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Abstract: Chemotaxis, the migration of cells in response to chemical stimulus, is an important concept
in the angiogenesis model. In most angiogenesis models, chemotaxis is defined as the migration of a
sprout tip in response to the upgradient of the VEGF (vascular endothelial growth factor). However,
we found that angiogenesis induced by performing arterial patch grafting on rabbits occurred under
the decreasing VEGFA gradient. Data show that the VEGFA concentration peaked at approximately
0.3 to 0.5 cm away from the arterial patch and decreased as the measurement approaches the patch.
We also observed that the new blood vessels formed are twisted and congested in some areas, in
a distinguishable manner from non-pathological blood vessels. To explain these observations, we
developed a mathematical model and compared the results from numerical simulations with the
experimental data. We introduced a new chemotactic velocity using the temporal change in the
chemoattractant gradient to govern the sprout tip migration. We performed a hybrid simulation to
illustrate the growth of new vessels. Results indicated the speed of growth of new vessels oscillated
before reaching the periphery of the arterial patch. Crowded and congested blood vessel formation
was observed during numerical simulations. Thus, our numerical simulation results agreed with the
experimental data.

Keywords: angiogenesis; chemotaxis; arterial patch; hybrid simulation; cell driving force; VEGF

1. Introduction

Angiogenesis is the formation of new blood vessels that occurs under the control of
chemical signals in the body. It is responsible for a wide variety of physio and pathological
processes and the progression of diseases such as cancer, cardiomyocytes, or arteriovenous
malformations (AVMs). Vascular endothelial growth factor (VEGF) is one of the chemical
signals that bind to receptors on the surface of endothelial cells [1]. When VEGF binds to the
surface receptors, endothelial cells become activated and detached from the blood vessel
and subsequently migrate to create new blood vessels. The migration of new blood vessels
is regulated by the spatial gradient of the signal. This process is called chemotaxis and the
signal is called a chemoattractant. The endothelial cell at the front of the sprout tip senses
the VEGF gradient to lead the direction of migration. This migration is then followed
by other endothelial cells that then create a path line of a new blood vessel. Typically,
in angiogenesis, chemical signals are released at the time and place where they are required.
Therefore, new blood vessel formation is well-balanced in processes such as growth and
healing. However, in the state referred to as the angiogenic switch [2], the chemical signals
can occasionally become unbalanced and irregular, causing abnormalities in the new blood
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vessel formation, leading to vascular anomalies. For example, arteriovenous fistulas (AVFs)
and arteriovenous malformations (AVMs).

Arteriovenous fistulas (AVFs) are the anomalies in which arteries and veins are directly
connected, bypassing the capillary network that results in the shunting of blood between
the two. AVFs are distinct from AVMs and are congenital lesions that arise due to failure of
embryonic or fetal vascular differentiation and are also related to noniatrogenic trauma [3,4].
Usually, they increase in size if untreated. As for arteriovenous malformation (AVM), it
is an abnormal angiogenesis consisting of feeder artery and drainage vein vessels which
is abnormal, complex, and called “Nidus”. AVMs probably have high flow compared to
AVFs, higher resistance, and may remain asymptotic [3]. AVMs can occur in organs of the
human body such as the brain, lungs, intestinal tract, and the spinal dura mater [5–8]. So
far, the cause of AVMs is not entirely clear. In particular, the process of AVF formation,
which is a crucial step in AVM, pathogenesis is not yet understood. Moreover, the role
of angiogenic factors, including the VEGF, in AVMs is still unknown owing to the lack of
spontaneous in vivo AVM models. In fact, the lack of in vivo AVM models affected the
development of therapeutic medications for AVMs [9].

Recently, ref. [10] have successfully induced AVF by patching an arterial graft into
a rabbit’s vein. The new blood vessels were distinguishable from the pre-existing linear
blood vessels owing to strong flexion and significant meandering. In this study, we extend
the study in [10] by analyzing the VEGF concentration during AVF formation in an arterial
patch procedure. The VEGF concentration was measured at a certain period of time. We
observed that the VEGF concentration oscillated and gradually attenuated with time. Based
on this data, we developed an angiogenesis model by introducing a new chemotactic veloc-
ity that governs new blood vessel formation under certain VEGF concentration changes.

Angiogenesis has been modeled using a variety of approaches including the Cellular
Potts model [11–13], stochastic differential equations [14–16], compartment-based mod-
els [17], continuum modelling [18,19], and alternative mechanistic approach [20]; see [21,22]
for recent reviews.

In this study, we took a hybrid approach and modified Anderson and Chaplain’s
model [23]. In their model, it was assumed that the migration of sprout tip is influenced by
random motility, chemotaxis in response to signal gradients, and haptotaxis in response to
fibronectin gradients. As shown in the following equation, three factors contribute to the
endothelial cell flux Jn:

Jn = Jrandom + Jchemo + Jhapto, (1)

They described the chemotactic flux Jchemo as

Jchemo = χn∇c, (2)

where n, c, and χ denote the sprout tip density, chemoattractant concentration, and chemo-
tactic coefficient, respectively. Generally, the conservation equation for the sprout tip
density is in the form of

nt = −∇ · Jn. (3)

In Section 2.5, we expressed spatiotemporal molecular concentrations as partial differ-
ential equations and individual cell movements as biased random walks. We found that
our simulations were consistent with the experimental observations.

2. Results
2.1. VEGF Distribution Model

VEGF is the key mediator for angiogenesis and has been discovered to be a permeability-
enhancing agent, leading to the disruption of intercellular contacts and increase of perme-
ability [24]. The VEGF family of genes consists of at least seven various subtypes such
as VEGFA, VEGFB and VEGFC, VEGFD, PIGF, VEGFE (Orf-VEGF), and trimeresurus
flavoviridis svVEGF. However, VEGFA and its receptors, vascular endothelial growth fac-
tor receptor (VEGFR), including VEGFR-1 and VEGFR-2, play a major role in pathological
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angiogenesis. VEGFA has a variety of functions such as vascular permeability activity and
stimulation of cell migration. Here, VEGF is also known as VEGFA [25].

2.2. VEGFA Quantification in In Vivo Angiogenesis Model

The in vivo angiogenesis-inducing model in [10] sutures an arterial graft into the wall
of the left common jugular vein in male rabbits for the initiation of angiogenesis. Using
this model, we quantified the spatiotemporal VEGFA concentration with an antibody-
based measurement method called ELISA. Detailed experimental protocols are given in
Section 4.2. In this paper, we consider the VEGFA concentration as the representative of the
VEGF concentration and use it as the basis for our mathematical modeling.

The VEGFA concentration at the arterial patch graft was low and the level was equal
to that of the serum. The highest level of VEGFA concentration was observed near the
pre-existing artery (F4/5). At any time point, VEGFA concentration was higher in the
pre-existing artery (F4/5) than in the arterial patch graft (Fp) (see Figure 1b). VEGFA con-
centration also revealed a repeated increase and decrease in addition to gradual attenuation,
where the approximate curve shows a sine wave that attenuates gradually (see Equation (4)
below). In this angiogenesis-inducing model, angiogenesis originates from the second
branch of the left subclavian artery, heading for the arterial graft in the common jugular
vein. From these observations, it is presumed that VEGFA is primarily released from the
area where new blood vessels sprout and grow. In other words, blood vessels migrate
toward the VEGFA with low gradient concentration.

(a)

Figure 1. Cont.
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(b)

(c)

Figure 1. VEGF distribution at the tissue area and approximation curve of VEGF concentration
from day 0 to 14 in in vivo experimental. (a) An illustration of the eight tissue areas (Fp, F1, F2,
F3, F4, F5, F6, and F7) that have been taken to measure the VEGFA concentration. The arterial
patch graft is placed at Fp and the pre-existing artery is assumed to exist at around F4/F5 areas.
(b) VEGF concentration from experimental data showing that the VEGF concentration was higher
in the pre-existing area (F4/5) than in the patch area (Fp). (c) The measured VEGF concentrations
(pg/mL) at the pre-existing vessel change with time. This indicates that there were three rabbit cases
for each time point. We plotted each case on the graph, and its fitted graph was derived. The curve
was obtained by numerically fitting the data to Equation (4): a = 46.2525, b = 0.2131, σ = 0.1548,
γ = 0.3485.

2.3. VEGFA Distribution Equation Based on In Vivo Quantification Data

Let c(x, t) be the distribution of VEGFA concentration at position x ∈ [0, 1] or [0, 1]2

and time 0 ≤ t ≤ T. Here, the VEGFA distribution equation is based on the VEGFA
quantification of the arterial patch grafting in Section 2.2. Based on the quantification above,
we assume the following conditions for the VEGFA distribution:

1. The VEGFA concentration near the pre-existing vessel is always higher than that near
the arterial patch (Figure 1a).
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2. The VEGFA concentration changes according to a sine wave that attenuates gradually,
as in Figure 1b.

Define the distribution of VEGFA concentration c(x, t) as follows:

c(x, t) =

 a{b + sin(2πσt) exp(−γt)}
{

1− (3−rp)2

ε2

}
, rp > 0.1

0, rp ≤ 0.1
(4)

where a, b, σ, γ, and ε are constants. Here, rp is the distance function from the outer side of
the arterial patch, which is defined as

rp =
√
(x− xp)2 + (y− yp)2 (5)

where (xp, yp) is the location of the patch center. We assumed that the arterial patch has a
radius of 0.1 (dimensionless) and was placed on the left side of the boundary (i.e., xp = 0).

Figure 2b shows the modeled time course of VEGFA concentration c(x, t) near the
pre-existing artery (x = 1). Figure 2c shows the initial VEGFA distribution c(x, t) (t = 0)
at domain (x, y) ∈ [0, 1]2. We used this VEGFA profile for a numerical simulation of the
angiogenesis model.

(a)

(b)

Figure 2. Cont.
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(c)

Figure 2. (a) An illustration of VEGFA concentration changes over time. The level concentration
of VEGFA changes according to {b + sin(2πσt) exp(−γt)} term in Equation (4). The VEGFA con-
centration is always higher near the pre-existing blood vessels other than in the other area. This
illustration is based on the experimental data in Section 2.2. (b) VEGFA concentration profile us-
ing Equations (4) and (5) at F4/F5 by setting parameters as follows: x, y ∈ (0, 1), a = 1, b = 0.39,
σ = 0.23/2, γ = 0.15, ε = 2.9, xp = 0, yp = 0.5, x = 1, and y = 0.5. This VEGFA concentra-
tion changes graph has a qualitatively similar profile as that in vivo. The VEGFA concentration
changes graph has a similar profile as in vivo experiments (see Figure 1b). (c) VEGF distribution of
Equations (4) and (5) on domain x, y ∈ (0, 1) at t = 0.

2.4. New Blood Vessel Length Measurement in In Vivo Angiogenesis Model

Here, we measured the new blood vessels with anomalous vessel walls sprouting
from pre-existing arterioles (see Figure 3a). As shown in Figure 3b, the lengths of the new
blood vessels increased gradually until day 3, while only a small change of length was
observed from day 3 to 5. On day 6, the vessels grew again, and the growth continued
until day 9. The new blood vessels did not grow much further after day 9. In this model,
the arteriovenous fistula was formed between days 10 to 14 [10]. Therefore, we speculate
that the angiogenesis process stopped once the new blood vessels that sprouted from the
arterioles reached the arterial graft on day 9.

(a)

Figure 3. Cont.



Int. J. Mol. Sci. 2022, 23, 11208 7 of 20

(b)

Figure 3. (a) New blood vessels (yellow arrowheads) are sprouting and growing from arterioles (red
arrowheads). The measurement distance is between the outer circumference of the arteriole and the
farthest point of the new blood vessel. The specimen was stained with Elastica-Masson staining.
Scale bar: 250 µm . (b) Graph of the average length of the new blood vessel from day 0 to day 14. At
each time point, every fifteen lengths were measured in three cases, and the average was calculated.

2.5. Sprout Tip Distribution Equation with New Chemotactic Velocity

We assumed that the migration of the sprout tip was influenced by random motility
and chemotaxis in response to temporal changes in the VEGFA gradient, rather than the
gradient itself. To derive the sprout tip distribution governed by these two factors, we
considered the following mass conservation of sprout tip density n = n(x, t):

nt = −∇ · (−d∇n + nvm), (6)

where d denotes the random motility constant and vm = vm(x, t) is the transport veloc-
ity [23]. Equation (6) is divided into two terms. The first term explains random motility.
The second term explains the migration of the sprout tip under the influence of a flow with
velocity vm. Partly inspired by the analysis of the LEGI (local excitation, global inhibition)
model of chemotaxis (see Appendix A), we define

vm = ∇ f , (7)

where

f =

{
−βct, ct > 0

0, ct ≤ 0.
(8)

Here, β is constant and ct in (8) is the derivative of our VEGFA distributions (4) and (5).
The application of (8) was also inspired by the comparison of the growth of new blood

vessels (Figure 3b) and the approximation curve of VEGFA concentrations (Figure 1c).
The growth speed of new blood vessels was relatively fast from day 0 to 2 and from day 5
to 8, which seems to coincide with the timing when the VEGF concentrations increased
near the pre-existing vessel. However, we mentioned that we cannot decisively say the
above two must be correlated, owing to relatively high variability in the vessel growth data
(Figure 3b).

3. Discussion

Here we used the temporal change in the chemoattractant gradient as the new chemo-
tactic mechanism to model the arterial patch-induced angiogenesis. The temporal changes
in VEGF concentration affected the angiogenesis process. This was probably caused by
the hypoxia state around the arterial patch, which affected the VEGF attenuates status
to stimulate the sprout tip of the endothelial cells. Our angiogenesis model successfully
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predicted new blood vessel growth that fitted the experimental data. During the numerical
simulation, we successfully obtained twisted and congested formations that were formed
from t = 2 to t = 7. This formation was pathological blood vessels characteristic.

We compared the length of the new blood vessel at each time during the numerical
simulation, from t = 1 to t = 14 with the experimental results [10], as shown in Figure 5.
Curves in different colors show different simulation results under the same parameter sets
(see Figure 6b). Although we used dimensionless parameters for the numerical simulation,
the simulation results showed patterns that were similar to those from in vivo measure-
ments (see Figure 6). Because of the lack of experimental data and little information, we
can see a differentiation value in error for the mean of each new blood vessel’s growth from
in vivo. The growth of the new blood vessels was initially fast before decelerating at some
time period. Subsequently, the new blood vessels regrow until reaching the arterial patch.
Additionally, we also ran our simulations with different parameters since our method also
depends on spatial grid step discretization (see Figure S1).

4. Material and Methods
4.1. Numerical Simulation Method and Results
4.1.1. Derivation of Numerical Scheme

To understand our angiogenesis model, we solve systems (4)–(8) numerically and
perform a simulation of the new blood vessel growth using a hybrid technique. This tech-
nique was invented by Anderson and Chaplain to simulate a tumor-induced angiogenesis
model [23]. We herein generalize the hybrid technique such that the scheme can be used to
simulate our systems (4)–(8) for any transport velocity vm.

We consider the following system:

nt = −∇ · F, in Ω× (0, T)

F =− d∇n + G, G = nvm

vm = ∇ f

f = f (x, t) in (8)

0 = ν · f on ∂Ω× (0, T)

n|t=0 = n0(x) > 0 on Ω

(9)

and define the domain of system (9) as Ω = (0, 1)× (0, 1).
The following numerical scheme is known to ensure both positivity and mass conser-

vation of the solution [26]. The domain Ω is partitioned into two types of lattices, i.e., main
and sub:

Main lattice: (xi, yi) =
((

i− 1
2

)
h,
(

j− 1
2

)
h
)

, i, j = 1, . . . , N,
Sub lattice: (x̂i, ŷi) = (ih, jh) i, j = 1, . . . , N,

(10)

where h = 1/N (see Figure 4a). For the time step, we renew the time increment, τk, at every
step k.

t0, tk+1 = tk + τk, k = 0, . . . , M− 1, tk ≤ T, (11)

where τk will be defined later.
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(a) (b)

(c)

(d)

Figure 4. (a) The numerical lattices were defined on domain Ω = (0, 1)× (0, 1)). We defined two
different lattices: the main lattice (blue) and sub-lattice (red). (b) Lattices for the calculation of scheme
(vm)k

i,j. (c) Lattices for the calculation of scheme Gk
i,j. (d) We may shift the weight values Pk,1

i+1,j, Pk,2
i−1,

Pk,3
i,j+1, and Pk,4

i,j−1 to Pk,1
i,j , Pk,2

i,j , Pk,3
i,j , and Pk,4

i,j , so that each of these P on (i, j) can be assumed as the

probability of a sprout tip to migrate to the left, right, up, and bottom, respectively. Additionally, Pk,0
i,j

is regarded as the probability of a sprout tip to stay on (i, j).

In these lattices, we assume that n and vm are approximated on the main lattice.
Additionally, we assume that f , G, and F are approximated on the sub-lattice:

nk
i,j ≈ n(xi, yi, tk), (vm)

k
i,j ≈ vm(xi, yj, tk),

Gk
i,j ≈ G(xi, yj, tk), Fk

i,j ≈ F(x̂i, ŷj, tk).
(12)
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Here, (vm)k
i,j =

(
(vm)k

i,j,1, (vm)k
i,j,2

)
is calculated on the x and y directions using the

average of four points surrounding every (1 ≤ i, j ≤ N).

(vm)
k
i,j,1 = − β

2

(
f k
i,j − f k

i−1,j

h
+

f k
i,j−1 − f k

i−1,j−1

h

)

(vm)
k
i,j,2 = − β

2

(
f k
i,j − f k

i,j−1

h
+

f k
i−1,j − f k

i−1,j−1

h

) (13)

where f k
i,j = f (x̂k

i ), and f is calculated on the sub-lattices. For f (x, t) in (8), (ct)k
i,j can be

calculated by taking the time derivative of (8) on the sub-lattices, (ct)k
i,j = ct(x̂i, ŷj, tk).

Define vm as

(vm)
k,±
i,j,1 = max

{
0,±(vm)

k
i,j,1

}
, (vm)

k,±
i,j,2 = max

{
0,±(vm)

k
i,j,2

}
(14)

for all (1 ≤ i, j ≤ N) as the direction setting of the upwind side.
Next, we consider the sub-lattice where Gk

i, is defined. In the x direction, we assume

that nk
i,j and nk

i+1,j are brought to Gk
i,j by flows (vm)

k,+
i,j,1 and (vm)

k,−
i+1,j,1, respectively. We

may also assume that nk
i,j and nk

i,j+1 are brought to Gk
i,j by flows (vm)

k,+
i,j,2 and (vm)

k,−
i,j+1,2,

respectively, in the y direction; see Figure 4b. Thus, we write Gk
i,j = (Gk

i,j,1, Gk
i,j,2) as follows:

Gk
i,j,1 = nk

i,j(vm)
k,+
i,j,1 − nk

i+1,j(vm)
k,−
i+1,j,1, (1 ≤ i ≤ N − 1, 1 ≤ j ≤ N),

Gk
i,j,2 = nk

i,j(vm)
k,+
i,j,2 − nk

i,j+1(vm)
k,−
i,j+1,2, (1 ≤ i ≤ N, 1 ≤ j ≤ N − 1).

(15)

Therefore, Fk
i,j = (Fk

i,j,1, Fk
i,j,2) can be approximated by the following scheme.

Fk
i,j,1 = −d

nk
i+1,j − nk

i,j

h
+ Gk

i,j,1, (1 ≤ i ≤ N − 1, 1 ≤ j ≤ N),

Fk
i,j,2 = −d

nk
i,j+1 − nk

i,j

h
+ Gk

i,j,2, (1 ≤ i ≤ N, 1 ≤ j ≤ N − 1).

(16)

By the zero-flux in Equation (5) of a system (9), we have the following conditions:

Fk
0,j,1 = Fk

N,j,1 = Fk
i,0,2 = Fk

i,N,2 = 0 (0 ≤ i, j ≤ N). (17)

Hence, nk
i,j is approximated by the following numerical scheme:

nk+1
i,j − nk

i,j

τk
= −

(
Fk

i,j,1 − Fk
i−1,j,1

h
+

Fk
i,j,2 − Fk

i,j−1,2

h

)
. (18)

We substituted (13), (15), and (16) into (18), which results in the following scheme:

nk+1
i,j = nk

i,jP
k,0
i,j + nk

i+1,jP
k+1
i+1,j + nk

i−1,jP
k,2
i−1,j + nk

i,j+1Pk,3
i,j+1 + nk

i,j−1Pk,4
i,j−1, (19)

where
Pk,0

i,j = 1− 4
dτk
h2 −

τk
h

(
(vm)

k,+
i,j,1 + (vm)

k,−
i,j,1 + (vm)

k,+
i,j,2 + (vm)

k,−
i,j,2

)
(20)

Pk,1
i+1,j =

dτk
h2 +

τk
h
(vm)

k,−
i+1,j,1, (21)

Pk,2
i−1,j =

dτk
h2 +

τk
h
(vm)

k,+
i−1,j,1, (22)
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Pk,3
1,j+1 =

dτk
h2 +

τk
h
(vm)

k,−
i,j+1,2, (23)

Pk,4
i,j−1 =

dτk
h2 +

τk
h
(vm)

k,+
i,j−1,2 (24)

for (2 ≤ i, j,≤ N − 1). The same procedure also applied for i, j = 1 . . . N to obtain the
scheme at the boundary. From the scheme above, the values of Pk,0

i,j , Pk,1
i+1,j, Pk,2

i−1, Pk,3
i,j+1,

and Pk,4
i,j−1 are the weights from each point of (i, j)’s neighbors to approximate the value of

nk+1
i,j . Assume five P values as the probability of a cell remaining at (i, j), migrating to the

left (i− 1, j), to the right (i + 1, j), to the downside (i, j− 1), and to the upside (i, j + 1),
respectively, if we shift Pk,1

i+1,j, Pk,2
i−1,j, Pk,3

i,j+1, and Pk,4
i,j−1 to Pk,1

i,j , Pk,2
i,j , Pk,3

i,j , and Pk,4
i,j , respectively,

see Figure 4d.
During angiogenesis, a new sprout tip can be generated from the existing sprout

tips. Additionally, the sprout tips can form loops by connecting with other sprout tips or
the existing new blood vessels. These two events are called branching and anastomosis,
respectively [27]. We adopted the branching and anastomosis rules from the discrete
mathematical model of tumor-induced angiogenesis [23]. Namely, for the branching to
occur, the lifetime of sprouts must exceed the threshold age Tbranching, and the branching
probability is given by

Pbranching =


0, 0 ≤ c < 0.25,

0.3, 0.25 ≤ c < 0.45,
0.4, 0.45 ≤ c < 0.60,
0.5, 0.60 ≤ c < 0.70,

1, 0.70 ≤ c < 1.00

with a modification that the branching probability is applied only when the temporal
change in the VEGFA concentration is positive, which follows (8). When anastomosis
occurs, only one sprout is allowed to continue to grow.

As detailed in [26], this numerical scheme is stable when the time increment τk is
updated by the following criterion:

τk ≤
h2

4(d + h(̂vm)
k
)

, (25)

where

(̂vm)
k
= max

1≤i,j≤N

{
(vm)

k,±
i,j,1, (vm)

k,±
i,j,2

}
, (26)

satisfied
4

∑
i=0

Pk,l
i,j = 1 (27)

and
Pk,l

i,j ≥ 0 (l = 0, 1, 2, 3, 4), (28)

which confirms the probability assumptions of Ps from schemes (19)–(24) is reasonable.

4.1.2. Numerical Simulation Results

In this section, the domain setting and parameter values used in the simulations are
depicted. All the parameters are dimensionless. As discussed in Section 2.3, we assumed
that an arterial patch of radius 0.1 (dimensionless) was placed in the center of the left
boundary. Thus, we set rp =

√
x2 + (y− 0.5)2. Initially, we placed 20 sprout tips randomly

at the right boundary. This position can be considered to be that of the pre-existing vessel
(see Figures 1a and 2a) by setting the length of domain-x as the actual in vivo length.
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From the in vivo measurement, the distance between the arterial patch and the pre-existing
vessel is varied (0.3± 0.2 cm). The other parameters we used in this numerical simulation
are d = 0.0001728, β = 1, a = 1, b = 0.39, σ = 0.23/2, γ = 0.15, and ε = 2.9 (see
Section 2.3).

We show our numerical simulation results of the angiogenesis model (4)–(8) in
Figures 5, 6 and 7, respectively. Figure 8 shows the initial state of the arterial patch on
the left side of the boundary and pre-existing vessel on the right side of the boundary at
t = 0. The VEGF distribution is higher near the pre-existing vessel and lower towards the
arterial patch.

(a) t = 1 (b) t = 2

(c) t = 7 (d) t = 10

(e) t = 11 (f) t = 14

Figure 5. The simulation results of the new blood vessel growth with the background of VEGF
concentration level, captured on days 1, 2, 7, 10, 11, and 14. Until t = 2, the new blood vessels grew
faster before the sprout tips experience the rest period. After t = 7, the new blood vessels regrew
until reaching the periphery of the arterial patch at t = 10. Only one blood vessel can reach the
arterial patch due to anastomosis.
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(a)

(b)

Figure 6. Average changes of new vessels’ length growth speed until it reaches the periphery of the
arterial patch between in vivo and simulations from day 0 until day 14. (a) The average speed of
vessel length growth in mm based on in vivo experiments. (b) The average speed of vessel length
growth in mm based on simulations.

We simulated for T = 0 until T = 14 and tracked down the growth of the new blood
vessels at t = 1, 2, 7, 10, 11, and 14. In these figures, the yellow to orange color in the
background of each picture represents the VEGFA concentration (see also Equation (4) and
Figure 8). In Figure 5, we see that at t = 1 and t = 2 the VEGFA concentration is higher
(orange), but it gets lower (yellow) at later times. Since the VEGF concentration attenuates
gradually (see Figure 9a) over time followed by the sprout tips of the newly generated
blood vessels, we can see changes in color from orange to yellow and vice versa.

We looked at the blood vessel growth in Figure 5. At t = 2, the growth of new blood
vessels started to decelerate and the sprout tips moved randomly. The random movement
of the sprout tips heightened the probability of the blood vessels meeting other tips which
caused the congested and twisted formation. This creates an AVM formation such as the
one in Figure 5c. Thus, many sprout tips died owing to the anastomosis. The fewer the
sprout tips generated initially, the lower the probability of anastomosis. In fact, there were
two sprouts at most (from 20 sprout tips generated initially) that survived and reached the
arterial patch resulting in vascularization (see Figure 5d) during the numerical simulation.
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Figure 6 shows temporal changes in the VEGF gradient causing the graphs to have a
high and almost linear slope between in vivo experiments and our simulations. We ran a
few simulations and calculated the vessel length in millimeters (mm). We can see that the
two graphs are almost similar. Both graphs show that at day 2, the growth of the sprout tip
started to decline slowly but regrow faster on day 7 until it reached the periphery of the
arterial patch on day 10.

Data for each new blood vessels length from simulations and in vivo are presented
in the graph (see Figure 7) of mean ± standard deviation (SD), 1.04571± 0.47451 and
0.80± 0.22234, respectively. Statistical analysis was evaluated by Student’s t-test and the
p value was < 0.05. Figure 7b shows that the result was statistically significant for each day.
As shown in Figure 7b, we can see from day 2 until day 7 the growth speed of blood vessels
becomes slow and almost constant and the speed becomes faster and higher after day 7 and
become constant again starting from day 10. The attenuated status of VEGF also affected
the growth speed of the blood vessels. The p value in vivo was >0.05, which is statistically
not significant (see Figure 7a). However, our simulation results show similar patterns to
those in vivo experiments (Figure 5).

(a)

(b)

Figure 7. Error bars show the mean and standard deviation of the in vivo and simulations of the
sprouting new blood vessels based on day 0 until day 14 until it reached the periphery of the
arterial patch. (a) Mean and standard deviation of vessel length growth in mm based on in vivo
experiments. (b) Mean and standard deviation of vessel length growth in mm based on simulations.
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Figure 8. VEGF distribution at t = 0 with the pre-existing vessel on the right and arterial patch on
the left boundary.

(a)

(b)

Figure 9. Comparison of the new blood vessel growth and the VEGFA gradient changes. When
the VEGFA concentration is decreasing over time, the growth of the new vessels become slower.
We consider this growth of the new blood vessels at the decreasing rate of VEGFA to be called the
rest period, Rp, and at the increasing rate of VEGFA is called the growth period, Gp. (a) VEGFA
concentration changing over time (days) and attenuates gradually. (b) Measurement of the new blood
vessel in days.

4.2. Material and Methods: In Vivo
4.2.1. Quantification of Vegfa in In Vivo Angiogenesis Model

Three rabbits at each time point (1, 3, 6, 12, 18 h, 1–7 days; different rabbits each time)
after the grafting was euthanized, and the arterial graft and fatty tissue were collected
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and then divided into approximately eight areas, as shown schematically in Figure 1a.
The total protein was extracted from the tissues by the Minute Detergent-Free Total Pro-
tein Extraction Kit obtained from Invent Biotechnologies, Inc. (Minneapolis, MN, USA).
The level of VEGFA concentration in the tissue was measured by Rabbit VEGFA ELISA
kits purchased from Cusabio Biotech Co., Ltd. (Wuhan, China). The concentration of
VEGFA in each sample was calculated based on a recombinant protein-based standard
curve (Supplementary Materials Figure S4). The Multiskan JX spectrophotometer (Thermo
Fisher Scientific Inc., Yokohama, Japan) was used to measure the absorbance. All assays
were performed in duplicate, and the mean values of the results were used in the analyses.

4.2.2. Measurement of New Blood Vessel Length

Forty-five rabbits were subjected to the patch procedure. Three rabbits at each time
point (control, 1–14 days after the patch procedure) were euthanized; the patch-bearing
left the common jugular vein and its surrounding tissues were subjected to histological
evaluation. The tissues were cut into six 5 mm thick serial slices in an approximately
horizontal plane including the cross sections of the arterial patch and the second branch
of the left subclavian artery, which were embedded in paraffin. The paraffin-embedded
samples were subsequently cut into 4 µm thick sections and stained with Haematoxylin-
Eosin and Elastica-Masson. Glass slides were converted into virtual slides using the NDP
slide scanner (Nanozoomer 2.0HT) (Hamamatsu Photonics K.K., Shizuoka, Japan), a virtual
microscopy system. Measurement of new blood vessel length was carried out using a
distant measuring tool of the viewing platform (NDP.View2) (Hamamatsu Photonics K.K.,
Shizuoka, Japan). Six slices were observed per subject, and 5 to 10 new blood vessels were
identified per slice.

4.2.3. Numerical Simulation

Numerical simulation was performed in Python. The original codes are available at:
https://github.com/rtminerva/hybrid-simulation/tree/master/angiogenesis/Arterial$%
$20Patch$%$20Grafting, (accessed on 9 August 2020).

We used run_main_code.py to run the whole code and coef_setting.py to adjust parameters.

5. Conclusions

The process of AVM formation is still unknown. This is because human AVMs are
rarely recognized before the onset of symptoms, and their condition can only be confirmed
at the time of surgery or autopsy. Furthermore, since there is no animal model that
accurately reproduces AVMs, it has been difficult to observe the formation process of AVMs
and changes in angiogenic factors over time.

In this study, by observing the AVM animal model newly developed in [10] over
time, we confirmed the cyclic variation of VEGF in the early stage of AVM formation.
The mathematical model obtained from this study was able to predict the formation of
AVMs owing to temporal changes in VEGF. The mathematical simulation reproduced
the tangled neovascularization characteristic of AVMs. The simulated elongation process
of neovascularization until the formation of arteriovenous fistula suggested that some
neovascularization was discarded. This study is expected to shed more light on the early
formation process of AVMs, which has not been observed so far.

In addition, in recent years, anti-VEGF monoclonal antibodies have been used clin-
ically in cancer treatment and are widely administered to various carcinomas [28–30].
The results of this study suggest that cyclic variation of VEGF plays an important role in
the formation of AVMs. Therefore, the administration of anti-VEGF monoclonal antibodies
can be considered as a therapeutic agent for AVMs, and it is expected that the effective
timing of administration can be predicted mathematically.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms231911208/s1.

https://github.com/rtminerva/hybrid-simulation/tree/master/angiogenesis/Arterial $%$20Patch$%$20Grafting
https://github.com/rtminerva/hybrid-simulation/tree/master/angiogenesis/Arterial $%$20Patch$%$20Grafting
https://www.mdpi.com/article/10.3390/ijms231911208/s1
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Appendix A

Before we define our chemotactic velocity vm, we analyze the LEGI (local excitation,
global inhibition) model of chemotaxis [31–33], and show that three factors play a role:
signal gradient, velocity, and temporal change in gradient, all of which are essential as the
driving force of cell migration. In the LEGI model, the external (chemoattractant) signal is
denoted by S, and the activator and inhibitor derived from signal S are denoted by A and
I, respectively. S affects A and I as follows:

dA(t)
dt

= kaS(x, t)− γa A(t)
dI(t)

dt
= kiS(x, t)− γi I(t), (A1)

where ka, ki, γa, and γi. The output response of the signal within the cell, denoted as R, is
expressed as

dR(t)
dt

= F(R(t))− A(t)− G(R(t))I(t), (A2)

where F and G are decreasing and increasing functions of R, such as

F(R(t)) = ka
(R0 − R(t))

(R0 − R(t)) + KA
, G(R(t)) = kI

R(t)
R(t) + KI

. (A3)

The concrete forms of F and G do not concern the argument below.
In the steady state of (A2), we find that

Q ≡ A
I
=

G
F
(R) (A4)

can be described as an increasing function of R. Therefore, we can use the activator–
inhibitor ratio Q instead of R to understand the output response of the cell.
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Next, we approximate the solution of A(t) and I(t). We define

E(t) ≡ A(t)− f (t− ε), (A5)

where ε = γ−1
a and

f (t− ε) = εkaS(t− ε). (A6)

If we take
dE
dt

= gs(t)−
1
ε

E(t), (A7)

we get

gs(t) =
1
ε
( f (t)− f (t− ε))− f

′
(t− ε) = o(1) (A8)

local uniformly in t, f ∈ C1(R), and

E(t) = e−
t
ε E(0) +

∫ t

0
e−

(t−s)
ε gε(s)dS = e−

t
ε E(0) + o(1)ε

(
1− e−

t
ε

)
= o(ε) (A9)

also local uniformly in t > 0. This means that A(t) can be approximated by f (t− ε) under
the assumption γa � 1. That is,

A(t) ∼ γ−1
a kaS(l, t− γ−1

a ). (A10)

The approximation of I(t) can be obtained in a similar manner.
The cell has the front and the back: x = ±l. Thus, we have A± = A(±l, t) and

I± = I(±l, t). With the approximation in (A10), we have
dA+

dt
∼ γ−1

a kaSt(l, t− γ−1
a ) ∼ γ−1

a ka · γa

(
S(l, t)− S(l, t− γ−1

a )
)
∼ kaS(l, t)− γa A+(t) (A11)

as the approximation of (A1). A− and Ipm can be obtained in the same manner.
LEGI means that the activator and inhibitor are assumed to be located locally and

globally, respectively, on the surface of the cell. Then, A± and I± are approximated as

A± ∼ γ−1
a kaS(±l, t− γ−1

a ), I± = I = γ−1
i kiSav(t− γ−1

i ), (A12)

where
Sav(t) =

1
2
(S(l, t) + S(−l, t)). (A13)

By simple calculations, the activator–inhibitor ratio, Q = A/I, which dictates the
response R, under conditions (A4) and (A12), and with the assumption γa, γi � 1, given by

Q±(t) ∼ Q0

{
1 +

St(±l, t)
S(±l, t)

(γ−1
i − γ−1

a )± l
Sx(±l, t)− γ−1

i Sx(±l, t)
S(±l, t)

}
(A14)

where Q0 = (kaγi)/(kiγa). We provide the proof below. Using Equations (A4) and (A12),
we have

Q±(t) =
A±
I±

=
kaγi
kiγa

S(±l, t− γ−1
a )

Sav(t− γ−1
i )

. (A15)

We let (kaγi)/(kiγa) ≡ Q0. We may assume the following approximation,

S(±l, t− γ−1
a ) ∼ S(±l, t)− γ−1

a St(±l, t), (A16)

Sav(t− γ−1
i ) ∼ Sav(t)− γ−1

i (Sav)t(t) (A17)

using the Taylor expansion. From (A13), we approximate

Sav(t) ∼
1
2
(S(l, t) + S(l, t)− 2lSx(l, t)) = S(l, t)− lSx(l, t) (A18)
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Sav ∼ 1
2
(S(−l, t) + 2lSx(−l, t) + S(−l, t)) = S(−l, t) + lSx(−l, t) (A19)

for the calculation of x = −l. Applying (A16)–(A18) into (A15) yields

Q+(t) ∼
1− γ−1

a St(l,t)
S(l,t)

1− lSx(l,t)−γ−1
i (St(l,t)+lSxt(l,t))

S(l,t)

∼ Q0

{
1− γ−1

a St(l, t)
Sl,t

}{
1 +

lSx(l, t)− γ−1
i (St(l, t)− lSxt(l, t))

S(l, t)

}

∼ Q0

{
1 +
−γ−1

a St(l, t) + lSx(l, t)− γ−1
i (St(l, t)− lSxt(l, t))

S(l, t)

}

∼ Q0

{
1 +

St(l, t)
S(l, t)

(γ−1
i − γ−1

a ) + l
Sx(l, t)− γ−1

i Sxt(l, t)
S(l, t)

.

}
(A20)

Similarly,

Q−(t) ∼ Q0

{
1 +

St(−l, t)
S(−l, t)

(γ−1
i − γ−1

a )− l
Sx(−l, t)− γ−1

i Sxt(−l, t)
S(−l, t)

}
. (A21)

For the cell to move in a positive direction, we must have

Q+(t) > Q−(t). (A22)

This shows that the chemotaxis is determined by the three factors Sx, St, and Sxt, which
correspond to the chemoattractant gradient, velocity, and temporal change in the gradient,
respectively. The first two factors Sx and St were mentioned in [32]. The additional cell
polarity in the direction of Sxt inspired us to use this temporal change in the chemoattractant
gradient as the chemotactic velocity.
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