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Abstract: Nonmelanoma skin cancer (NMSC) is the most prevalent cancer in  

light-skinned populations, and includes mainly Basal Cell Carcinomas (BCC), representing 

around 75% of NMSC and Squamous Cell Carcinomas (SCC). The incidence of these 

tumors is continuously growing. It was found that the overall number of procedures for 

NMSC in US rose by 76%, from 1,158,298 in 1992 to 2,048,517 in 2006. Although 

mortality from NMSC tends to be very low, clearly the morbidity related to these skin 

cancers is very high. Treatment options for NMSC include both surgical and nonsurgical 

interventions. Surgery was considered the gold standard therapy, however, advancements 

in the knowledge of pathogenic mechanisms of NMSCs led to the identification of key 

targets for drug intervention and to the consequent development of several targeted 

therapies. These represent the future in treatment of these common forms of cancer 

ensuring a high cure rate, preservation of the maximal amount of normal surrounding 

tissue and optimal cosmetic outcome. Here, we will review recent advancements in NMSC 

targeted therapies focusing on BCC and SCC. 

Keywords: basal cell carcinoma (BCC); squamous cell carcinoma (SCC); EGFR; SMO 

inhibitor; COX2 

 

1. Introduction  

In the USA, there are more new cases of skin cancer each year compared with the combined 

incidence of cancers of breast, prostate, lung, and colon cancers, with more than 1.5 million skin 
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cancers diagnosed yearly in the United States. One in five Americans will develop skin cancer in the 

course of their lifetime. These and other epidemiologic findings strongly justify the development of 

novel, especially noninvasive therapeutic approaches for skin malignancies. 

Skin cancer, including malignant melanoma, basal cell carcinoma (BCC), and squamous cell 

carcinoma (SCC), is the most common human cancer and represents a major public health concern due 

to its high incidence and the medical costs, mortality, and cosmetic associated deformities. 

 In this paper we will review new therapeutic pharmacological approaches for nonmelanoma skin 

cancer (NMSC) that are based on molecular evidences accumulated in the past years (Figure 1). In 

particular, we will focus on inhibitors of critical molecular pathways involved in the development of 

BCC (Hedgehog-SMO/PATCHED-Gli) and cutaneous SCC (cSCC)(EGFR/ERBB2-MAPK). 

Figure 1. Schematic representation of molecular pathways targeted by drugs used in 

NMSC treatment.  

 

2. Results and Discussion  

2.1. COX-2 Inhibitors 

Cyclooxygenase (COX), the rate-limiting enzyme for the production of prostaglandins (PG) from 

arachidonic acid, exists in at least two isoforms, COX-1 and COX-2. COX-1 is constitutively 

expressed while COX-2 expression is induced by inflammatory stimuli, such as ultraviolet light 

exposure. Increasing evidence is pointing to the role of COX-2 and its products, notably prostaglandin 
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E2, in the development of NMSC. Overexpression of COX-2 has been revealed in various neoplasms 

ranging from colorectal cancer to breast cancer, as well as skin cancer [1,2]. 

Normal skin has minimal levels of COX-2 and PGE-2, with levels of COX-2 increasing in 

correlation with the severity of skin tumors from premalignant actinic keratosis to squamous cell 

carcinoma [2,3]. Studies have shown positive results with NSAIDs for the treatment of cancer by 

inhibiting angiogenesis and stimulating apoptosis mainly via COX-2 inhibition [3]. However, the 

nonspecific inhibition of COX-1 and COX-2 by NSAIDs leads to side effects associated 

predominantly with COX-1 inhibition, such as gastrointestinal ulcers and/or decreased renal function. 

Selective inhibition of COX-2 is preferable to non-selective inhibition, because it selectively 

reduces cancer cell proliferation with minimal damage to the gastrointestinal tract. A specific 

cyclooxygenase-2 (COX-2) inhibitor, celecoxib, has shown potential therapeutic benefit in the 

prevention of cutaneous neoplasia. 

Oral and topical celecoxib have demonstrated a chemopreventative effect in animal studies by 

inhibiting new tumor formation and delaying tumor latency [4,5]. These COX-2 specific inhibitors are 

promising agents in the battle against cutaneous neoplasia. Further double-blinded, randomized, 

placebo-controlled trials in humans are warranted to define the role of celecoxib and other COX-2 

inhibitors in the prevention and treatment of NMSC, as well as their possible side effects. At the 

present moment a randomized phase II trial to determine the effectiveness of celecoxib in preventing 

Basal Cell Carcinoma in Patients with Basal Cell Nevus Syndrome has been completed and a trial on 

the use of Celecoxib in preventing Skin Cancer in patients with actinic keratosis is still ongoing. 

2.2. Smoothened Homologue (SMO) Inhibitors  

Basal-cell carcinoma is associated with mutations in components of the hedgehog signaling 

pathway [6-7]. Hedgehog (HH), a key regulator of cell growth and differentiation during development, 

controls epithelial and mesenchymal interactions in many tissues during embryogenesis. The HH 

signaling pathway is named after the family of extracellular HH ligands, of which there are three in 

mammals: sonic hedgehog (SHH), Indian hedgehog (IHH) and desert hedgehog (DHH). Extracellular 

hedgehog protein binds to patched homologue 1 (PTCH1), a 12-transmembrane receptor, and prevents 

PTCH1-mediated inhibition of signaling by smoothened homologue (SMO), a 7-transmembrane 

protein. PTCH1 is the receptor to which the HH ligands bind, and such binding relieves the inhibition 

of the pathway induced by unbound PTCH1, specifically through SMO in a non-stoichiometric 

manner. Once relieved of inhibition, SMO sends signals through a series of interacting proteins, 

including suppressor of fused (SUFU), culminating in activation of the downstream Gli family of 

transcription factors, GlI1, GlI2 and GlI3, the founding member of which was identified as a gene 

amplified in glioblastoma [6] with consequent induction of hedgehog target genes. Most basal-cell 

tumors have mutations in the hedgehog signaling pathway that inactivate PTCH1 [7-9] (loss-of-

function mutation) or, less commonly, constitutively activate SMO15 (gain-of-function mutation) [6,7]. 

Nearly all sporadic BCC harbor mutations in components of the HH-induced pathway; PTCH1 and 

SMO being the most frequently mutated genes [10-12]. These mutations cause constitutive hedgehog 

pathway signaling, which in basal-cell carcinomas can mediate unrestrained proliferation of basal cells 

of the skin. For this reason, blocking the hedgehog pathway may be useful in treating patients with 
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basal-cell carcinoma [14-16]. In general, BCCs seem to have relatively stable genomes—the few 

published studies suggest that they have lower levels of genomic instability than do many 

extracutaneous cancers [6,17]. As noted above, BCCs routinely carry mutations in PTCH1 and TP53 

and, in 10% of instances, in SMO [18,19]. The mutations identified in PTCH1 and TP53 are frequently 

of a type that is consistent with their having been produced by UV radiation. This is true for BCCs that 

arise sporadically, and even more so for those large numbers of BCCs that arise in patients with 

xeroderma pigmentosum (XP), suggesting that repair of UV-induced DNA damage normally does 

reduce BCC carcinogenesis [20-22]. Furthermore, this suggests that one reason for the increased 

incidence of BCCs in older people might be the reported reduction of DNA repair with ageing [23]. 

However, there is one rare heritable disorder in which patients have a marked susceptibility to 

developing BCCs. This is basal-cell nevus syndrome (BCNS, also known as Gorlin syndrome or 

nevoid basal-cell carcinoma syndrome. Using family-based linkage studies of kindreds with BCNS, 

the locus carrying the causative mutant gene was mapped to human chromosome 9q22 [24] and then to 

the patched 1 (PTCH1) gene [9,25,26].  

The novel SMO inhibitor GDC-0449 (2-chloro-N-(4-chloro-3-(pyridin-2-yl)phenyl)-4-(methylsulfonyl) 

benzamide) was discovered by high-throughput screening of a library of small-molecule compounds 

and subsequent optimization through medicinal chemistry GDC-0449 is a selective hedgehog pathway 

inhibitor. GDC- 0449 has antitumor activity in a mouse model of medulloblastoma and in xenograft 

models of primary human tumor cells, including colorectal cancer and pancreatic carcinoma, in which 

its effects correlate with blockade of the hedgehog pathway [27-29].  

A phase 1 trial to evaluate the safety and adverse-effect profile of daily oral administration of  

GDC-0449 in patients with metastatic or locally advanced basal-cell carcinoma and other solid tumors 

was conducted by Von Hoff et al. Antitumor activity was observed in the first two patients with  

basal-cell carcinoma, prompting enrollment of additional patients to evaluate the activity and safety of 

the drug. Of the 33 patients, 18 had an objective response to GDC-0449, according to assessment on 

imaging (7 patients), physical examination (10 patients), or both (1 patient). Of the patients who had a 

response, 2 had a complete response and 16 had a partial response. There were no dose-limiting toxic 

effects or grade 5 adverse events, and only one grade 4 adverse event occurred during continuous daily 

administration of GDC-0449 for up to19 months. Those findings could confirm the participation of the 

hedgehog pathway in basal-cell carcinoma and suggest that inhibition of the hedgehog pathway can be 

useful in treating inoperable tumors. 

Currently ongoing trials exist also for Smo—antagonists LDE225 selective smoothened antagonists, 

that bind to the Hedgehog (Hh)-ligand cell surface receptor. LDE225 is topically applied (either 0.25% or 

0.75% LDE225) twice daily in an open-label manner for 6 or 9 weeks [30]. Smo-antagonist BMS-833923 

is also object of study. As trials for both drugs are still ongoing, clinical results are still unclear [31].  

2.3. Anti-EGFR Agents 

cSCC encompasses 20% of nonmelanoma skin cancers, with an annual incidence of 200,000 to 

300,000 in the United States [32]. Resection is typically curative, and the majority of cSCCs do not 

metastasize, but in the presence of certain risk factors, including location (e.g. Lip and ear), size 

(>2 cm in diameter), immunosuppression, association with scar or chronic wounds, and certain 
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histopathologic features (depth of more than 4 mm, involvement of the reticular dermis or 

subcutaneous fat, or penetration into fascia, muscle, bone, or cartilage), metastatic rates range between 5% 

and 45% [33-35]. Few treatment options are available for recurrent or metastatic cSCC. Although 

cisplatin may be used as an initial treatment, it carries significant morbidity, including 

myelosuppression in 25% to 30%, dose-cumulative peripheral neuropathy in 30% to 100%, 

sensorineural hearing loss in 30%, dose-cumulative nephrotoxicity in 25% to 36%, and severe emesis 

in 100% of patients [36]. Furthermore, data supporting its efficacy are limited to small case series with 

no definitive long-term improvement in mortality [37-40]. A phase III trial also examined the use of 

retinoids in aggressive SCC,with no improvement in outcome [41]. With no established first-line 

agents for recurrent or metastatic cSCC, interest in the use of targeted therapies has grown. One 

promising target is EGFR, a transmembrane cell surface receptor with a tyrosine kinase domain whose 

overexpression promotes tumor survival and progression. Ligand binding activates EGFR, causing cell 

death inhibition, promotion of cell growth and proliferation, and angiogenesis. Cetuximab (Erbitux, 

Merck KGaA, Darmstadt, Germany) is a chimeric human-murine monoclonal antibody that 

competitively inhibits EGFR, boosting apoptosis and decreasing cellular proliferation, angiogenesis, 

and tumor invasion [42-45]. The 170-kDa EGFR is one of four members of the erbB family of 

transmembrane cell receptor tyrosine kinases. EGFR triggers downstream multilayered signaling 

pathways including the mitogen-activated protein kinase pathway, the phosphatidylinositol-3-kinase/Akt 

pathway and the Jak/Stat pathway [46,47]. These pathways, when abnormally activated in malignant 

cells, result in increased cancer cell proliferation, reduced apoptosis, and enhanced invasion and 

angiogenesis potentials [47,48]. EGFR is expressed in 15–30% of all breast cancers and in 20–40% of 

those with HER-2 overexpression [49,50]. EGFR expression is histologically defined as strong 

membranous staining in more than 10% of tumor cells. 

Identification of the importance of the Erbb2 family member and signaling partner epidermal 

growth factor receptor (EGFR) on UV-induced skin tumors strongly supports a role for Erbb2 in skin 

tumorigenesis as well. 

As mentioned above, the UV-induced activation of EGFR blocks cell cycle arrest, increases cell 

proliferation, suppresses apoptotic cell death, and increases skin tumorigenesis [49,50]. The effects of 

EGFR on apoptosis and cell cycle arrest result, at least in part, from its activation of phosphatidyl 

inositol-3-kinase (PI3K)/Akt signaling [47,49]. For example, EGFRdependent PI3K/Akt activation 

blocks the activation of signaling downstream from ataxia telangiectasia and Rad3-related (ATR) to 

block cell cycle arrest [47,51-53]. Activation of the ATR cell cycle checkpoint following UV-induced 

DNA damage allows time for DNA repair. ATR phosphorylates and activates Chk1, and to a lesser 

extent Chk2, kinases that phosphorylate the cell cycle regulator Cdc25a [54]. Phosphorylation by 

Chk1/2 inactivates Cdc25a and targets it for rapid, ubiquitin- directed degradation [55,56]. The Cdc25a 

phosphatase activates cyclin-dependent kinase (CDK)2 by removal of inhibitory phosphate groups at 

CDK2-Tyr15 and CDK2-Thr14 [55,56]. Loss of Cdc25a activity results in cell cycle arrest that allows 

time for the repair of DNA damage and reduces mutagenesis. If cell cycle arrest and DNA repair 

mechanisms are inadequate, cells acquire mutations that lead to cancer. EGFR promotes G2/M-phase 

progression by blocking the activation of this cell cycle checkpoint through PI3K/Akt-dependent 

inhibitory phosphorylation of Chk1 [57], a potential mechanism for its role in promoting UV-induced 

skin tumorigenesis [58]. In contrast to the extensive literature documenting the effects of EGFR 
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activation on the response of the skin to UV, little investigation of the importance of other EGFR 

family members in UV-induced skin carcinogenesis has been undertaken. Madson et al hypothesized 

that repeated activation of the Erbb2 receptor resulting from chronic exposure to UV might also 

contribute to UV-induced skin tumorigenesis by deregulating cell cycle checkpoint control. This 

paradigm does not require oncogenic activation of Erbb2, but rather depends on repeated cycles of 

activation of normal physiological levels of proto-oncogenic Erbb2. Inhibition of the UV-induced 

activation of Erbb2 substantially reduced skin tumorigenesis in a transgenic mouse model [59]. Using 

both mouse skin and cell culture models, association of UV-induced skin tumorigenesis with  

Erbb2-dependent inhibitory phosphorylation of Chk1, maintenance of Cdc25a, and decreased cell 

cycle arrest was documented. These data could demonstrate that activation of Erbb2 on UV irradiation 

increases UV-induced skin tumorigenesis by suppressing a DNA damage-induced cell cycle checkpoint. 

Anti-EGFR agent cetuximab is currently approved for the treatment of irinotecan-refractory 

metastatic colorectal cancer and for that of head and neck squamous-cell carcinoma in association with 

radiotherapy [46,60,61]. Cetuximab compete with TGF-α, EGF and other natural ligands for EGFR 

ectodomain thus preventing autophosphorylation of the intracellular region, inhibiting  

ligand-dependent activation of the EGFR, resulting in an aborted dimerization with other erbB 

receptors, and subsequently, EGFR internalization and inhibition of downstream signaling  

pathways [47]. As a result, the TK domain remains inactive and downstream signaling does not occur, 

which leads to inhibition of cell cycle progression, promotion of apoptosis, and antiangiogenesis. 

Cetuximab can also elicit antitumor activity by antibody-dependant cell cytotoxicity [51]. Paclitaxel 

prevents cell replication by stabilizing microtubule bundles during mitosis [47]. The most likely 

hypothesis for the enhanced antitumor activity of combined cetuximab+paclitaxel is an increase in 

cancer cell apoptosis coupled with a decrease in cell proliferation. Studies on cancer cell cultures and 

in human tumor xenografts showed that paclitaxel upregulates EGFR and HER-2 receptors, and 

renders cancer cells more susceptible to cetuximab and trastuzumab, respectively [53,61]. Cetuximab 

is approved for the treatment of locally or regionally advanced head and neck cancer, of metastatic or 

recurrent squamous cell carcinoma, refractory to platinum-based therapy, as monotherapy or in 

combination with radiation therapy; it is also approved for the treatment of metastatic colorectal cancer 

CC [64, EGFR-expressing, as monotherapy in patients refractory to irinotecan-based chemotherapy, 

or in combination with Irinotecan and in the treatment of non small cell lung cancer (NCSLC). 

Cetuximab has been shown to circumvent tumor resistance to chemotherapy agent irinotecan in some 

colorectal cancer patients [60]. Mechanisms such as drug efflux abrogation, apoptosis restoration and 

impairment of DNA-repair activity in cancer cells have been proposed to explain this phenomenon [62,63]. 

Clinical trials using cetuximab as a first-line or second-line therapy for patients with cSCC with  

in-transit or metastatic disease may help to define its potential role in managing this difficult population.  

Adding cetuximab to radiotherapy also improves disease control and overall survival in 

locoregionally advanced lSCCHN. [61,65]. Similar improvements in overall survival of patients with 

recurrent or metastatic SCCHN were noted by combining cetuximab with standard platinum-based 

regimens and by using it as a single second line agent in patients who failed standard therapy [65-68]. 

Statistically significantly greater overall survival has also been reported after adding cetuximab to the 

standard platinum-based chemotherapy used to treat NSCLC and patients with a squamous cell 

histologic subtypewere found to retain survival benefit in subgroup analysis [69].  
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A pruritic erythematous papulopustular eruption can develop within 2 to 3 days of starting 

cetuximab treatment, which may be associated histologically with a neutrophil-predominant upper 

dermal infiltrate [68,69]. This eruption is the most common side effect, which occurs in 76% to 88% of 

patients, is rarely dose limiting, and typically resolves with discontinuation of treatment [33,43,65]. 

Rash severity is possibly predictive of a favorable clinical outcome, because prospective trials in 

SCCHN and CC have shown a survival advantage in patients who developed cetuximab-related skin 

toxicity over those who did not [66,72]. EGFR is known to be expressed in cSCC, although it is likely 

that the pattern of carcinogenesis is complex. It is unclear whether expression level correlates with 

prognosis or tumor response to targeted therapy. Several studies show that EGFR is expressed more in 

locoregional and distant metastases than in primary sites and suggest that upregulation promotes tumor 

aggression [73-75]. In contrast, a retrospective analysis found no evidence that EGFR expression level 

is an independent prognostic indicator [76]. Despite this, EGFR-targeted therapy is being validated as 

an effective approach to therapy in cSCC. 

Additional case reports show promising responses to cetuximab in patients with metastatic cSCC. 

One report noted a complete clinical response to weekly infusions of single-agent cetuximab in a 

patient with multiple nodal metastases from a poorly differentiated primary cSCC who had failed 

several cycles of palliative radiation therapy. His disease recurred upon discontinuation of cetuximab, 

but he again achieved a complete clinical response when weekly infusions were restarted. A second 

report described complete and near-complete clinical responses to weekly infusions of cetuximab in 

two patients with extensive cSCC recurrence and intransit metastases not responsive to radiation 

treatment [77,78]. Additionally, two recent case reports noted partial and complete clinical response in 

patients with metastatic cSCC who had previously failed multiple platinum-based chemotherapy 

regimens and radiation treatment. One described partial clinical response with 50% reduction in size of 

a metastatic node, which was maintained for 11 months on weekly cetuximab infusions before disease 

progression occurred. A second reported 3-month progression free survival on weekly cetuximab 

infusions, which are still ongoing. Miller et al. reported a case of complete clinical response using 

cetuximab as first-line treatment for cSCC with in-transit and distant nodal metastases [43]. In this 

case Cetuximab was preferred to cisplatin and considered a suitable alternative because of its relative 

lack of side effects and ease of administration. 

Most common adverse effects of the EGFR-blockade are skin toxicities, that with Cetuximab can 

reach over 80% of frequency, including acne-like rush, xerosis cutis, paronychia and fissuring, hair 

changes and mucositis. Cetuximab‘s side-effect profile includes hypersensitivity reactions, nausea, 

vomiting, diarrhea, abdominal pain, and rash. Approximately 2% to 5% of patients experience grade 3 

to 4 infusion reactions, usually after the first dose, although this has been fatal in less than 1 in  

1,000 cases and can be ameliorated by premedication with corticosteroids and diphenhydramine. In 

addition, 30% of patients experience fever, 80% fatigue, 59% abdominal pain, 37% vomiting, and 39% 

diarrhea. Rare adverse events include case reports of acute cytotoxic dermatitis after receiving 

cetuximab in the setting of concurrent radiation therapy, suggesting possible overlap between radiation 

dermatitis and cetuximab-induced rash [79,80]. Fatal diffuse alveolar damage has also been reported in 

two lung transplant patients receiving cetuximab for metastatic cSCC. Although approximately 1% of 

patients receiving the EGFR inhibitors gefitinib and erlotinib develop interstitial lung disease, no 

studies have linked this side effect to cetuximab. Because there are no data in the literature concerning 
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use of EGFR inhibitors in people who have received solid organ transplants, these agents should 

probably be used with caution in this subset of patients. 

Furthermore, other anti-EGFR antibodies have shown efficacy against cSCC. EGFR antagonist 

Erlotinib and Gefitinib are tyrosine kinase inhibitor FDA approved on November 2004 for Lung 

cancer – Non Small Cell (Accelerated Approval Program AAP). The inhibitors of TK phosphorylation 

(TK inhibitors [TKIs]) are small-molecule agents that block EGFR activity by interfering with the 

adenosine triphosphate-binding site on the intracellular region of the receptor. Erlotinib is indicated in 

monotherapy for the treatment of patients with locally advanced or metastatic NSCLC after failure of 

at least one prior chemotherapy regimen. Apparently, no survival benefit or other clinically relevant 

effects have been demonstrated in patients with EGFR- negative tumours. Erlotinib in combination 

with gemcitabine is indicated for the treatment of patients with metastatic pancreatic cancer. The 

tyrosine kinase inhibitor Gefitinib was approved on May, 2003 for locally advanced or metastatic 

nonsmall Lung cancer-NSCLC (AAP) with activated mutations of EGFRTK. Gefitinib has been shown 

to induce radiographic tumor responses, improve symptoms, and improve quality of life in those 

patients who have failed to respond to previous cancer therapies [45]. Gefitinib has produced a 15% 

partial response rate and 45% stable disease rate in a prospective trial of patients with recurrent or 

metastatic SCC [37,45]  

Recent success involving the therapeutic use of antibodies and small molecule inhibitors against 

tyrosine kinases have generated considerable interest in research aimed at targeting these receptors in a 

wide variety of malignancies. In an attempt to improve the treatment of cSCC, Galer [81] explored the 

effect of inhibition of two of these receptors on cutaneous tumor growth in vitro and in vivo. The  

insulin-like growth factor-I receptor(IGF-IR) is a ubiquitous transmembrane tyrosine kinase composed 

of two extracellular alpha subunits and two intracellular beta subunits [82-83]. Ligand binding (IGF1 

or IGF2) to the extracellular alpha subunits, trigger conformational changes in the beta subunits 

activating the receptors tyrosine kinase activity, which in turn activates downstream signaling 

cascades, including the phosphatidylinositol 3-kinase/AKT and Ras/Raf/mitogen-activated protein 

kinase (MAPK) pathways [84-90]. Numerous human tumors have been shown to overexpress IGFIR 

or have increased IGF-IR kinase activity. Targeted therapies, including insulin-like growth factor 

(IGF) binding proteins, human monoclonal antibodies, and small-molecule tyrosine kinase inhibitors 

against IGF-IR, have been developed and show promise for therapeutic use in both in vitro and in vivo 

experiments [91-93]. A12, a high-affinity human monoclonal antibody to IGF-IR, has been shown to 

induce apoptosis and inhibit tumor growth by competitively binding to the receptor and inducing  

IGF-IR internalization and downregulation. Experimentally, A12 has been shown to inhibit the growth 

of breast, pancreatic, colon, and renal tumors, both in vitro and in vivo with little toxicity or weight 

loss in nude mouse models [94]. Galer et al [81] hypothesize that targeted therapy against IGF-IR 

(A12) and EGFR (cetuximab) will inhibit CSCC tumor growth in vitro and in an athymic nude mouse 

model. Our findings indicate that the combination ofA12 and cetuximab simultaneously blocks EGFR 

and IGF-IR activation and significantly reduces tumor volume by both direct antitumor and angiogenic 

effects. We showed that elevated IGF-IR and EGFR expression is consistently and concurrently 

elevated in CSCC cell lines. In an orthotopic nude mouse model of CSCC, dual inhibition with A12 

and cetuximab reduced the tumor volume by 92% as compared to approximately 50% with either agent 

alone. Combination treatment also significantly improved survival. In vitro studies demonstrated the 
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inhibition of activation of IGF-IR by A12 and EGFR by cetuximab, but showed no cross-inhibition. 

The combination of A12 and cetuximab also showed direct growth inhibitory and apoptotic activity 

against CSCC cell lines. In vivo monotherapy with either A12 or cetuximab caused a significant 

increase in apoptosis and a decrease in both cellular proliferation and microvessel density as compared 

to the control group, an effect which was enhanced for combination treatment. A12 treatment resulted 

in downregulation of the total IGF-IR expression levels, as has been demonstrated by others [95]. 

Treatment with A12 and cetuximab significantly inhibited SCC tumor growth in the murine model. 

Either agent alone resulted in approximately a 50% reduction in tumor volume, whereas treatment with 

a combination of the two drugs resulted in a greater than 90% reduction in tumor volume. Similarly, 

longer survival was also found for the combined treatment group as compared with the control or A12 

treatment groups. However, the concurrent expression of both IGF-IR and EGFR together in CSCC 

seems to be important for tumor growth and development, and simultaneous inhibition of these two 

tyrosine kinases results in a significantly greater reduction of tumor development and growth. Our 

findings are consistent with other studies suggesting that targeted therapy of IGF-IR can be used in 

combination with other therapeutic strategies to achieve maximum antitumor effects [96,97] and that 

combination therapy may be beneficial in preventing the development of drug resistance, such as that 

seen with trastuzumab (Herceptin), erlotinib, and gefitinib [97-99]. Immunohistochemical analyses of 

tumor sections from mice treated with either A12 or cetuximab alone revealed a significant decrease in 

the proliferative index as measured by PCNA staining and an increase in intratumoral apoptosis as 

measured by the TUNEL assay. This effect was strongest for groups treated withA12, either alone or 

in combination, which is in agreement with previous work showing only moderate apoptosis in 

response to cetuximab treatment alone but synergism with dual agent therapy. The increase in 

intratumoral apoptosis and decrease in proliferation is in contrast to our in vitro findings showing 

limited effects of either agent or the combination on the growth of Colo16 cells. The differences 

between the results from the animal model and in vitro experiments can be explained by reports 

showing the activation of vascular endothelial growth factor receptor (VEGFR) signaling by IGFR in 

cancer [100]. Recent studies have demonstrated that both EGFR and IGF-IR are abundantly expressed 

on endothelial cells [83,101]. Insulin-like growth factor I receptors are more abundant than insulin 

receptors in human micro- and macrovascular endothelial cells. [102]. Vascular endothelial growth 

factor C expression and lymph node metastasis are regulated by the type I insulin-like growth factor 

receptor [103,104].  

EGF and IGF produced at high levels by tumors are able to promote the growth, survival, and 

migration of tumor cells, and induce the synthesis of VEGF-A, VEGF-C, and MMP2, which may 

enhance the development of the blood supply essential for the progressive growth of primary 

malignancies and their metastases [105-107].Treatment with eitherA12 or cetuximab alone resulted in 

statistically significant inhibition of tumor-associated angiogenesis, whereas the combination treatment 

with A12 and cetuximab resulted in an additional inhibition of angiogenesis. These findings concur 

with other studies that have demonstrated reduction of angiogenesis resulting from inhibition of IGF-IR, 

EGFR, or both receptors simultaneously [83,107]. Current studies have indicated that the efficacy of 

tyrosine kinase inhibition can be enhanced by combining it with other tyrosine kinase inhibitors, 

chemotherapy, or radiotherapy [107,109-112]. Although a demonstrable response was achieved using 

A12 or cetuximab as single agents, the enhanced response obtained when these two monoclonal 
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antibodies were used in combination provides further support for the use of not only multiple tyrosine 

kinase inhibitors, but the use of inhibitors of IGF-IR and EGFR in particular [113-116]. This agrees 

with previous works showing a synergistic effect of the combination of IGF-IR and EGFR inhibition 

and suggests the presence of ‗‗cross-talk‘‘ between the receptors [117].  

In summary, dual inhibition of the tyrosine kinases EGFR and IGF-IR can decrease skin cancer 

growth both in vitro and in vivo. These data suggest that dual inhibition of tyrosine kinases, EGFR and 

IGF-IR in particular, may be therapeutically useful and provide a promising strategy for the treatment 

of patients with aggressive CSCC [80]. 

3. Conclusions  

NMSC continues to increase in prevalence. Treatment options employed should be tailored to the 

type of tumor, tumor location, size of tumor, and histologic pattern. Surgical methods remain the ‗gold 

standard‘ although alternatives to surgery are appropriate in certain tumors if considerable 

disfigurement or functional impairment might result from surgery. In addition to longstanding 

nonsurgical options such as radiation therapy and cryosurgery, the newer additions of biologic immune 

response modifiers (e.g., imiquimod) and photodynamic therapy can be used in select tumors and can 

reduce morbidity. Emerging treatments include several drugs belonging to the so-called targeted 

therapies. In particular, Hedgehog pathway inhibitors for BCC, EGF pathway inhibitors for AK and 

SCC, as well as Cox2 inhibitors for AK, represent new stimulating options for clinical management of 

these common malignancies. 
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