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Preeclampsia is a hypertensive disorder of pregnancy, which complicates up to 15% of US
deliveries. It is an idiopathic disorder associated with several different phenotypes. We
sought to determine if the genetic architecture of preeclampsia can be described by
clusters of patients with variants in genes in shared protein interaction networks. We
performed a case-control study using whole exome sequencing on early onset
preeclamptic mothers with severe clinical features and control mothers with
uncomplicated pregnancies between 2016 and 2020. A total of 143 patients were
enrolled, 61 women with early onset preeclampsia with severe features based on
ACOG criteria, and 82 control women at term, matched for race and ethnicity. A
network analysis and visualization tool, Proteinarium, was used to confirm there are
clusters of patients with shared gene networks associated with severe preeclampsia. The
majority of the sequenced patients appear in two significant clusters. We identified one
case dominant and one control dominant cluster. Thirteen genes were unique to the case
dominated cluster. Among these genes, LAMB2, PTK2, RAC1, QSOX1, FN1, and VCAM1
have known associations with the pathogenic mechanisms of preeclampsia. Using
bioinformatic analysis, we were able to identify subsets of patients with shared protein
interaction networks, thus confirming our hypothesis about the genetic architecture of
preeclampsia.
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INTRODUCTION

Preeclampsia is a hypertensive disorder of pregnancy. It is associated with a higher risk of
hypertension and cardiovascular disease later in life. Women who had preeclampsia have a
twofold increased risk of death from cardiovascular diseases (Bokslag et al., 2016; Neerukonda
et al., 2020). There is evidence that preeclampsia originates in part from genetic causes that include
contributions from the maternal, paternal and fetal genome (Zusterzeel et al., 2002; Cnattingius et al.,
2004; Nilsson et al., 2004; Kobayashi, 2015; Than et al., 2018). The heritability of preeclampsia is up
to 52% (Salonen Ros et al., 2000; Chappell andMorgan, 2006). The role of genetics in preeclampsia is
also supported by family-based observations (Chappell and Morgan, 2006; Nejatizadeh et al., 2008)
with more than 100 studies showing a 2- to 5-fold increased risk among family members of affected
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women (Chesley et al., 1968; Sutherland et al., 1981; Arngrimsson
et al., 1990; Cincotta and Brennecke, 1998; Mutze et al., 2008;
Ward, 2008). The recurrence risk for preeclampsia in the
daughters of either eclamptic or preeclamptic patients is
20–40% (Serrano, 2006; Genc and Schantz-Dunn, 2007).
Nonetheless, there is no current consensus among the
published results in regards to associated genes and the
pathogenesis of the disease.

The genetic basis for complex diseases involves the interaction
of multiple genes in discrete networks and pathways (Loscalzo
et al., 2007). Although complex diseases show increased
recurrence risk in families, they do not follow a simple
Mendelian pattern of inheritance (Smith and Ebrahim, 2003).
Computational methods have been used to analyze networks of
genes and to find biological subnetworks due to the genetic
heterogeneity of e diseases that are linked to a variety of
disorders (Wall et al., 2009). There are several studies
employing computational methods to identify important genes
associated with hypertension. Ran et al. analyzed the protein
protein interaction (PPI) network topology and molecular
connectivity between protein pathways to identify associations
with hypertension (Ran et al., 2013). Researchers have also
developed a machine-learning algorithm to predict novel
hypertension associated genes (Li et al., 2017).

We hypothesize that the genetic architecture of complex
diseases like preeclampsia is described by clusters of patients
with variants in genes in shared PPI networks. We sought to test
this hypothesis using whole exome sequencing in carefully
selected patients with early onset preeclampsia with severe
clinical features. We compared variants identified in women
with early onset, idiopathic severe preeclampsia with term
controls without personal or family history of pregnancy
related hypertensive disorders. We built and implemented
Proteinarium, a novel multi-sample PPI tool, to identify
clusters of patients with shared PPI networks.

MATERIALS AND METHODS

Study Population
Women & Infants Hospital of Rhode Island (WIH) is the only
provider of high-risk perinatal services in Rhode Island,
northeastern Connecticut and southeastern Massachusetts. We
used this population-based service to enroll preeclamptic mothers
with early onset, severe features, based on ACOG criteria, as well
as term mothers with no history of preeclampsia (Roberts et al.,
2013).

This case/control study was approved by the Institutional
Review Board of WIH (Project ID: WIH 16–0031). Between
the years 2016–2020, we reviewed the records of all early-onset
preeclamptic mothers with severe features delivering <34 weeks.
Following informed consent, we asked explicit questions about
preeclampsia in mother, grandmother, first order relatives and
also paternal relatives. Gestational age was determined by best
obstetrical estimate. In almost all cases, this was by first trimester
ultrasound. Clinical history, with an emphasis on additional risk
factors including medical illnesses and drug use was recorded.

Hypertensive disorders include a broad range of different
phenotypes. Again, in order to leverage the likelihood of
genetic discovery associated with preeclampsia, we excluded
preeclamptic mothers with personal or family history of other
hypertensive disorders. Controls were mothers who delivered
≥37 weeks’ gestation for whom the formal genetic interview
revealed no history of preterm birth or pregnancy related
hypertensive disorders on either the maternal or paternal side
of the pedigree. A total of 143 patients were enrolled, 61 women
with early onset preeclampsia with severe features, and 82 control
women at term, matched for race and ethnicity.

Whole Exome Sequencing
EDTA stabilized, residual maternal whole blood was obtained
from each mother and stored at -80 °C. Samples were sent to an
outside facility for whole exome sequencing that was blind to
disease status. The library was sequenced on an Illumina HiSeq
4000 using 150 bp paired-end protocols.

Sequence Data
For variant discovery we used the Gene Analysis Tool Kit
(GATK) V4 to analyze the sequence reads (Van der Auwera
et al., 2013). Haplotype Caller was applied for variant detection
(Poplin et al., 2018). Variants were flagged as low quality and
filtered using established metrics: if three or more variants were
detected within 10bp; if four or more alignments mapped to
different locations equally well; if coverage was less than ten reads;
if quality score <30; if low quality for a particular sequence depth
(variant confidence/unfiltered depth <1.5); and if strand bias was
observed (Phred-scaled p-values using Fisher’s Exact Test >200).

Genotype Testing
To identify variants that were differentially abundant between
cases and controls, we used a Markov Chain Monte Carlo
(MCMC) Fisher Exact Test to compare the frequency of the
homozygous reference, homozygous alternative, and the
heterozygous genotypes between cases and controls. Eigenstrat
detected no significant population stratification (Price et al.,
2006). None of the eigenvectors were associated with race/
ethnicity.

Univariate Analysis: Variant Annotation
We applied a strict filter-based annotation using ANNOVAR
(Wang et al., 2010). We identified deleterious variants with
Polyphen 2 HDIV, SIFT and CADD (Ng and Henikoff, 2003;
Adzhubei et al., 2010; Kircher et al., 2014; Genomes Project et al.,
2015). We used the following thresholds: Polyphen 2 HDIV
prediction if a change is damaging (≥0.957), a SIFT score
(<0.05), a CADD score >15, and minor allele frequency
(MAF) < 0.05 from the 1,000 Genome Project (Genomes
Project et al., 2015).

Multivariate Protein Protein Interaction
Analysis
We hypothesized that the genetic architecture underlying
complex disorders is best explained by subsets of patients with
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variants in shared networks and pathways sufficient to express the
phenotype. To analyze our whole exome sequencing data, we
developed Proteinarium, a novel multi-sample PPI analysis and
visualization tool (Armanious et al., 2020). For each sample, the
top 60 genes, corresponding to the most significant, differentially
abundant variants (ranked by genotype testing p value) were used as
the seed genes for input into Proteinarium. The pipeline for
Proteinarium is described in great detail in Armanious et al.,
2020. In brief, these seed genes were used to create a PPI network
for each patient. After generating the network graphs for each patient,
Proteinarium calculates the similarity between each pair of graphs
using the Jaccard distance. This similarity matrix is then used as the
input to cluster the set of graphs. Clustering is performed
hierarchically using Unweighted Pair Group Method with
Arithmetic Mean (UPGMA). Proteinarium outputs the results of
the clustering algorithm as a dendrogram and shared interaction
network graphs. For each cluster, the abundance of cases is compared
to that of the controls using Fisher’s exact test. Each cluster can be
visualized as a layered graph of its constituent networks.Proteinarium
was implemented with the minimum path length parameter set to 2,
to include only those pathways in which seed proteins are connected
directly to each other and/or via a single intermediary protein. We
refer to these intermediary connecting proteins as imputed proteins.

Network Separation Testing
Separation testing is a computational approach for determining
the genetic similarity between diseases by comparing their protein
protein interaction networks from the interactome (Menche et al.,
2015). It compares the shortest distances between network
proteins within each disease or network to the shortest
distances between the disease networks. A positive separation
score indicates that there is a physical separation between
networks within the interactome. We computed the separation
score between the layered network graphs of clusters identified as
associated to a specific phenotype via the Fisher exact test by
Proteinarium (Armanious et al., 2020).

RESULTS

The clinical characteristics and the race/ethnicity distribution of
the patients are shown in Table 1. As can be seen, the gestational
age at delivery, systolic blood pressure, frequency of proteinuria,
impaired liver function, thrombocytopenia, cerebral visual
symptoms and fetal growth retardation were all significantly
different between the groups, which was expected by our
definition of severe preeclampsia.

High quality sequence data with a Phred score ≥30 from well-
balanced pools with over 19, 000, 000 reads/patient, 40X average
depth of coverage, with more than 80% of sequence reads with at
least 20X coverage were observed. We identified a total of 528,630
variants including 187,915 exonic variants. The work flow for the
univariate analysis is shown in Figure 1. After application of the
initial filters for coverage and variant pathogenicity, there were
8,868 predicted deleterious variants (available at Online_
Supplementary Table S1). Among these, 21 variants were
nominally associated with preeclampsia by genotype testing.
All were non-synonymous, exonic variants (Table 2).
Nonetheless, none of these variants met genome-wide
significance after correction for multiple comparison testing.

Proteinarium was used to carry out the multivariate protein
protein interaction analysis to identify clusters of patients with
shared networks associated with severe preeclampsia. The
resulting, circularized dendrogram is shown in Figure 2A
(Ciccarelli et al., 2006). Out of the 143 patients sequenced, 129
patients were assigned to two statistically significant clusters. (p <
0.0001). The inset in Figure 2A shows the number of cases and
controls in each cluster. Cluster A had significantly more cases
than controls, containing 47 of the 61 case subjects (Bastian et al.,
2009). The layered network for the case-dominated Cluster A is
shown in Figure 2B. There are 13 genes which are unique to
Cluster A, highlighted in red in the layered network graph. Most
have defined functional roles or implications for preeclampsia,
Table 3. Cluster B had significantly more controls than cases,
including 61 of the 82 subjects. The layered network for Cluster B
is shown in Figure 2C. The unique genes from the layered

TABLE 1 | Clinical characteristics of patients. Mean +SD.

Categories Case (n = 61) Control (n = 82)

Gestational age of delivery and life style
Age (mean) 29.1 ± 5.0 29.4 ± 5.3
Grava (mean) 2.1 ± 1.2 2.5 ± 1.6
Job strenuous (%) 26.2% 28.0%
Obesity (%) 31.1% 23.1%

Race/Ethnicity
African_American (%) 9.8% 4.8%
Asian (%) 3.2% 3.6%
Caucasian (%) 55.7% 56.1%
Hispanic (%) 22.9% 28.0%
Native_American (%) 1.6% 1.2%
Other_Racial_ID (%) 6.5% 6.1%

Abnormal laboratory values
Systolic_bp (mean, mmHg) 170.8 ± 14.4 117.6 ± 9.6
Proteinuria (%) 65.5% 0.00%
Impaired_liver_function (%) 55.7% 2.4%
Thrombocytopenia (%) 14.7% 0.0%
Cerebral_visual_symptoms (%) 55.7% 0.0%

FIGURE 1 | Figure shows the univariate work flow for analysis of the
whole exome sequencing results.
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network graph of Cluster B, shown in blue, are listed in
Supplementary Table S1.

We compared the sequence data of the samples not assigned to
clusters with those that were assigned and we did not find
significant differences in the average depth of coverage.
Likewise, there were no significant differences in clinical/
phenotypic characteristics when comparing the subjects in the
significant clusters with the subjects that were not in these clusters
(data not shown).

The comparison of the unique genes from the case and the
control dominated clusters revealed a positive separation score,
confirming that the layered PPI networks of these two patient
subgroups indeed exist in distinct areas of the interactome. We
ran GO term analysis using DAVID software on all genes of the
network from Cluster A and from Cluster B, Supplementary
Table S2 (Huang da et al., 2009b; a). We found significantly
enriched biological processes, molecular functions and cellular
components based on Bonferroni corrected p-value for the case
and control dominated networks. Prominent among the
biological processes and molecular functions associated with
preeclampsia were antigen processing and presentation,
cellular movement (axon guidance and microtubules) and
T cell receptor signaling.

We previously reported the database for Preeclampsia
(dbPEC) which archives a curation-based collection of genes
associated with preeclampsia and their association with clinical
features and concurrent conditions (Triche et al., 2014). We
compared the genes from our univariate analysis and the
genes from both case and control dominated layered networks
to those in the database. We found two overlapping genes from
the univariate gene list (TTN and CCL14) that were included in
dbPEC. We also found three overlapping genes from the layered

network of Cluster A (FN1, KIF2A, VCAM1). By over
representation analysis, Cluster A is significantly enriched for
genes previously shown to be associated with preeclampsia in
dbPEC (p < 0.0033).

DISCUSSION

Preeclampsia is a life-threatening, multi-system hypertensive
disorder of pregnancy, which complicates up to 15% of US
deliveries (Chappell and Morgan, 2006; Valenzuela et al., 2012;
Bornstein, 2020; Steinthorsdottir et al., 2020). The incidence is
increasing (Bornstein, 2020). It is recognized as a leading cause of
maternal and fetal morbidity and mortality worldwide
(Valenzuela et al., 2012). Preeclampsia is characterized by
varying degrees of maternal symptoms including elevated
blood pressure, proteinuria and fetal growth restriction
(Jebbink et al., 2012). Many clinicians believe that
preeclampsia, severe preeclampsia, and early vs late
preeclampsia are different disorders (Carreiras et al., 2002;
Raymond and Peterson, 2011; American College of et al.,
2013). Previously, using bioinformatic methods, we showed
that there are discrete gene sets associated with these different
phenotypes of preeclampsia (Triche et al., 2014).

We performed whole exome sequencing on women with
idiopathic early-onset preeclampsia with severe features and
singleton births <34 weeks’ gestation and compared them to
term controls with no family history of preeclampsia. We
developed Proteinarium, a novel multi-sample PPI analysis and
visualization tool, to identify clusters of patients with shared
protein protein interaction networks (Armanious et al., 2020).
Unlike other tools which use the differentially expressed genes or

TABLE 2 | Pathogenic, nominally significant (based on genotype testing, p < 0.05) gene variants identified by univariate analysis. Genomic positions are based on Human
Feb. 2009 (GRCh37/hg19) Assembly. p value represents the genotype testing.

Chr Pos Gene HGNC ID SNP Polyphen2_HDIV SIFT CADD MAF cases
(in the
cohort)

MAF controls
(in the
cohort)>

p
value

1 97,770,920 DPYD 3012 rs1801160 0.998 0 23.5 0.010 0.049 0.032
1 1,04,117,921 AMY2B 478 rs140978983 1 0 26.1 0 0.021 0.035
1 109,446,750 GPSM2 29501 rs61754640 0.994 0.02 19.3 0.029 0.004 0.022
1 226,125,385 LEFTY2 3122 rs2295418 1 0 16.6 0.024 0.003 0.022
2 69,177,269 GKN2 24588 rs62133344 1 0 18.5 0.035 0.011 0.036
2 70,504,399 PCYOX1 20588 rs34041544 1 0.01 26.4 0.014 0 0.030
2 179,486,345 TTN 12403 rs114331773 1 0 15.7 0 0.024 0.017
2 179,666,982 TTN 12403 rs35683768 0.999 0 15.7 0.024 0.003 0.022
6 76,024,704 FILIP1 21015 rs62415695 1 0.01 15.4 0 0.028 0.009
6 84,904,604 CEP162 21107 rs17790493 1 0 15.9 0 0.025 0.024
7 103,130,222 RELN 9957 rs73714410 0.972 0.02 27.9 0 0.021 0.034
12 124,221,796 ATP6V0A2 18481 rs74922060 1 0.03 23.0 0 0.028 0.010
13 113,750,905 MCF2L 14576 rs140657264 0.999 0 26.6 0 0.024 0.024
16 29,825,022 PRRT2 30500 rs76335820 0.995 0.02 18.4 0.014 0 0.043
17 34,311,387 CCL14 10612 rs16971802 0.974 0.02 16.2 0.011 0.046 0.047
17 37,321,347 ARL5C 31111 rs9912267 1 0 18.6 0.014 0 0.028
18 28,604,374 DSC3 3037 rs35630063 1 0 21.1 0 0.028 0.021
19 56,249,615 NLRP9 22941 rs80009430 1 0 16.0 0.017 0 0.012
20 3,641,868 GFRA4 13821 rs146579049 1 0 18.3 0.017 0 0.017
20 36,954,724 BPI 1095 rs5743523 0.998 0.02 15.5 0.024 0 0.008
22 31,494,813 SMTN 11126 rs80055673 1 0.03 18.7 0.017 0 0.011
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the phenotype associated variants to build a single network for all
samples, or clustering models based solely on gene expression,
Proteinarium builds individual networks for each patient based on
the STRING database. The similarities between individual PPI
networks are then evaluated using a distance metric for clustering
the samples. We identified a single, significant, large cluster of
patients with a predominance of cases with early-onset, severe
features of preeclampsia. We also identified a single control-
dominated cluster. The separation test of the unique genes from
case and control dominated clusters confirmed that the two
subnetworks forming clusters A and B exist in the different
regions of the interactome. These results support our hypothesis
that the genetic architecture of complex diseases is characterized by
clusters of patients that have variants in shared gene
networks and provide insights into the genetics of severe
preeclampsia.

FIGURE 2 | (A) Dendrogram shows statistically significant (p < 0.05) clusters of patients. Case dominated cluster (Cluster A) and control dominated cluster (Cluster
B) are presented by dashed lines. Cases are represented in red and controls are represented in blue color. (B) Layered network graphs for the case dominated cluster A
are presented. 13 unique genes of cluster A are in red color. (C) Layered network graphs for the control dominated cluster B are presented. 11 unique genes of cluster B
are in blue color.

TABLE 3 | Unique genes from case dominated cluster (Cluster A). *Genes
alphabetically ordered.

Gene name Gene* HGNC id Cluster Imputed

Apolipoprotein A5 APOA5 17288 A No
ADP ribosylation factor 4 ARF4 655 A Yes
Cell division cycle 42 CDC42 1736 A Yes
Fibronectin 1 FN1 3778 A Yes
Kinesin family member 1A KIF1A 888 A No
Kinesin family member 2A KIF2A 6318 A Yes
Kinesin family member 5A KIF5A 6323 A Yes
Kinesin family member 5B KIF5B 6324 A Yes
Laminin subunit beta 2 LAMB2 6487 A No
Protein tyrosine kinase 2 PTK2 9611 A Yes
Quiescin sulfhydryl oxidase 1 QSOX1 9756 A Yes
Rac family small gtpase 1 RAC1 9801 A Yes
Vascular cell adhesion molecule 1 VCAM1 12663 A Yes
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Several of the unique genes from the case dominated network
have very plausible mechanistic connections to preeclampsia.
Laminin β2 (LAMB2) is a glomerular basement membrane
(GBM) component, required for proper functioning of the
glomerular filtration barrier. It has a role in proteinuria
(Zhang and Huang, 2012) and serum laminin levels in
preeclamptic patients are significantly higher than those in
normal pregnancy (Furuhashi et al., 1993). Hypoxia-induced
upregulation of Quiescin Sulfhydryl oxidase 1 (QSOX1) and
an elevation in intracellular H2O2 leads to increased apoptosis
in the placentae of pregnancies complicated by preeclampsia (Li
et al., 2019). QSOX1 protein is found in circulating extracellular
vesicles of both preeclampsia and healthy pregnant women (Tan
et al., 2014). Fibronectin 1 (FN1) might promote the development
of preeclampsia by modulating differentiation of human
extravillous trophoblasts, as well as formation of focal
adhesions (Brubaker et al., 1992; Auer et al., 2010; Zhao et al.,
2017). Vascular Cell Adhesion Molecule 1 (VCAM1) is involved
in cellular adhesion and serum concentrations of sVCAM-1 are
significantly elevated in both mild and severe preeclampsia (Kim
et al., 2004). Invasion of maternal decidua and uterine spiral
arteries by extravillous trophoblasts is required for establishment
of normal placenta. Human trophoblast migration requires Rac
Family Small gtpase 1 (RAC1) and Cell Division Cycle 42
(CDC42) (Grewal et al., 2008). Lower levels were found in
preeclampsia samples than in normal term pregnancy samples,
and decline significantly in severe preeclampsia (Fan et al., 2016).
Protein tyrosine kinase 2 (PTK2) (focal adhesion kinase) is
differentially expressed in preeclampsia and reported as among
the promising biomarkers for preeclampsia (Sado et al., 2011). In
the case-dominated subnetwork we observed Kinesin Family
Member 2A (KIF2A) which is upregulated in the preeclamptic
placenta (Kobayashi, 2015). Up-regulated genes in the
preeclampsia placenta have been shown to be associated with
the regulation of diverse cellular processes, including matrix
degradation, trophoblast cell invasion, migration and
proliferation (Kobayashi, 2015).

There have been several sequencing efforts, including whole
genome, whole exome and targeted sequencing, on an array of
preeclampsia phenotypes from diverse populations (Johnson
et al., 2012; Emmery et al., 2016; Kaartokallio et al., 2016;
Thomsen et al., 2017; Gammill et al., 2018; Hansen et al.,
2018; Soellner et al., 2018; Glotov et al., 2019; Melton et al.,
2019; Steinthorsdottir et al., 2020; Zhang et al., 2020). There is no
consensus among the published results in regards to associated
genes and variants. Since preeclampsia is a complex, polygenic
disease, the lack of a consensus among these univariate
comparisons might be expected in these early-stage studies.
Among the 20 genes identified in our univariate analysis, only
Titin (TTN) was identified in prior studies (Gammill et al., 2018;
Zhang et al., 2020). Protein-altering mutations in TTN have been
identified in patients with cardiomyopathy and women with
preeclampsia are more likely to carry TTN mutations
associated with idiopathic cardiomyopathy and peripartum
cardiomyopathy (Gammill et al., 2018). Additionally, we found
2 genes, Major Histocompatibility Complex, Class II, DQ Alpha 1
(HLA-DQA1) and Inositol 1,4,5-Trisphosphate Receptor Type 1

(ITPR1) that were reported in previous studies of preeclampsia
(Emmery et al., 2016; Hansen et al., 2018). None of these
overlapping genes were among the unique genes identified in
the shared layered network from the case-dominated cluster.
Likewise, no overlapping variants or genes were found in a recent
genome-wide association meta-analysis investigating genetic
predispositions associated with preeclampsia (Steinthorsdottir
et al., 2020).

Our analysis allowed us to identify a cluster of patients with
shared PPI networks associated with severe preeclampsia. Within
the significant cluster, there were unique imputed genes (RAC1,
KIF5B, PTK2, KIF5A, FN1, QSOX1, ARF4, VCAM1, CDC42,
KIF2A) that were not among the top 60 seed genes selected by
genotype testing. Nonetheless, our approach allowed us to
identify these influential genes in the mechanism(s) underlying
preeclampsia that would not otherwise have been identified by
whole genome univariate variant analysis.

We also examined the unique genes in the network of the
control dominated cluster. Proteins in this network are associated
with the ubiquitination process. They may serve a role that
confers resilience against preeclampsia (Fredrickson and
Gardner, 2012; Berryman et al., 2019). Although there are
studies showing a relationship with hypertension -
ubiquitination process and pregnancy, this still needs further
investigation (Fredrickson and Gardner, 2012).

Whole exome sequencing, combined with a novel, multi-
sample network analysis, and careful phenotyping contributed
to our discovery despite the relatively modest size of our study.
Concepts developed from network theory suggest that related
diseases involve proteins in similar neighborhoods of the
interactome (Menche et al., 2015). Based on these concepts,
we hypothesized that the genetic architecture of preeclampsia
is described by subgroups of patients with variants in shared
genes in specific networks and pathways. We identified a
significant subgroup of cases with shared PPI networks
associated with severe preeclampsia. We believe that the
careful phenotyping resulted in the high percentage of subjects
being successfully assigned to significant clusters and the ability to
observe distinct separation between the case and control
dominated clusters. We acknowledge that genetic variation
may not be the sole mechanism for preeclampsia, but rather
epigenetic changes or protein conformational disturbances may
also play a significant role.

While we were not expecting each patient to appear in a
significant cluster and our study included only a modest sample
size, we identified a significant subgroup of patients with shared
PPI networks associated with severe preeclampsia. In order to
leverage the likelihood of genetics discovery, we focused
exclusively on women with severe, early-onset preeclampsia.
Our analysis was restricted to evaluation of genetic variants in
the maternal genome only. Future studies including fetal and/or
paternal data will enhance the likelihood of genetic discovery.

Using our unique network analysis, we were able to identify
subsets of patients with shared networks, thus confirming our
hypothesis about the genetic architecture of preeclampsia. Strict
phenotyping of both cases and controls improved the likelihood
of identifying these otherwise difficult to find genetic associations.
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Our network analysis identified genes which were imputed from
the interactome and these imputed genes provide insights for
severe preeclampsia that may otherwise have not been identified.
As such, these are important candidates to include in meta-
analyses of genetic associations with preeclampsia. These results
provide promise to further our understanding the mechanism
underlying complex diseases like preeclampsia.
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