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Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a leading
infectious disease killer worldwide with 1.4 million TB deaths in 2019. While the majority
of infected population maintain an active control of the bacteria, a subset develops active
disease leading to mortality. Effective T cell responses are critical to TB immunity with
CD4+ and CD8+ T cells being key players of defense. These early cellular responses to TB
infection have not yet been studied in-depth in either humans or preclinical animal models.
Characterizing early T cell responses in a physiologically relevant preclinical model can
provide valuable understanding of the factors that control disease development. We
studied Mtb-specific T cell responses in the lung compartment of rhesus macaques
infected with either a low- or a high-dose of Mtb CDC1551 via aerosol. Relative to
baseline, significantly higher Mtb-specific CD4+IFN-g+ and TNF-a+ T cell responses were
observed in the BAL of low dose infected macaques as early as week 1 post TB infection.
The IFN-g and TNF-a response was delayed to week 3 post infection inMtb-specific CD4+

and CD8+T cells in the high dose group. The manifestation of earlier T cell responses in the
group exposed to the lower Mtb dose suggested a critical role of these cytokines in the
antimycobacterial immune cascade, and specifically in the granuloma formation to contain
the bacteria. However, a similar increase was not reflected in the CD4+ and CD8+IL-17+ T
cells at week 1 post infection in the low dose group. This could be attributed to either a
suppression of the IL-17 response or a lack of induction at this early stage of infection. On
the contrary, there was a significantly higher IL-17+ response in Mtb-specific CD4+ and
CD8+T cells at week 3 in the high dose group. The results clearly demonstrate an early
differentiation in the immunity following low dose and high dose infection, largely
represented by differences in the IFN-g and TNF-a response by Mtb-specific T cells in
the BAL. This early response to antigen expression by the bacteria could be critical for
both bacterial growth control and bacterial containment.
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INTRODUCTION

Tuberculosis (TB) remains the leading cause of human death
from a single infectious agent with a total of 1.4 million deaths in
2019 (1). The outcome of a pulmonary TB infection can either be
complete clearance of the pathogen to active tuberculosis (ATB)
disease. The percentage of the infected population developing the
clinical symptoms of TB remains small with a much higher
percentage being able to control the naturally acquired infections
(2, 3). This latently infected population largely remains
asymptomatic and in some cases even clear the infections (4).
Generation of robust T cell responses is critical in the immunity
to TB and are responsible for a dynamic balance between the
host and pathogen in a latent TB infection (LTBI) (5). While co-
morbidities, such as, with HIV is a known factor for the
reactivation of LTBI (6), the underlying causes for the
susceptibility to the active disease remains unknown. Antigen
specific responses to TB infection, including novel features of T
cell differentiation have revealed pathways that facilitate the
immune control of infection (7). The production of
inflammatory cytokines such as gamma interferon (IFN-g) and
tumor necrosis factor alpha (TNF-a) are critical in the
protection against long-term rampant Mtb growth and loss of
these factors leads to heightened Mycobacterium tuberculosis
(Mtb) replication and death (8, 9). Indeed, stimulation with Mtb
antigens Early Secretory Antigenic Target (ESAT)-6 and Culture
Filtrate Protein (CFP)-10 induces IFN-g and TNF-a production
by the CD4+ and CD8+T cells that may provide tools to study the
role of these early responses in protection from a fatal infection.

Characterizing the phenotype and function of these early
T cell responses could provide a critical tool to distinguishing
latent from active TB disease in future experiments wherein, the
macaques would be followed for a longer duration of time (10).
The aim of this study is to characterize the early T cell responses
in a nonhuman primate (NHP) model of TB. The model
recapitulates humans, wherein, the infectious doses differ
between individuals. There have been reports of differential
impact on functional CD4+ and CD8+ T cell responses by the
disease stage and bacterial burden (11–13). However, there is a
paucity of data on the distinguished early adaptive response
signatures in a biologically and physiologically relevant animal
model. The NHP model of TB serves as an excellent model
recapitulating the spectrum of immune responses observed in
humans, including the pathology (14, 15). Manipulating the
bacteria in a macaque model of TB infection presents a
valuable tool to dissect the local immune responses in a TB
predominant microenvironment that is not possible in any other
animal model (16–18). We hypothesized that measuring the TB-
specific T cell responses early in a rhesus macaque model of TB
infection could provide a better understanding of the early
responses and their potential role in disease progression.
Hence, we performed high parameter flow cytometry on
stimulated bronchoalveolar lavage (BAL) cells from macaques
infected via aerosol, with a low dose and high dose of Mtb, to
measure key cytokines in TB infection, IFN-g, TNF-a and IL-17
produced by CD4+ and CD8+ T cells in response to ESAT-6/
CFP-10 and Mtb Cell Wall Fraction (Mtb CW). This enabled a
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comprehensive elucidation of the differences in the early
responses and provided a potential tool to delineate the disease
progression in long-term studies.
MATERIALS AND METHODS

Study Approval
All infected animals were housed under Animal Biosafety Level 3
facilities at the Southwest National Primate Research Center,
where they were treated according to the standards
recommended by AAALAC International and the NIH guide
for the Care and Use of Laboratory Animals. The study
procedures were approved by the Animal Care and Use
Committee of the Texas Biomedical Research Institute.

Animal Infections
The study design is outlined in Figure 1. We infected 2 groups of
specific pathogen free adult Indian rhesus macaques from the
SNPRC colony with Mtb CDC1551 via aerosol. The first group
(n=12) had a low dose of approximately 10 CFU deposited in the
lungs while the second group (n=6) had a higher dose of 50 CFU
deposited in the lungs. All higher dose infected animals had a
positive tuberculin skin test 3 weeks after exposure, while the low
dose infected group were TST positive at 5 weeks, confirming
infection. The animals were monitored for C-Reactive Protein
(CRP) values (an acute phase protein and inflammatory marker),
body temperatures and body weights.

Antigen Stimulations and Flow Cytometry
The freshly collected BAL cells were stimulated ex vivo withMtb-
specific antigens, ESAT-6/CFP-10 and Mtb Cell Wall Fraction
(BEI Resources, 10 mg/mL) for a total of 16 h. Brefeldin A
(0.5 mg/mL, SIGMA) was added 2 h after the onset of
stimulation. After stimulation, the cells were stained with
LIVE/DEAD fixable Near-IR stain (ThermoFisher) and stained
subsequently with the surface antibodies: CD4-PerCP-Cy5.5
(L200, BD Biosciences), CD8-APC (RPA, T8, BD Biosciences),
CD3-AlexaFlour 700 (SP34 2, BD Biosciences), CD95-BV421
(DX2, BD Biosciences), CD28-PECy7 (CD28.2, BD Biosciences)
and CD45-BUV395 (D058 1283, BD Biosciences). Cells were
then fixed, permeabilized and stained with intracellular
antibodies: IFNg-APC-Cy7 (B27, Biolegend), IL-17-BV605
(BL168, Biolegend) and TNF-a-BV650 (MAb11, Biolegend).
Cells were washed, suspended in BD stabilizing fixative buffer
and acquired on BD Symphony flow cytometer. Analysis was
performed using FlowJo (v10.6.1) using previously published
gating strategy (18–20) (Figures S1–S3).

Statistical Analysis
Statistical analysis was performed using GraphPad Prism
(version 8.4.1). Significance was determined using Mann
Whitney U test in GraphPad Prism v8.4.1. A P value of <0.05
was considered as statistically significant. *P < 0.05; **P <0.01;
***P < 0.001; ****P < 0.0001. Data are represented as median
with interquartile range.
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RESULTS

Clinical Parameters
Upon infection with the low dose of Mtb, did not demonstrate
the clinical signs of disease. These animals maintained low CRP
values with not more than 5-7% body weight loss or fever
(Figure 2A). Viable bacilli were not readily detected in the
BAL of these animals (data not shown). On the contrary, the
animals that received a high dose of 50 CFU, displayed higher
than baseline CRP values (> 5 µg/mL) as early as 3 weeks post
infection. No significant changes were observed in the body
weight (Figure 2B) and temperature (Figure 2C) of this group
up till week 3 of infection.

Early Mtb-Specific CD4+ IFN-g and TNF-a
Response in Low Dose Infected Macaques
BAL samples were collected from study macaques at pre-
infection, week 1 and week 3 post infection using standard
operating procedures by the veterinarian. The single cells were
Frontiers in Immunology | www.frontiersin.org 3
prepared as per the lab standardized protocol (21). All Mtb-
specific responses are background corrected. Upon stimulation
with ESAT-6/CFP-10, there was a delayed IFN-g response in the
Mtb-specific CD4+T cells in the high dose compared to the low
dose group (Figure 3A). This difference was however, not
observed in the Mtb-specific CD8+T cells (Figure 3B). While
the low dose infection resulted in a significant increase in the
percentage ofMtb-specific CD4+IFN-g+T cells as early as week 1
post-infection, this response was not observed in the high dose
group till 3 weeks post infection (Figure 3A). The early response
observed in the low dose infection decreased from week 1 to
week 3 post-infection whereas the response spiked in the high
dose infection group at week 3 post-infection (Figure 3A).

Similarly, there was a delayed increase in the percentage of
Mtb-specific CD4+TNF-a+T cells in the high dose infection
group with a higher percentage of this subset observed at week
3 post-infection (Figure 3C). On the contrary, the low dose
infected macaques demonstrated an early TNF-a response
in the Mtb-specific CD4+ T cells at weeks 1 which decreased at
FIGURE 1 | Schematic of the study design. We infected 2 groups of adult Indian rhesus macaques with Mtb CDC1551 via aerosol. The first group (n = 12) had a
low dose of approximately 10 CFU deposited in the lungs while the second group (n = 6) had a higher dose of 50 CFU deposited in the lungs. The BAL cells were
collected at pre-infection, wk 1 and 3 post-infection. They were stimulated ex vivo with Mtb-specific antigens, ESAT-6/CFP-10 and Mtb Cell Wall Fraction. After
stimulation, the cells were stained with the surface antibodies for flow cytometry and acquired on BD Symphony. Analysis was performed using FlowJo (v10.6.1).
A B C

FIGURE 2 | Clinical parameters. (A) Serum CRP values (µg/mL) (B) percentage weight change (kg) and (C) percentage body temperature change (°F) of low dose
(n = 12) and high dose (n = 6) Mtb infected rhesus macaques at baseline, wk 1 and 3 post-infection. The data are expressed as median with interquartile range.
**P < 0.01; ns, non significant. Significance was determined using Mann Whitney U test in GraphPad Prism v8.4.1.
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week 3 post-infection (Figure 3C). CD4+TNF-a+T cells were
significantly higher in the low dose group than the high
dose group at week 1 post-infection. Similarly, Mtb-specific
CD8+TNF-a+T cells exhibited a significant increase in the high
dose group at 3 weeks post-infection compared to the low dose
infection group (Figure 3D). The low dose infection group
maintained a consistent increase in the CD8+TNF-a+T cells
at 1- and 3-weeks post-infection compared to the pre-infection
levels (Figure 3D).

When BAL cells were stimulated with Mtb CW, the
differences observed between low dose and high dose were
similar to those elicited with ESAT-6/CFP-10. Thus, the
percentages of CD4+IFN-g+ (Figure 4A) and CD4+ TNF-a+T
cells (Figure 4B) were significantly lower in the high dose group
compared to the low dose group at week 1 post-infection. No
significant difference was seen in the IFN-g response in the Mtb
CW-specific CD4+T cells between high dose and low dose
infection group at week 3 post-infection (Figure 4A).
Similarly, a delayed IFN-g response in the CD8+T cells in
response to the Mtb CW was observed with a significant
increase in the high dose infection group compared to the low
dose group at 3 weeks post-infection (Figure 4C). As with the
gamma response, the Mtb-specific CD4+TNF- a+T cells
(Figure 4B) and CD8+ TNF-a+T cells (Figure 4D) elicited by
Mtb CW stimulation at 3 weeks post-infection was significantly
higher in the high dose group compared to the low dose group.
Frontiers in Immunology | www.frontiersin.org 4
Thus, an early and consistent TNF-a response was observed in
the low dose group while a delayed but a more robust TNF-a
response in both Mtb-specific CD4+ and CD8+T cells was
observed in the high infection dose. No significant changes
were observed in the unstimulated samples between the two
doses (Figures S4A, B, D, E).

In addition to the percentage of CD4+ and CD8+ T cells
positive for cytokine production, we also gated for the percentage
of Mtb-specific T cells expressing surface phenotypic markers
consistent with central memory T cells (Tcm CD28+CD95+) and
effector memory T cells (Tem CD28-CD95+) in the total Mtb-
specific CD4 and CD8 population in low dose infected animals
(Figure S5). We observed a higher central memory (>75%)
CD4+ T cells in response to stimulation, both in the low dose
(Figures S5A, B) and high dose (Figure S6) infection. In
comparison, the effector memory response was less than 20%
at pre-infection, wks 1 and 3 post-infection in both the doses
(Figures S5A, B and S6A, B). There were no significant
differences in the percentages of Tcm and Tem from baseline
to wk 1 and from wk 1 to wk 3 post-infection in response to
stimulation with ESAT-6/CFP-10 and Mtb CW in the both the
doses (Figures S5A, B and S6A, B). Comparable Mtb-specific
central (~40%) and effector memory (~50%) CD8+ T cells were
observed in both the doses with no significant changes from pre-
infection to wk 1 and from wk 1 to wk 3 post-infection
(Figures S5C, D and S6C, D).
A B

C D

FIGURE 3 | Early ESAT-6/CFP-10-specific responses in the BAL. (A) percentage of CD4+IFN-g+ T cells, (B) percentage of CD8+IFN-g+ T cells, (C) percentage of
CD4+TNF-a+ T cells and (D) percentage of CD8+ TNF-a+ T cells in response to ESAT/6/CFP-10 stimulation in low dose (n = 12) and high dose (n = 6) infection.
The data are expressed as median with interquartile range. *P < 0.05; **P < 0.01; ****P < 0.0001; ns, non significant. Significance was determined using Mann
Whitney U test in GraphPad Prism v8.4.1.
August 2021 | Volume 12 | Article 706723
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Controlled Early Inflammatory Response in
Low Dose Mtb Infection
There was a significant increase in the percentage ofMtb-specific
CD4+ IL-17+T cells in the high dose infected group at week 3
compared to the low dose infected group in response to both,
ESAT-6/CFP-10 andMtb CW antigens (Figures 5A, B). The low
dose infected group demonstrated a consistent measure of the
CD4+ IL-17+T cells from week 1 to week 3 post-infection with no
significant changes compared to the pre-infection levels
(Figures 5A, B). Similarly, the percentage of IL-17+ CD8+T
cells in response toMtb CW stimulation was significantly higher
in the high dose infection group compared to the low dose
infection group at 3 weeks post-infection (Figures 5C, D). No
significant changes were observed in the unstimulated samples
between the two doses (Figures S4C, F).
DISCUSSION

Our results clearly outline the differences in the early Mtb-specific
T cells responses in a low dose versus higher dose infection in a
rhesus macaque model of TB. The macaques exposed to a low-dose
controlled Mtb infection were associated with an early IFN-g and
TNF-a response in Mtb-specific CD4+ T cells. A high dose
infection caused a significantly higher TNF-a response in the
CD8+ T cells at 3 weeks post-infection but no noticeable changes in
Frontiers in Immunology | www.frontiersin.org 5
the IFN-g response this early in infection. TNF-a secreting Mtb-
specific CD4+ T cells are a promising candidate to differentiate
between active and latent TB infections (10, 22). In the study by
Harari et al. (22), significant increase in the proportions of Mtb-
specific CD4+T cells expressing TNF-a was seen in patients with
active disease and proposed to be the strongest predictor of
diagnosis of active disease. Indeed, commensurate with these
findings, we observed a significantly higher TNF-a response in
the Mtb-specific CD8+ T cells in the group infected with a higher
number of bacilli. The difference in our study was that here we
compared two different doses of infection of Mtb in a biologically
relevant animal model. Though the difference between TNF-a
expression by CD4+ T cells was not significantly different between
low dose and high dose infection groups at week 3, there was a
consistent increase in the TNF-a expression from pre-infection to
week 3 in the high dose group. Hence, while the low dose elicits an
earlier TNF-a response that then remains at similar levels up till 3
weeks post infection, the same response is slower to develop in the
higher dose but more robust as the infection progresses. Previous
studies have shown the detection of Mtb-specific effector CD4+ T
cells expressing IFN-g and/or TNF-a can distinguish between a
latent TB and active TB infection (12, 23). A recent study
demonstrated that increased amounts of TNF-a in an active TB
infection subverted the immune-surveillance by perturbing
dendritic cell mediated antigen transportation to the lymph node
allowing bacterial reserve (24). Further studies on phenotyping the
A B

C D

FIGURE 4 | Early Mtb CW-specific responses in the BAL. (A) percentage of CD4+IFN-g+ T cells, (B) percentage of CD4+TNF-a+ T cells, (C) percentage of
CD8+ IFN-g+ T cells and (D) percentage of CD8+ TNF-a+ T cells in response to Mtb CW stimulation in low dose (n = 12) and high dose (n = 6) infection. The data
are expressed as median with interquartile range. *P < 0.05; **P < 0.01; ****P < 0.0001; ns, non significant. Significance was determined using Mann Whitney U test
in GraphPad Prism v8.4.1.
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subsets in our study to distinguish the effector and memory
functions could provide a highly discriminatory readout.

IFN-g producing CD4+T cells are the cornerstone of
protective immunity in pulmonary Mtb infections (25). In the
two doses studied here, the difference in the CD4+IFN-g+

response to Mtb antigens, ESAT-6/CFP-10 and Mtb CW, was
the highest at 1-week post-infection and diminished by week 3
post-infection. IFN-g deficient mice studies have demonstrated a
lack of survival even in low-doseMtb infections with progression
to active disease (26, 27). This early gamma response in the low
dose infection alone could be representative of the protective role
of CD4+ T lymphocytes in mediating macrophage activation via
iNOS expression (27, 28). IFN-g is known to promote iNOS
expression in macrophages that in turn serves to recruit other
reactive nitrogen intermediates (RNI) (29). Not only is this early
gamma response critical for TB control, it also plays a role in the
long-term survival of the host by working synergistically with the
early TNF-a responses and thus contributing to the granuloma
formation that controls the disease progression (30).
Interestingly, we observed a significantly higher CD8+IFN-g+ T
cells in the high dose group in response to stimulation with Mtb
CW at 3 weeks post-infection, but did not see a similar response
to ESAT-6/CFP-10 stimulation. While the role of CD4+T cells in
IFN-g production in TB is well documented, the role of CD8+ T
cells in the IFN-g production in human TB is less well studied. A
part of the role of the CD8+ T cells has been elucidated in mice
experiments, wherein, mice deficient in CD8+ T cells were unable
to control Mtb infection (31). Additionally, CD8+ T cells have
Frontiers in Immunology | www.frontiersin.org 6
been shown to undergo phenotypic and functional changes,
comparable to CD4+ T cells during pulmonary Mtb infection
(32).Mtb-specific CD8+ T cells have demonstrated differences in
prevalence, frequency, phenotypic and functional profiles in
latent versus active TB disease (33). Similar to our findings, a
higher Mtb-specific CD8+ T cells frequency (60%) was observed
in the TB patients compared to 15% in LTBI patients. These
CD8+ T cell responses were directed against ESAT-6/CFP-10 in
vitro stimulation comparable to our study in NHP model. Also,
the IFN-g response in theMtb-specific CD8+ T cells was not very
different between active and LTBI cases like our study, in which
we did not observe a significant difference in the CD8+IFN-g+ T
cells in the low dose and high dose when stimulated with
ESAT-6/CFP-10.

While Th1 cells plays a distinct role in rendering protection in
TB via production of IFN-g and activating antimicrobial action
in macrophages (34), Th17 cells implements neutrophilic
inflammation, tissue damage and TB pathology (35). The data
on the role of Th17 cells in TB remains controversial with some
groups reporting a higher frequency correlating with TB
protection in latent patients (36) while others reported lower
expression in latent patients and increased frequencies in active
or multi-drug resistant patients (37–39). Some are of the verdict
that Th17 cells are minimally expressed in TB and do not have a
significant role to play in the protection and/or pathology of TB
in humans (40, 41). In our study, we observed a significant
increase in the IL-17 expressing Mtb-specific CD4+ and CD8+ T
cells in the high dose infection compared to the low dose at
A B

C D

FIGURE 5 | Early Mtb-specific IL-17 responses in the BAL. (A) percentage of CD4+IL-17+ T cells in response to ESAT/6/CFP-10 stimulation, (B) percentage of
CD4+IL-17+ T cells in response to Mtb CW stimulation, (C) percentage of CD8+ IL-17+ T cells in response to ESAT/6/CFP-10 stimulation and (D) percentage of
CD8+ IL-17+ T cells in response to Mtb CW stimulation in low dose (n = 12) and high dose (n = 6) infection. The data are expressed as median with interquartile
range. *P < 0.05; **P <0.01; ***P < 0.001; ****P < 0.0001; ns, non significant. Significance was determined using Mann Whitney U test in GraphPad Prism v8.4.1.
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3 weeks post-infection. Mtb infection in humans induces IFN-g
and IL-17 and the main source is the CD4+IFN-g+IL-17+ T cells
(38). Moreover, the antigen-expanded CD4+IL-17+ T cells
correlates with the clinical parameters associated with disease
severity. Given these findings, the expansion of Mtb-specific
CD4+IFN-g+IL-17+ T cells has been proposed as a biomarker
for prediction of clinical outcome in active TB patients (38).
T cells from MDR-TB patients has been shown to express high
levels of IL-17 via the strong TLR-2 dependent TGFb production
by antigen-presenting cells (37). Mouse studies mimicking
human vaccination post Mtb-exposure verified the presence of
increased IL-17 which correlated to lung tissue damage (42).
Conversely, protective role of Th17 responses have also been
reported in the lung tissue following BCG vaccination (43, 44).
However, it is to be noted that it is feasible to observe an
increased bacterial burden with a higher initial inoculum that
could impact the disease kinetics. While this study aims to
identify the very early differences in the adaptive response to
Mtb, it will be critical to follow the kinetics over a longer duration
in future studies to ascertain the true role of IL-17 in this model.
Overall, we have demonstrated a distinct phenotype of Mtb-
specific CD4+ and CD8+T cells following in vitro stimulation
with ESAT-6/CFP-10 and Mtb CW early in TB infection in a
biologically and physiologically relevant animal model. Further,
in depth phenotyping of these subsets into tissue resident
memory cells at later time point in future studies would prove
instrumental in improving our understanding of these early
T cells responses and their correlation to disease progression.
DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material. Further inquiries can be
directed to the corresponding author.
ETHICS STATEMENT

The animal study was reviewed and approved by Texas
Biomedical Research Institute IACUC.
AUTHOR CONTRIBUTIONS

RS, DS, JR, and DK designed the study. RS and DS executed the
experiments and analyzed the data. RS and DK wrote the
manuscript. All authors contributed to the article and
approved the submitted version.
FUNDING

This work was primarily supported by NIH grants R01AI111943
and R01AI123047 (to DK and JR), 1 K01 OD031898-01 (to RS)
Frontiers in Immunology | www.frontiersin.org 7
with additional support from NIH grants R01AI111914,
R01AI134240, R01AI138587, and U19AI111211 and institutional
grants from the Office of the Director, NIH P51OD011133 (to
SNPRC), P30 RR00165 and P51OD011132 (to YNPRC), and P30
AI050409 [Emory University Center for AIDS Research (CFAR)].
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fimmu.2021.
706723/full#supplementary-material
Supplementary Figure 1 | Gating strategy for Mtb-specific responses. The cells
are gated on CD45 and Live/Dead to select live cells and perform red blood cell
(RBC) discrimination. This is followed by singlet gating on SSC and FSC -Area,
width and Height. Total CD4 and CD8 is then gated on total CD3 population.
IFN-g+, TNF-a+ and IL-17+ CD4+ and CD8+ T cells are then gated on total CD4
and CD8 population.
Supplementary Figure 2 | Gating strategy for Mtb-specific central memory and
effector memory T cell responses. The cells are gated on CD45 and Live/Dead to
select live cells and perform red blood cell (RBC) discrimination. This is followed by
singlet gating on SSC and FSC -Area, width and Height. Total CD4 and CD8 is then
gated on total CD3 population. Central (CD28+CD95+) and effector (CD28-CD95+)
memory T cells are then gated on total CD4 and CD8 population in BAL
and PBMCs.
Supplementary Figure 3 | Gating strategy forMtb-specific cytokine positive cells
in unstimulated, ESAT-6/CFP-10 stimulated and Mtb CW stimulated BAL samples.
(A) CD4+IFN-g+ T cells (B) CD8+ IFN-g+ T cells (C) CD4+IL-17+T cells (D) CD8+
IL-17+T cells (E) CD4+TNF-a+T cells and (F) CD8+TNF-a+T cells.
Supplementary Figure 4 | Unstimulated responses in BAL of low dose
(n = 12) and high dose (n = 6) infected macaques. (A) percentage of CD4+IFN-g+
T cells, (B) percentage of CD4+TNF-a+ T cells, (C) percentage of CD4+IL-17+ T
cells, (D) percentage of CD8+ IFN-g+ T cells, (E) percentage of CD8+TNF-a+ T
cells, (F) percentage of CD8+IL-17+ T cells. The data are expressed as median with
interquartile range. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. Significance
was determined using Mann Whitney U test in GraphPad Prism v8.4.1.
Supplementary Figure 5 | Total CD4+ central and Effector memory T cell
response in BAL of low dose infection (n = 12). (A) CD4+Tcm and Tem in response
to ESAT-6/CFP-10 stimulation, (B) CD4+Tcm and Tem in response to Mtb CW
stimulation, (C) CD8+ Tcm and Tem in response to ESAT-6/CFP-10 stimulation.
The data are expressed as median with interquartile range. *P < 0.05; **P < 0.01;
***P < 0.001; ****P < 0.0001. Significance was determined using Mann Whitney U
test in GraphPad Prism v8.4.1.
Supplementary Figure 6 | Total CD4+ central and Effector memory T cell
response in BAL of high dose infection (n = 12). (A) CD4+Tcm and Tem in response
to ESAT-6/CFP-10 stimulation, (B) CD4+Tcm and Tem in response to Mtb CW
stimulation, (C) CD8+ Tcm and Tem in response to ESAT-6/CFP-10 stimulation
and (D) CD8+ Tcm and Tem in response to Mtb CW stimulation. The data are
expressed as median with interquartile range. *P < 0.05; **P < 0.01; ***P < 0.001;
****P < 0.0001. Significance was determined using Mann Whitney U test in
GraphPad Prism v8.4.1.
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