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Predicting social anxiety in young 
adults with machine learning 
of resting‑state brain functional 
radiomic features
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Social anxiety is a symptom widely prevalent among young adults, and when present in excess, can 
lead to maladaptive patterns of social behavior. Recent approaches that incorporate brain functional 
radiomic features and machine learning have shown potential for predicting certain phenotypes or 
disorders from functional magnetic resonance images. In this study, we aimed to predict the level 
of social anxiety in young adult participants by training machine learning models with resting-state 
brain functional radiomic features including the regional homogeneity, fractional amplitude of 
low-frequency fluctuation, fractional resting-state physiological fluctuation amplitude, and degree 
centrality. Among the machine learning models, the XGBoost model achieved the best performance 
with balanced accuracy of 77.7% and F1 score of 0.815. Analysis of input feature importance 
demonstrated that the orbitofrontal cortex and the degree centrality were most relevant to predicting 
the level of social anxiety among the input brain regions and the input type of radiomic features, 
respectively. These results suggest potential validity for predicting social anxiety with machine 
learning of the resting-state brain functional radiomic features and provide further understanding of 
the neural basis of the symptom.

Social anxiety is defined as fear or anxiety about social situations in which there is a possible scrutiny by others1. 
This type of anxiety is thought of as a helpful reaction to encourage one’s appropriate social behavior when it 
is within an adaptive range2. However, its excess can lead to functional disability, such as avoiding events that 
involve social interactions, and thus people with marked social anxiety are diagnosed with social anxiety disorder 
(SAD)3. The prevalence of SAD in young adults is reported to be as high as 18%, which is the most diagnosed 
among anxiety disorders4. Considering that there are subjects with subclinical symptoms of social anxiety which 
can cause discomfort and disturbance in daily life, understanding social anxiety in the general population is an 
important topic for the promotion of mental health1.

The biological basis of anxiety is thought to be underpinned within the limbic system5. In particular, the 
amygdala controls the provocation of anxiety and innate fear responses6, and closely communicates with the hip-
pocampus for constituting the function of emotional responses to an engraved fear stimulus7. These two limbic 
structures are specifically involved in provoking anxiety from the low-level, meaning that the provoked emotion 
and its responses are instinctive rather than cognitive8. For the formation of social anxiety, brain regions that 
take part in higher-level functions are also known to be involved along with the limbic system9. For example, the 
orbitofrontal cortex (OFC) is a cortical region that functions in reward value evaluation, decision-making, and 
emotion processing during social situations10,11. In particular, impairment of reward value evaluation related to 
social situations can undermine and exaggerate the expected negative outcome from failure in social interaction12. 
The understanding of exaggerated social anxiety arising from functional impairment of the OFC is further sup-
ported by neuroimaging evidence that this cortical region exhibits interplay with the low-level limbic regions, 
including the amygdala13–15.

Resting-state functional magnetic resonance imaging (fMRI) has been used to explore network-level relevance 
to social anxiety across brain regions16,17. The default mode network (DMN) is a key network that is active during 
resting-state and is grounded on the posterior cingulate cortex and precuneus18. This network takes part in self-
referential processing and rumination, and hyperactivity of these functions are suggested to be correlated with 
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the level of negative cognition towards oneself19. This negative cognition can also affect the sensitivity to negative 
evaluation of others, leading to increased social anxiety20. Unsurprisingly, many resting-state fMRI studies have 
confirmed the involvement of the DMN in the pathophysiology of social anxiety and SAD21,22.

Investigating the neural correlates using neuroimaging modalities has provided researchers with oppor-
tunities to identify social anxiety-related brain regions through statistical approaches. However, few attempts 
have been made to infer (i.e. classify or regress) the level of social anxiety by training a model based on one’s 
neural characteristics. One previous study employed multivoxel pattern analysis (MVPA)23 and support vector 
machines (SVMs)24 for classifying patients with SAD from healthy controls in a total of 26 participants, which is 
a small sample size to train a machine learning model25. There were other studies that tried to classify SAD with 
machine learning models, but these studies did not take any functional measurement of the brain into account 
for the classification task26,27.

Radiomics is a recent field of research that focuses on extracting information containing specific patterns 
related to certain phenotypes from medical image data28,29. Approaches to incorporating information extracted 
from fMRI scan images, thought of as functional radiomic features, with machine learning models have shown 
promising results in the classification of psychiatric or neurological disorders30,31. We denote the term resting-
state brain functional radiomic features as the set of information extracted from resting-state functional neuro-
image data, which include the regional homogeneity (ReHo), fractional amplitude of low-frequency fluctuation 
(fALFF), fractional resting-state physiological fluctuation amplitude (fRSFA), and degree centrality (DC). The 
ReHo is a measure of brain activity that reflects the local consistency of blood oxygen level dependence (BOLD) 
through time32. The fALFF and fRSFA are resting-state measures that represent spontaneous fluctuations arising 
from neuronal activity and the level of hemodynamic responses, respectively33,34. The DC incorporates the num-
ber or strength of connection that is incident at each voxel of the brain35. Extracting these functional radiomic 
features from the BOLD signal incorporates previous knowledge regarding the physiology of the brain, such as 
low-frequency oscillations, adding plausibility and power when used as an input feature for training a machine 
learning model. Although these measures have been separately studied to uncover a neural basis of various 
phenotypic characteristics and disorders16,36, there has not been an approach which tried to train a model that 
considers these measures at the same time.

In the current study, we hypothesized that the resting-state brain functional radiomic features within the brain 
regions related to social anxiety would hold relevant neurological information that can be used to determine 
the level of social anxiety. This is based on a large body of previous evidence that alterations in the functional 
radiomic features such as the ReHo36,37, fALFF38,39, and DC40,41 are accompanied by a change in the level of social 
anxiety. Accordingly, the aim of this study was to evaluate the potential validity of machine learning models with 
over 100 young adult participants for classifying them into either low or high social anxiety group with machine 
learning models based on the resting-state brain functional radiomic features extracted from the fMRI data. In 
addition, we estimated the relative importance of the input radiomic features for determining the final prediction, 
deriving further neuroscientific understanding about social anxiety in these young adults.

Results
Participant demographics and psychometric Scale scores.  Average and standard deviation of age, 
Liebowitz Social Anxiety Scale (LSAS), Hospital Anxiety and Depression Scale related to anxiety (HADS-A) and 
depression (HADS-D) scores of the 116 participants and each group of low social anxiety participants (LSA) 
and high social anxiety participants (HSA) are presented in Table 1. Median of the LSAS score was 55.5, which 
served as the cutoff for separating the LSA and HSA groups. Age (t114 = − 1.34, p = 0.182) and level of depression 
measured by the HADS-D score (t114 = 0.91, p = 0.366) did not differ between the two groups on the independent 
t-test, whereas level of anxiety measured by the HADS-A score (t114 = 3.60, p < 0.001) differed between the two 
groups significantly. Histogram plot of the age and psychometric scale scores of the 116 participants are provided 
in Fig. 1. Since the HADS-A score was significantly different between the two groups, we further performed 
Pearson’s correlation analysis between the HADS-A score and the LSAS score and revealed a statistically signifi-
cant correlation (r = 0.32, p = 0.001). However, within-group correlation in the LSA group (r < 0.01, p = 0.985) 
and the HAS group (r = 0.21, p = 0.104) were not statistically significant. The difference in the correlation coef-
ficient between the two groups compared by the z-test of the Fisher’s r-to-z transformed coefficient values was 
not significant either (z = 1.13, p = 0.256), showing that the LSAS score and the HADS-A scores represent distinct 
type of anxiety in the group-level analysis.

Table 1.   Participant demographics and psychometric scale results. LSA low social anxiety group, HAS high 
social anxiety group, F female, M male, LSAS Liebowitz Social Anxiety Scale, HADS-A anxiety score of the 
Hospital Anxiety and Depression Scale, HADS-D depression score of the Hospital Anxiety and Depression 
Scale.

All (n = 116) LSA (n = 58) HSA (n = 58) t (χ2) p-value

Age 23.2 ± 2.6 23.5 ± 2.7 22.8 ± 2.5 − 1.34 0.182

Sex (F/M) 79/37 33/25 46/12 5.79 0.016

LSAS 54.3 ± 28.3 31.7 ± 17.4 76.9 ± 16.5 14.36  < 0.001

HADS-A 9.4 ± 3.5 8.3 ± 3.3 10.5 ± 3.4 3.60  < 0.001

HADS-D 9.2 ± 3.7 8.9 ± 3.8 9.5 ± 3.6 0.91 0.366
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Machine learning experiment result.  As presented in Table 2 and Fig. 2, the accuracy of the logistic 
regression (LogReg), SVM, random forest (RF), multi-layer perceptron (MLP), and the extreme gradient boost-
ing (XGBoost) for classifying the social anxiety group was 0.652, 0.696, 0.739, 0.652, and 0.783, respectively. The 
balanced accuracy, which is a metric that compensates the class imbalance problem, of LogReg, SVM, RF, MLP, 
and XGBoost resulted in 0.659, 0.701, 0.742, 0.644, and 0.777, respectively. The F1 score, which reflects both the 
sensitivity and specificity of the model by computing the harmonic mean of the precision and recall scores, also 
resulted in a similar trend with the accuracy and the balanced accuracy, demonstrating 0.692, 0.720, 0.750, 0.714 
and 0.815 for the LogReg, SVM, RF, MLP, and XGBoost models, respectively. It could be seen that the XGBoost 
model resulted in the best classification performance on the test data in terms of all three metrics evaluated. The 
average prediction probability suggests that the average uncertainty of the model prediction is the lowest for 
the LogReg, and the highest for the XGBoost. Standard deviation of the model prediction uncertainty was the 
lowest for the XGBoost model. The final training hyperparameters of the best XGBoost model selected with the 
exhaustive grid search were (1) booster: gblinear, (2) alpha: 0.1, and (3) lambda: 1.0, suggesting that the gradient 
boosting of linear model ensemble may outperform the gradient boosting of tree-based model ensemble. The 
Dummy model represents the chance-level baseline classifier where no estimator is actually trained.

Predictions of the XGBoost model with respect to the correct labels are plotted as a confusion matrix in the 
Fig. 3 to help understand the errors in the prediction. It can be seen that the HSA samples which are classified 
as the LSA (17%) constitute about 4 times more than the opposite error case (4%).

Figure 1.   Histogram plot of age and psychometric scale scores of the participants. Red dotted vertical line 
on the LSAS plot indicates the median score (median 55.5), which served as the cutoff for separating the two 
groups. Abbreviations: LSAS, Liebowitz Social Anxiety Scale; HADS-A, anxiety score of the Hospital Anxiety 
and Depression Scale; HADS-D, depression score of the Hospital Anxiety and Depression Scale.

Table 2.   Classification performance of the machine learning models. LogReg logistic regression, SVM support 
vector machine, MLP multi-layer perceptron, RF random forest, XGBoost extreme gradient boosting.

Model Accuracy Balanced accuracy F1 score Average prediction probability

Dummy 0.478 0.5 0.0 0.505 ± 0.000

LogReg 0.652 0.659 0.692 0.902 ± 0.123

SVM 0.696 0.701 0.720 0.645 ± 0.043

RF 0.739 0.742 0.750 0.702 ± 0.129

MLP 0.652 0.644 0.714 0.858 ± 0.150

XGBoost 0.783 0.777 0.815 0.642 ± 0.051

Figure 2.   Bar plot of classification performance of the machine learning models.
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Resting‑state radiomic feature importance.  The relative importance of input resting-state brain func-
tional radiomic features are provided as a barplot in Fig. 4. Among the 56 features, the fRSFA of the left OFC, the 
DC of the left OFC, and the DC of the left amygdala were the three most relevant features to the social anxiety 
classification task. Contribution of each region, radiomic feature, or hemisphere to the importance values are 
plotted in Fig. 5. In terms of the importance across different regions, the OFC resulted in the highest importance 
value sum, followed by the Amygdala, parahippocampal gyrus, precuneus, hippocampus, posterior cingulate 
cortex (PCC), and anterior cingulate cortex (ACC). Among the radiomic features, the DC showed the high-
est importance value sum, followed by the fRSFA, ReHo, and fALFF. Lastly, the left hemisphere demonstrated 
higher importance value sum than the right hemisphere.

Discussion
This study aimed to classify young adults into either the low or high social anxiety group with machine learning 
models based on the resting-state brain functional radiomic features extracted from the fMRI scan images. The 
functional radiomic features included the ReHo, fALFF, fRSFA, and DC of the resting-state fMRI within the 
OFC, ACC, PCC, hippocampus, parahippocampal gyrus, and amygdala. Of the six machine learning models 
tested, the XGBoost model demonstrated the best performance with balanced accuracy of 0.777 and F1 score of 
0.815, outperforming LogReg, SVM, RF, and MLP estimators. From the feature importance analysis, the DC was 

Figure 3.   Confusion matrix of the extreme gradient boosting (XGBoost) model prediction. Annotations of 
each box represents the ratio of samples in that category.

Figure 4.   Feature importance bar plot all input resting-state brain functional radiomic features. The importance 
value is estimated by SHapley Additive exPlanation (SHAP) feature importance method on the eXtreme 
Gradient Boosting (XGBoost) model with the test data split. Rt right, Lt left, DC degree centrality, fRSFA 
fractional resting-state physiological fluctuation amplitude, fALFF fractional amplitude of low-frequency 
fluctuation, ReHo regional homogeneity, PCC posterior cingulate cortex, OFC orbitofrontal cortex, ACC​ anterior 
cingulate cortex.
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the most important radiomic feature and the OFC, amygdala, and parahippocampal gyrus were the top three 
important regions for the classification of social anxiety.

From the demographics and psychosocial scales, age of the participants enrolled in this study were 23.2 in 
average with standard deviation of 2.6. This distribution of age represents that the recruited participants only 
include young adults, and suggests that the results should not be interpreted as those of the general population. 
Nevertheless, considering that social anxiety is more prevalent in young adults and that aging itself can affect 
functional activity of the resting brain, focusing on social anxiety only in young adults can be a strength rather 
than a limitation. The distribution of sex between the LSA and the HSA groups were found to have the statisti-
cally significant difference. This finding can reflect the fact that the prevalence of SAD is greater in women than 
men, leading to a larger ratio of female participants who have high level of social anxiety42,43. We did not select 
the samples to stratify the gender ratio by evaluating the participant demographics, because it can introduce 
unwanted selection bias to our dataset. In other words, if the models are trained and evaluated from an in-house 
modified sample distribution, it can lead to a lower generalization capability in real-world applications. Even so, 
it should be noted that gender differences may have influenced the feature importance result, especially within 
the PCC and precuneus, regions of the DMN where such differences have been suggested44. Also, there may 
exist potential bias given that demographic variables such as gender or age are not included as the input feature.

The LSAS score was 54.3 in average with standard deviation of 28.3, suggesting that the recruited participants 
consisted of people with a wide range of social anxiety levels. A notable result from the psychometric scale 
analysis is that the two groups showed significant difference in not only the LSAS score, but also the HADS-A 
score. This reflects the trend that the participants with higher level of social anxiety also exhibit higher level of 
general state anxiety, and vice versa. This trend is confirmed by further correlation analysis which showed the 
significant correlation between the LSAS score and the HADS-A score in the participants. While it may be very 
difficult, or even impossible to delineate the correlation between social anxiety and general state anxiety, caution 
should be made in interpreting our results given that general state anxiety might have been a confounding factor.

Another notable point in the psychometric scale analysis is that there were participants with unexpectedly 
high level of social anxiety, who were not being evaluated or treated by a clinician. This existence of highly 
socially anxious people without a history of treatment may reflect the socio-cultural environment that makes 
them reluctant to receive psychiatric treatment. In particular, East Asian culture itself is known to affect people’s 
level of social anxiety45,46, and people with psychiatric difficulties tend to avoid seeking clinical help because of 
the stigma of mental illness until they become severe47. Given these situational factors, the prediction model of 
social anxiety can be effectively used as an unbiased screening tool without concerns regarding the stigmatiza-
tion for having mental illness.

The classification experiments demonstrate that the XGBoost model achieved the best performance when 
compared to the other classifiers. The SVM model resulted in balanced accuracy of 0.701, which is slightly lower 
than, but comparable to, the previous work reporting balanced accuracy of 0.726 by incorporating the task-based 
fMRI features within the amygdala, ACC, hippocampus, insula, and parietal lobe trained with the SVM25. This 
discrepancy may come from the difference in the (1) type of extracted functional radiomic features, (2) selected 
brain regions for training the model, (3) presence of specific behavioral task during the fMRI scan, (4) hyperpa-
rameter settings for training the model, or (5) number of samples (n = 116 vs. n = 26) included in the study. Bal-
anced accuracy of the XGBoost model showed 0.777, outperforming the LogReg, SVM, RF, and MLP classifiers 
trained in our experiments and also the result from the previous study25. The XGBoost classifier is an ensemble 
of multiple estimators optimized with the gradient boosting technique. The ensemble technique of multiple 
estimators along with the regularized objective function, shrinkage and subsampling helps prevent overfitting 
of the final model, which could partly explain the good performance of the XGBoost model over other models48. 
Even for the best XGBoost model, the performance for predicting social anxiety still has room to improve.

Figure 5.   Sum of absolute SHapley Additive exPlanation (SHAP) feature importance for each region, radiomic 
feature, and the two hemispheres. OFC orbitofrontal cortex, PCC posterior cingulate cortex, ACC​ anterior 
cingulate cortex, DC degree centrality, fRSFA fractional resting-state physiological fluctuation amplitude, ReHo 
regional homogeneity, fALFF fractional amplitude of low-frequency fluctuation, Rt right, Lt left.
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Importance of each input functional radiomic feature was computed and analyzed with the SHAP feature 
importance method in this study. Among the brain regions, the left OFC was found to be more important than 
others from the mean of absolute SHAP values (Fig. 4). Considering that the fRSFA reflects resting-state vascular 
reactivity of the region, salient resting-state activity feature within the OFC can be possibly related to the level of 
social anxiety, which the trained XGBoost model largely accounts for when performing the classification task. 
Importance of the left OFC in classifying the level of social anxiety is further emphasized by the fact that the 
second most important functional radiomic feature is also within the left OFC. Results from our experiments 
suggest that the DC of the left OFC and amygdala are two of the highly important regions for the social anxiety 
prediction (Fig. 4). The DC is a network metric that represents how many connections are present within the 
node of interest, related to the strength of functional connectivity35. These findings are concurrent with previous 
neuroimage evidence given that the OFC is one of the key regions in the arousal of social anxiety, which plays 
a central role as the mediator between the low-level limbic regions, such as the amygdala, and the higher-level 
network hubs, such as the PCC and precuneus. Aberrant resting-state function of the OFC in terms of reduced 
activity49, and abnormal functional/effective connectivity to the amygdala14,15 have been consistently reported 
in previous neuroimaging studies of SAD patients. The role of the OFC in social anxiety is related to the fact 
that the region takes part in high-level functioning of reward value evaluation in social situations11. To sum up, 
it can be interpreted that the XGBoost model appropriately takes the level of activity and connectivity within 
the OFC and amygdala into account, which is known to be related to the level of social anxiety in patients with 
SAD, for the social anxiety classification.

Some issues of the current study should be mentioned. Although our study included collection of fMRI data 
samples from over 100 young adult participants, by far the largest number among the machine learning stud-
ies of resting-state fMRI related to social anxiety, it should still be noted that a larger number of samples may 
provide a more convincing result in the future. Other limitations of this study can include that the demographic 
factor, such as age or gender, is not taken into account during training, which can affect the resting-state brain 
functional radiomic features. In addition, the neuroimaging data was acquired from two different sites. Although 
we have gone through an extensive pre-processing pipeline to minimize the multi-site effect, the possibility of 
multi-site effect may still be a limitation of this study.

Training machine learning models for the classification of one’s psychological phenotype has potential clini-
cal benefits. Although the accuracy for prediction may be a little below the certain point that the method can 
actually be extended to clinical practice, the experimental results still hold the significance in that they validate 
the potential possibility of radiomics-based machine learning for screening young adults with high social anxi-
ety who were not aware of, or not able to seek clinical help. However, it should also be noted that there also 
exists potential negative societal impact related to privacy concerns that arise from abuse or misuse of decoding 
methods. Although the accuracy and capability of our method are yet behind the level that can be abused or 
misused, these societal concerns should still be considered.

In conclusion, we trained machine learning models with the resting-state brain functional radiomic features 
from young adult participants to predict the level of social anxiety, and confirmed validity of the approach by 
experiments. The feature importance analysis results demonstrated that the brain regions responsible for high-
level functions were more important to the prediction of social anxiety than those related to low-level limbic 
functions. Our approach based on machine learning with the functional radiomic features for predicting the 
level of social anxiety may potentially be a useful screening tool for people with high level of social anxiety, and 
possibly other psychopathologic phenotypes in the future.

Methods
Participants.  Young adult participants were recruited from advertisement via the Internet, and were evalu-
ated by a trained psychiatrist whether they met the exclusion criteria of (1) any history of diagnosis or treatment 
of major psychiatric disorder, (2) inability to undergo the MRI scanning, (3) significant history of medical condi-
tion or neurological disorder, (4) pregnancy, and (5) left-handedness. It should be noted that only participants 
not receiving psychiatric treatment were included. There were 125 participants included at this step, of which 9 
participants were dropped out from the final analysis due to willingness to withdraw from the study or severe 
artifacts in the acquired MRI data, leaving a total of 116 participants in the sample. Informed consent was 
obtained from all participants and the study was approved by the Institutional Review Board (IRB) of Yonsei 
University Gangnam Severance Hospital (3-2017-0046; date of approval: Mar 29, 2017). Whole process of this 
research was carried out in accordance with the Declaration of Helsinki.

Psychometric evaluation.  The LSAS50, which is a self-reporting four-point Likert scale with 24 items, was 
obtained from all participants to evaluate the level of social anxiety. Levels of general anxiety and depression 
are further measured by the self-reported HADS-A and HADS-D51. Participants were classified into the LSA 
group or HSA group according to whether their LSAS scores were lower or higher than the median value of all 
participants.

Neuroimage data acquisition and preprocessing.  The neuroimage data were collected from two dif-
ferent sites with magnetic resonance imaging facilities, based on the participant location. Images were acquired 
at the first site, using a 3.0 T MRI scanner (Ingenia CX, Philips, Best, the Netherlands) with a 32-channel head 
coil. For each participant, anatomical images were obtained in the coronal direction using a 3D T1-weighted 
fast gradient echo sequence (matrix size, 224 × 224; number of slices, 220; slice thickness, 1 mm; echo time, 
4.6 ms; repetition time, 9.9 ms; and flip angle, 8°). The resting-state fMRI scans were acquired with the multi-
band SENSitivity Encoding (SENSE) sequence (matrix size, 96 × 93; field of view, 216 mm; number of slices, 60; 
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slice order, bottom-up and interleaved; slice thickness, 2.4 mm; echo time, 30 ms; repetition time, 800 ms; flip 
angle, 52°; multiband factor, 6; and SENSE factor, 1). At the second site, the images were collected using Siemens 
Magnetom Verio 3 T scanner (Siemens Medical Solutions, Erlangen, Germany). Structural T1 weighted images 
were obtained with a 3D spoiled-gradient-recall sequence (matrix size, 256 × 256; number of slices, 176; slice 
thickness, 1 mm; echo time, 2.46 ms; repetition time, 1900 ms; and flip angle, 9°). The resting-state functional 
images were acquired with a gradient echo planar imaging sequence (matrix size, 64 × 64; number of slices, 30; 
slice thickness, 3 mm; echo time, 30 ms; repetition time, 2000 ms; and flip angle, 90°).

All data preprocessing and experiments were performed on a local Linux workstation equipped with Intel 
Core i7-8700 CPU @ 3.20 GHz × 12, 64 GB RAM, and NVIDIA GeForce RTX 2070. The T1-weighted and 
resting-state fMRI DICOM images were first converted into gzipped nifti files, and were renamed, organized to 
follow the BIDS standard specification. Preprocessing of these images which included skull-stripping, surface 
reconstruction, co-registration, motion correction, resampling, normalization, and segmentation were performed 
using fMRIPrep 20.2.352, which is based on Nipype 1.6.153. Further details on the neuroimage data preprocessing 
can be found on the Supplementary material.

Resting‑state brain functional radiomic feature extraction.  We focused on the resting-state brain 
functional radiomic features including the ReHo, fALFF, fRSFA, and DC. The radiomic features were extracted 
with the AFNI54 using functions 3dReHo, 3dRSFC, and 3dDegreeCentrality applied on the fully pre-processed 
3d resting-state fMRI data across time. Further details on the radiomic feature definition and extraction are 
elaborated in the Supplementary material.. Radiomic feature value of regions of interest (ROIs) of the brain was 
computed by taking the average of the voxels within 14 selected regions from the automated anatomical labeling 
(AAL) atlas55 using the 3dROIstats function. The selected brain areas included bilateral regions of the OFC, 
ACC, PCC, precuneus, hippocampus, parahippocampal gyrus, and amygdala (Fig. 6). Thus, the final radiomic 
feature of a subject constituted a vector with 56 elements (7 regions × 4 radiomic features × 2 hemisphere sides).

Dataset split and preprocessing.  Dataset splitting and preprocessing pipeline was implemented with 
pandas (v1.2.3) and the scikit-learn (v0.24.1) library56 based on Python (v3.8.5). First, each sample was labeled 
with either ‘low’ or ‘high’ class based on the median LSAS score using the ‘qcut’ function of the pandas library. 
Second, the length 56 input feature vectors and the label pairs from 116 subjects were random-stratified split into 
the train and the test datasets using the ‘train_test_split’ function of scikit-learn, including 93 and 23 samples, 
respectively. To stabilize the training process, we fitted a ‘StandardScaler’ object of scikit-learn to the training 
input features, and transformed both the training and test input feature samples. This process calculates the 
mean and standard deviation of each feature from the train dataset, and apply shifting and scaling to the train 
and test datasets based on the calculated mean and standard deviation. The labels were encoded into an integer 
using the ‘LabelEncoder’ object of scikit-learn. The final number of samples in each split and group is provided 
in the Table 3.

Machine learning models and experiments.  Machine learning models were implemented, trained, 
and tested with the scikit-learn (v0.24.1)56 library. We experimented six classification models including the 
Dummy, LogReg, SVM, RF, MLP, and eXtreme Gradient Boosting (XGBoost), which are machine learning 
methods widely used in academic research and industry. Here, the Dummy classifier was included to represent 
the baseline. Given that the model performance can be dependent on the hyperparameter settings, optimal 
hyperparameter of each model was selected using the ̀ GridSearchCV` object on the training dataset. This object 
performs k-fold cross validation on the training dataset for every possible combination (grid) of the hyperpa-

Figure 6.   Social anxiety-related brain regions included in the current study. The regions were the orbitofrontal 
cortex (blue), anterior cingulate cortex (brown), posterior cingulate cortex (orange), precuneus (green), 
hippocampus (red), parahippocampal gyrus (purple), and amygdala (pink).
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rameters and allows to select the hyperparameter based on the average validation dataset performance score. 
We performed fivefold cross validation and the performance score was measured with the F1 score. The pos-
sible combinations (grid) of the training hyperparameters for each model are provided in the Supplementary 
material.. With the best six trained models (one per model type) selected from the ‘GridSearchCV’, accuracy, 
balanced accuracy, and F1 score were computed on the test dataset prediction to evaluate the final performance. 
To present the uncertainty of the model predictions, we also report the average and standard deviation of the 
positively predicted class probability.

Feature importance estimation with shapley additive explanations.  Importance of the input fea-
tures was estimated using the SHapley Additive exPlantations (SHAP) feature importance method57 on the test 
dataset to investigate the relevance of each resting-state radiomic feature with the social anxiety classification 
task. The SHAP is a model-agnostic feature importance analysis method employing game-theoretic approach. 
Contribution of each input features to the final model prediction can be quantified with the SHAP value, and 
we estimate the feature importance as the average of absolute SHAP value computed across the test dataset 
samples57. To delineate the contribution of each region, radiomic feature, or hemisphere, we summed up the 
SHAP feature importance values from the same region, radiomic feature, or hemisphere and analyze the con-
tribution of these features separately. We further evaluate the coefficient weights of the XGBoost model as the 
baseline feature importance estimate and show that the SHAP feature importance and the coefficient weights 
are highly correlated in the Supplementary material., which supports the robustness of the model explanation.

Data availability
Data requests should be directed to the corresponding author. Code is available at: https://​github.​com/​egypt​dj/​
fmri-​radio​mic-​ml-​sad/.
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