing experiments (described fully in Methods). The hierarchi-
cal meta-regression model of rut showed a strong relationship with driver cell count, general-
ized-R2 = 0.84 [95CI 0.79, 0.89] (Fig 13A). The meta-regression model of shi data similarly
revealed a large effect size for the cell count relationship, generalized-R2 = 0.88 [95CI 0.84,
0.92] (Fig 13B). Compared with simple linear regression, the hierarchical models revealed
stronger trends with substantially improved precision. These results are incompatible with the
strong lobular specialization hypothesis of rut and shi function. Rather, drawing on data from
thousands of T-maze iterations (N = 1008, 1006) while accounting for experimental heteroge-
neity, they constitute compelling evidence that each driver’s extent of neuronal expression can
account for the majority of that driver’s short-term memory effect.

Kenyon cells in different lobes make equivalent contributions to STM
Different Kenyon cell drivers’ varying impact on learning is primarily a result of how many
cells they are expressed in: cell count as the overwhelmingly dominant factor therefore excludes
highly specialized roles for rut and shi in different lobes’ Kenyon cells. However, it is possible
that minor quantitative differences explain the remaining unaccounted for 12–16% of STM
variance in the meta-regression models. Within the overall memory-cell count trend in Fig
13A, several drivers’ estimates do not fall on the regression line. To account for such deviations
from the overall cell number trend, we aimed to factor out cell number and focus specifically
on the potency of each neuron captured by a driver. We built new models in which the learning
effect size of each driver line was first divided by the number of expressing cells, and weighted

Fig 8. Forest plot of rut restoration in all lobes of the mushroom body. Each data set is identified by the source article and figure panel. The subgroups
are different driver lines, the red diamond indicates the overall estimated value range for the proportional change relative to control.

doi:10.1371/journal.pgen.1005718.g008

Meta-analytic Methods for Memory Genetics

PLOS Genetics | DOI:10.1371/journal.pgen.1005718 December 8, 2015 15 / 27



Fig 9. Meta-analyses of shibirets inhibition of neurotransmission in the mushroom body lobes.
Learning data are expressed as percentages. A. A summary forest plot of learning changes in heat treatment
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hierarchical meta-regression models were then used to perform synthesis by lobular category.
These models produced estimates of a typical Kenyon cell’s effectiveness within each lobe

controls, with subgroups showing the differences between 3 types of controls. Learning is expressed as a
percentage change relative to wild type. The red diamond on the bottom line indicates that the overall
impairment in learning in flies exposed to elevated temperature is -17% [95CI -12%, -22%]. A complete forest
plot is shown in Fig 10. B. Summary estimates from the heat exposure controls and three meta-analyses of
lobular inactivation experiments. Colored markers correspond to diamonds in panel A. Learning at the
restrictive temperature is shown as a percentage of learning at the permissive temperature; error bars are
95% confidence intervals. To the right of the markers are numbers learning impairment (Δ* =) relative to the
synthetic heat effect control. N(R) and N(P) are the restrictive and permissive iterations respectively. The αβ
lobes (p = 0.0001) and the αβ+γ combination (p<1 x 10–45) show statistically significant impairment while the
γ lobes do not (p = 0.7071). The γ lobe bar is in grey as it derives from only a single experiment with few
replicates. There were no data in the literature on the α0β0 lobes or drivers that encompass all mushroom body
lobes.

doi:10.1371/journal.pgen.1005718.g009

Fig 10. Forest plot of the effect on STM of elevating flies from permissive to restrictive temperatures. This figure is a detailed version of the same plot
in the previous figure, but uses proportional reductions instead of percentage changes. The source article and figure panel identifies each data set. The
subgroups are different driver lines, the red diamond indicates the overall estimated value range for the proportional change relative to control.

doi:10.1371/journal.pgen.1005718.g010
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category (Fig 13C and 13D). The rut rescue-per-cell data and the shi loss-per-cell data both
show that there are no substantial differences between any lobe categories. In summary, when
cell numbers are taken into account, the evidence does not support the strong lobular speciali-
zation hypothesis. Instead, it shows that lobular rut function is non-specialized and that STM
makes use of all available functioning Kenyon cells.

Discussion
Previous studies concluded that differences between mushroom body lobes exist that reflect
functional specializations in the various memory phases (STM, MTM and LTM). These con-
clusions about lobular specialization included the idea that γ lobe rut function is sufficient for
STM formation. The aim of the present study was to specifically examine the strong lobular
specialization STM hypothesis. Surprisingly, the synthetic evidence is incompatible with lobu-
lar specialization, and supports the alternative idea that STM function is generalized across
lobes.

Meta-analysis of strong rut hypomorphic alleles confirmed that they cause a 60% reduction
in STM. As previously reported in the literature, the other 40% must be mediated by other
molecular factors either in the Kenyon cells or elsewhere. Restoring rut activity with lobe-tar-
geting drivers revealed that partial rescue occurs in both the γ and αβ lobes (mean 26% and
12%), with a partial rescue even in the α0β0 lobes (mean 6%). To rescue the majority of lost
function, rut had to be expressed in both αβ and γ lobes (Fig 2B). These data are incompatible
with the hypothesis that the lobes’ rut activity in the γ lobe is absolutely or strongly specialized
for STM. With the synthesized evidence failing to support strong lobular specialization of rut
in STM (Fig 2B), we considered an alternative hypothesis: that cell extent is the main predictor
of a transgenic driver’s STM impact. Indeed, multivariate meta-regression models incorporat-
ing cell count show that the dominant factor influencing STM is the number of Kenyon cells
targeted by a specific driver line, for both rut and shi effects (Fig 13A and 13B). This result

Fig 11. Forest plot of experiments using shits to inactivate neurotransmission from the αβ lobes. Each data set is identified by the source article and
figure panel. The subgroups are different driver lines, the red diamond indicates the overall estimated value range for the proportional change relative to
control.

doi:10.1371/journal.pgen.1005718.g011
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refutes the hypothesis that the mushroom lobes are specialized for aversive STM function.
Rather, the linear relationships lead us to conclude that the different lobes’ cells have similar
potency for STM with regard to rut and shi-dependent memory processes.

Despite the paucity of experiments for shi in the γ, α0β0 and All lobes categories, the available
data were sufficient to allow construction of a precise model of the relationship between driver
cell count and memory. If STM relied on neurotransmission from a highly inter-dependent
Kenyon cell ensemble, we would anticipate that shits inhibition of small subsets of these cells
would have a large effect. Instead, the observed linear trend between driver cell count and STM
impact (Fig 13B) supports a model in which shi-dependent memory function in the αβ and γ
cells occurs autonomously in individual cells or small groups of cells. It appears that associative
olfactory information is initially processed in a distributed manner across the mushroom body.
It appears that strong qualitative specialization of lobular neurotransmission emerges over the
subsequent minutes and hours as later memory forms [18,20]. Further investigation of lobular
specialization during the different memory phases could apply a combination of meta-analysis
and experimental analysis. In the latter case important experiments would include examining
genes beyond rut or shi, and the use of new driver lines with even more diverse lobe coverage
to more thoroughly dissociate lobe identity from cell count.

The benefits of systematic review include gaining an estimate of statistical heterogeneity (I2)
in the data and an overview of the methodological variability. While the T-maze STM protocol
is a largely standardized protocol, there is room for even greater standardization (Table 1) that

Fig 12. Forest plot of experiments using shits to inactivate neurotransmission from the αβ + γ lobes. Each data set is identified by the source article
and figure panel. The subgroups are different driver lines, the red diamond indicates the overall estimated value range for the proportional change relative to
control.

doi:10.1371/journal.pgen.1005718.g012
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would likely help improve inter-study reproducibility and facilitate meta-analysis, perhaps
reducing the need for complex modeling. Standardization would ideally involve adopting con-
sistent values for all relevant experimental parameters (e.g. voltage, voltage type, relative
humidity) that are currently sometimes omitted from published reports. Systematic methodo-
logical review is useful to identify censored and inconsistent experimental conditions.

This investigation serves as a case study in how systematic review, meta-analysis, and related
estimation methods can help biological data analysis. Recent commentary has focused atten-
tion on reproducibility [21,36,37] and replication [38]; both of these issues are in part con-
nected to significance testing. An encouraging aspect that was revealed as a part of this study is
that the existing published data could support precise estimation with hierarchical modeling,
suggesting firm data integrity in the fly memory neurogenetics field. Significance testing has
been controversial in the behavioral sciences for half a century [39] but it remains the

Fig 13. The extent of drivers’ Kenyon cell expression accounts for the majority of short-term olfactory memory effects. The estimated Kenyon cell
counts for drivers were taken from Aso et al. 2009. The memory effect sizes are derived from nested, weighted, multivariate meta-regression models that
adjusted for confounding variables that contributed to heterogeneity. A. Bubble plot of rut restoration; the cell count of driver lines accounts for 84% of the
variance of the learning effects of rut restoration (p < 0.0001). Each bubble’s area indicates that estimate’s weight in the regression model; the blue fit line has
a slope of 0.023% per cell [95CI 0.016, 0.030]. The grey line indicates the level of no rescue, i.e. the learning level of rutmutants.B. For shits inactivation,
88% of the learning variance is attributable to the number of cells encompassed by the driver (p < 0.0001). The blue fit line has a slope of -0.034% per cell
[95CI -0.046, -0.0216]; the grey line indicates the level of no effect, i.e. the learning expected from the effect of heat alone. C. Learning effect per cell in
mushroom body sub-regions from rut restoration in different lobes and combinations, adjusted for heterogeneity effects. Error bars are confidence intervals;
there are no statistical differences between rut lobe categories. D. The shits learning effect per cell in two lobes and their combination. There are no statistical
differences between shits lobe categories.

doi:10.1371/journal.pgen.1005718.g013
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dominant statistical methodology in neuroscience and other life sciences [40] while alternatives
have yet to be widely adopted. Estimation is a data analysis framework that places the emphasis
on effect sizes and the meta-analytic perspective [22,23,41]. This study shows how systematic
review in conjunction with several meta-analytic techniques enable the synthesis of relevant
available evidence so as to address inconsistencies in a field and reveal unexpected patterns in
published data [28]. Estimation statistics is also appropriate for primary research; modern texts
advise that reporting effect sizes with their confidence intervals, along with the use of graphical
methods, are the rightful priorities of data analysis [23,25,41]. Hierarchical models can simi-
larly be applied routinely to analyze primary data with complex experimental designs, such as
experiments conducted in different labs [42] or by differing protocols within a lab [43,44],
replacing basic methods such as ANOVA. Our results add further weight to the case that esti-
mation is a superior statistical framework for the various phases of biological research: plan-
ning, analysis, interpretation and review.

Materials and Methods

Eligibility criteria and information sources
All information was sourced with searches of PubMed. To be eligible for consideration for
inclusion in the systematic review each study was required to meet the following criteria: con-
taining olfactory STM experiments on Drosophila melanogaster using the classic T-maze appa-
ratus and a single training cycle [29]; reporting of the relevant control and experimental data as
a Performance Index (PI); detailing the relevant genotypes and the number of experimental
iterations (N or sample size). In addition, as STM is thought to begin to transition to MTM
shortly after training [9], we defined STM as using a post-training delay of 5 minutes or less.
All studies selected contained transgenic manipulations of the Kenyon cells targeted to one or
more of the 3 lobes (αβ, α0β0, and γ). For the systematic review of rut function in the Kenyon
cells, studies included use of a hypomorphic allele of the rut gene, transgenic drivers and UAS-
rut expression constructs. Experiments using temporally controlled expression of rut were
excluded to eliminate the possibility of heterogeneity associated with incomplete restoration
due to variations in expression longevity or strength. For the systematic review of endocytosis-
dependent neurotransmission in the Kenyon cells, studies included a UAS-shits transgene in
combination with transgenic drivers and heat treatment. Experiments that shifted shits flies to
different temperatures between training and testing were excluded to eliminate the possibility
of heterogeneity due to these manipulations; only experiments using the conventional permis-
sive-restrictive (cool-warm) comparison were included. Following the lead of the great major-
ity of the STM literature, we did not attempt to analyze the acquisition, storage and retrieval
phases of STM. This report contains the Preferred Reporting Items for Systematic reviews and
Meta-Analyses guidelines [45], except for the structured summary and risk of bias analyses.

Database search
The systematic literature search was conducted as follows and is shown as a diagram in Fig 1A.
On the 11th July 2013, the search phrase ((((Drosophila) AND (learning OR memory)) AND
(mushroom OR Kenyon)) AND ("2000"[Date—Publication]: "3000"[Date—Publication]) NOT
review[Publication Type] was used to query PubMed, and the resulting 279 records were
downloaded as two.nbib files. These files were imported into Papers2 software, and then
exported as EndNote.xml. This file was loaded into EndNote X4, copied into Excel, and then
imported into Apple Numbers with all bibliographic information including Title and Abstract
stored in one row per record. This was then used to screen the records’ titles, abstracts and was
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also used to record the results of the full text screen and the detailed experimental design
screen.

Study selection
We designed the literature selection process to identify experiments that examined aversive olfac-
tory STM (testing five minutes or less after training) inDrosophila as observed in the classic T-
maze apparatus. We further aimed to focus the analysis on the two kinds of experiments most
commonly used to understand the role of the three mushroom body lobes and the mushroom
body intrinsic neurons (Kenyon cells). The first type of experiments was the usage of transgenic
rutabaga (rut) to restore adenylyl cyclase function to one or more lobes in rutmutant flies; the
second type included experiments targeting transgenic temperature-sensitive SHIBIRE (SHITS)
protein to the lobes to disable dynamin-dependent neurotransmission. The SHITS proteins form
part of the dynamin endocytosis complex and poison its function when flies are transferred to
the restrictive temperature [46]. The exact odor pairs under investigation were explicitly disre-
garded in this analysis; rather, experiments containing the full variety odor pairs were included to
enable us to arrive at the most general conclusion about mushroom body function.

Two investigators (TY and JMW) performed the literature review independently and dis-
crepancies were resolved collaboratively with a third investigator (ACC). The 279 records
yielded from the PubMed search were screened in four stages to systematically exclude studies:
title review, abstract reading, full text scan and a detailed review of experimental design. This
process is described in Fig 1A; we used title and abstract information to discover a set of Dro-
sophila behavioral studies that were likely to include aversive olfactory conditioning in adult fly
(n = 65 studies) and then scanned these full text articles to find rutabaga restoration or shibirets

experiments in the MB lobes. The final stage in the selection (“Experimental Design” in Fig 1)
excluded three studies that did not meet the eligibility criteria listed above: one did not use or
report an isogenic permissive control [47]; a second did not report sample sizes and used a
post-training interval of 15 minutes [20], i.e. 10 minutes later than the original criterion and 12
minutes later than other studies included; a third used pharmacogenetic temporal control of
rut restoration [48].

Data item extraction
Two investigators (TY and JMW) extracted data independently using the measuring tool in
Adobe Acrobat Pro; any discrepancies between the two extractions were resolved collabora-
tively. The following data were collected from each of the included experiments: author, year of
publication, figure and panel numbers, genotype, mean Performance Index (PI) [49] with cor-
responding SEMs and the number of experimental iterations (N) for each mean PI value for
each intervention and its related control group. To calculate STM percentages we identified a
non-intervention control for each experiment, using the control that was the most similar to
the experimental animals. For the rut restorations the closest available controls ranged from
otherwise isogenic rut+ siblings to generic wild type (e.g. Canton-S). For the shits experiments,
including the heat-effect experiments, we used the permissive temperature controls. We also
extracted experimental conditions: time delay between training and testing, odor pair, temper-
ature, voltage, current type and relative humidity. One study’s rut restoration data were plotted
with superimposed error bars, precluding their extraction and inclusion in the review [17].

Driver line classification
Driver lines were classified by lobe expression pattern according to the original studies them-
selves, except for the MB247 line, which was thought to drive expression in all lobes [13], but is
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now characterized as primarily driving expression in the αβ and γ lobes [18,33]. In addition,
while several studies used 201Y as a γ driver, there is more recent evidence that 201Y also
drives in a minority of αβ cells [33]; we accommodated this by doing primary analysis counting
201Y as γ, but also doing a variation in which it was counted as αβ + γ.

Summary measures
For each experiment we calculated the intervention’s effect as a percentage change relative to
the control PI. All the meta-analyses were carried out for the percentage change metric as well
as the raw change in PI; the results were equivalent. We chose to report data as percentage
changes for easier interpretation. The histogram in Fig 1B shows that control PI scores vary
considerably across experiments; using a percentage change re-scales the phenotypes to each
experiment’s wild type memory. A percentage not only reports how far a phenotype is from
wild type memory but also sets a lower bound (0% memory). The standard error of each per-
centage change was calculated using the delta method approximation [50,51].

SEpooled ¼
meanexperimental

meancontrol

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
þð SEexperimental

meanexperimental

Þ2 þ ð SEcontrol

meancontrol

Þ2
s

Synthesis of results
Review Manager software, freely available at http://tech.cochrane.org/revman, was used to per-
form meta-analyses [52]. Nine meta-analyses were performed: six on the rutabaga data, three
on the shibire data. One random effects model meta-analysis was carried out for each mush-
room body lobe and any available combinations; within each meta-analysis a subgroup analysis
was performed for each driver line, except for the rutmutant and heat effect controls analyses,
where genotype subgroups were used. Table 1 gives full details. No meta-analysis was possible
for rut restoration to the γ lobes as only one published experiment was found. Subgroup analy-
sis of the driver lines was pre-specified. The I2 statistic was used as a measure of the percentage
contribution of heterogeneity to the total variance in each meta-analysis, including subgroup
heterogeneity [53]. For ease of interpretation, summary plots showed learning as a percentage
of wild type learning; these were calculated by addition of the impairment effect size to 100%.
We report p-values from a two-sample t-test with unequal group variances in the rut and shi
summary plots, and from a t-distribution transformation for the cell count regression. Other-
wise, percentage effect sizes and their 95% confidence intervals were used to interpret all results
[23]. All 95% confidence intervals are given in the form: [95CI lower, upper].

Meta-regression approach
Driver cell count data were extracted from a single anatomical study [33]. Initial examination
of the relationship was done with MATLAB’s simple linear regression function (LinearModel.
fit.m) on the mean values. However, this method does not account for many important aspects
of the data. To accommodate the complex nature of the data, we performed multivariate hier-
archical weighted meta-regression analyses of the driver effects using generalized linear mixed
models (GLMM) in SAS version 9.3 software (SAS Institute, Cary, North Carolina; PROC
GLIMMIX). For experiment k with appropriate control group j in study i, the outcome PIijk
(raw change or relative percentage change) was modeled using GLMM taking into account the
following:

• The meta-analytic nature of the data: each PIijk was estimated with a certain level of precision
in the primary study/experiment. PIij were weighted in the GLMM by their corresponding
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precision or inverse variance (1 / Var(PIijk)) with more weight assigned to more precise PIijk,
as in the meta-analyses.

• Relevant experimental design factors Xij were corrected for in the GLMM to reduce the vari-
ance induced by differences in design factors between individual experiments and studies.
We developed univariate and multivariate GLMMmodels by including one and more-than-
one design factors as independent variables in the GLMM respectively.

• Clustering: multiple experiments are clustered (nested) within each study and this clustering
may introduce extra variability or dependence due to laboratory and personnel preferences
(practice) in conducting experiments. Studies were modeled as clusters (bi) through a ran-
dom effect with variance τ. The cluster term in the model accounts for the correlation intro-
duced by data produced by the same laboratory.

• Shared Controls: rut restorations within experiments were calculated based on a shared con-
trol, which created dependencies (correlation) between rut restoration effects that shared
control groups. Therefore residuals (εijk) based on the same (shared) controls were correlated
and residuals based on different controls were independent. Due to convergence issues aris-
ing from a paucity of data we assumed a constant correlation (ρ) between residuals based on
the same shared controls and modeled the residual variance-covariance matrix (S) with a
block compound symmetry structure–blocked by shared controls, leading to conditionally
independent residuals. A simple constant-variance diagonal variance-covariance matrix was
used for the shi experiments, as matched controls were available, leading to independent
residuals.

Coupling all these aspects together yielded the following univariate and multivariate
weighted GLMM:

PIijk ¼
X
i;j

bij Xij þ bi þ εijk ;

bi � Nð0; t2Þ;

εijk � Nð0;SÞ; where Corrðεijk; εijk0 Þ 6¼ r; Corrðεijk; εij0kÞ ¼ 0; and Corrðεijk; εi0 jkÞ ¼ 0:

Construction of models
Model construction started with inspection of all the available independent variables based on
univariate GLMM. From Table 1, these variables included which pair of odors was used
(‘ODOR PAIR’), experimental temperature (‘TEMPERATURE), delay time between testing
and training (‘TIME’), shock voltage (‘VOLTAGE’), voltage type (‘AC/DC’) and relative
humidity (‘RH’). It was noted that the ODOR PAIR variable consisted of numerous categories,
which would dramatically increase the degrees of freedom, so we considered replacing this
with an approximation of the variable instead. Since benzaldehyde is known to stimulate gusta-
tory receptors as well as olfactory receptors (and thus might have a different dependency on
mushroom body function from other odorants), we used the presence or absence of benzalde-
hyde (‘BENZALDEHYDE’) as a proxy for ODOR PAIR. Of these variables, RH, AC/DC and
VOLTAGE were both censored in a large proportion of experiments, and (for non-censored
experiments) had mainly trivial and non-statistical effects on learning; these variables were
excluded from subsequent models. TIME and BENZALDEHYDE data were available for
all experiments. For rut experiments, both variables showed substantial and statistical influ-
ences on learning (TIME generalized-R2 = 0.26 [95CI 0.15, 0.36]; BENZALDEHYDE
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generalized-R2 = 0.28 [95CI 0.17, 0.39]), so these were incorporated into further multivariate
meta-regression models. For the shi experiments, only TIME had a substantial influence on
learning outcome (TIME generalized-R2 = 0.12 [95CI 0.04, 0.21]). Multivariate GLMM were
used to account for and extract the effect of the relevant independent variables by obtaining
residuals from the respective multivariate GLMM. We calculated a residual learning effect by
summarizing the residuals by drivers and rescaling them by subtracting the wild type memory
reference value (shi = 83%; rut = 40%). The residual learning effect was regressed against cell
counts in a linear meta-regression that was weighted by sample size (the number of experi-
ments contributing to each driver). The learning-per-cell model was built by first dividing each
driver’s effect (and standard error) by its cell counts, and then fitting a multivariate GLMM
with lobe categories as the main independent variable, while adjusting for other relevant exper-
imental design factors.

Supporting Information
S1 Dataset. A Cochrane Review Manager meta-analysis file shows the data and calculations
performed to produce the forest plots.
(RM5)

S2 Dataset. An Excel spreadsheet contains the data that were used in the construction of
the meta-regression model.
(XLSX)
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