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Abstract

Growth rate is a near-universal selective pressure across microbial species. High growth

rates require hundreds of metabolic enzymes, each with different nonlinear kinetics, to be

precisely tuned within the bounds set by physicochemical constraints. Yet, the metabolic

behaviour of many species is characterized by simple relations between growth rate,

enzyme expression levels and metabolic rates. We asked if this simplicity could be the out-

come of optimisation by evolution. Indeed, when the growth rate is maximized—in a static

environment under mass-conservation and enzyme expression constraints—we prove

mathematically that the resulting optimal metabolic flux distribution is described by a limited

number of subnetworks, known as Elementary Flux Modes (EFMs). We show that, because

EFMs are the minimal subnetworks leading to growth, a small active number automatically

leads to the simple relations that are measured. We find that the maximal number of flux-

carrying EFMs is determined only by the number of imposed constraints on enzyme expres-

sion, not by the size, kinetics or topology of the network. This minimal-EFM extremum princi-

ple is illustrated in a graphical framework, which explains qualitative changes in microbial

behaviours, such as overflow metabolism and co-consumption, and provides a method for

identification of the enzyme expression constraints that limit growth under the prevalent con-

ditions. The extremum principle applies to all microorganisms that are selected for maximal

growth rates under protein concentration constraints, for example the solvent capacities of

cytosol, membrane or periplasmic space.

Author summary

The microbial genome encodes for a large network of enzyme-catalyzed reactions. The

reaction rates depend on concentrations of enzymes and metabolites, which in turn

depend on those rates. Cells face a number of biophysical constraints on enzyme expres-

sion, for example due to a limited membrane area or cytosolic volume. Considering this

complexity and nonlinearity of metabolism, how is it possible, that experimental data can

often be described by simple linear models? We show that it is evolution itself that selects
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for simplicity. When reproductive rate is maximised, the number of active independent

metabolic pathways is bounded by the number of growth-limiting enzyme constraints,

which is typically small. A small number of pathways automatically generates the mea-

sured simple relations. We identify the importance of growth-limiting constraints in shap-

ing microbial behaviour, by focussing on their mechanistic nature. We demonstrate that

overflow metabolism—an important phenomenon in bacteria, yeasts, and cancer cells—is

caused by two constraints on enzyme expression. We derive experimental guidelines

for constraint identification in microorganisms. Knowing these constraints leads to

increased understanding of metabolism, and thereby to better predictions and more effec-

tive manipulations.

Introduction

Fitter microorganisms drive competitors to extinction by synthesising more viable offspring

[1, 2]. The rate of offspring-cell synthesis per cell, i.e., the specific growth rate, is a common

determinant of evolutionary success across microbial species [1]. A high growth rate requires

high metabolic rates, which in turn require high enzyme concentrations [3]. Due to limited

biosynthetic resources, such as ribosomes, polymerases, energy and nutrients, the expression

of any enzyme is at the expense of others [4, 5]. Consequently, the selective pressure towards

maximal growth rate requires the benefits and costs of all enzymes to be properly balanced,

resulting in optimally-tuned enzyme expressions [6–9].

Tuning all enzyme expression levels appears to be a highly complex task. First, the genome

of a microorganism encodes for thousands of reactions with associated enzymes. Second, a

change in expression level of one enzyme not only affects the rate of its associated reaction, but

also changes intracellular metabolite concentrations. These metabolite concentrations influ-

ence the activities of many other enzymes in a nonlinear fashion. In mathematical terms,

microorganisms thus have to solve a high-dimensional nonlinear optimization problem.

Surprisingly, experiments on many different microorganisms often show simple linear

relations between growth rate, enzyme expression levels and metabolic rates [10–12], and the

data can often be described by coarse-grained linear models. This suggests that microorgan-

isms in fact only use few regulatory degrees of freedom for tuning metabolic flux and protein

expression. It is currently unclear why this simple, low-dimensional behaviour results from the

a priori enormously complicated tuning task. Given that the tendency towards simplicity is

widespread amongst microorganisms, we expected this to be due to a general –evolutionary–

principle.

We found an evolutionary extremum principle: growth-rate maximization drives microor-

ganisms to minimal metabolic complexity. We provide the mathematical proof of this princi-

ple in the Methods section. It is derived from basic principles, more specifically from (i) mass

conservation, i.e., steady-state reaction-stoichiometry relations, and (ii) enzyme biochemistry,

i.e., the linear dependence of enzyme activity on the amount of enzyme and its nonlinear

dependence on substrate and product concentrations. Our results provide a novel perspective

on metabolic regulation, one in which the complexity is not determined by the size of the net-

work or the rate equations, but by the constraints acting on the enzyme concentrations.

Methods

In this section we will introduce the class of models that we studied, and mathematically prove

our main result: the extremum principle. Readers that would like to skip the mathematical
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proof are strongly suggested to read the biological summary of the results at the end of the

section.

The model: Evolutionary rate maximization can only be studied in a kinetic

model of metabolism with constraints on enzyme concentrations

The structure of any metabolic network can be given by a stoichiometric matrix N, indicating

which metabolites (rows) are consumed or produced in each reaction (columns). Because we

can split reversible reactions in two irreversible reactions [13], we will from now on assume

that all reactions are irreversible. A steady-state flux distribution is then given by a vector of

reaction rates v such that there is no accumulation or depletion of metabolites, and such that

all irreversibility constraints are satisfied. The solutions together form a flux cone:

P ¼ fv 2 Rr
j N � v ¼ 0; vi � 0g; ð1Þ

where r is the number of reactions. In steady state, we maximize the objective flux, which is a

(linear combination of) component(s) of this flux vector. Often, the objective is chosen to be

the overall cell-synthesis reaction, also called the biomass reaction vBM, which makes all cellu-

lar components in the right proportions according to the biomass composition [14].

To understand the resource allocation associated with a particular metabolic activity, we

need to know the relation between the rates of enzyme-catalyzed reactions and enzyme con-

centrations. At constant metabolite concentrations, these are in general proportional [3] as

captured by the rate equation:

vi ¼ eikcat;ifiðxÞ; ð2Þ

where ei is the concentration of the enzyme catalyzing this reaction, kcat,i is its maximal cata-

lytic rate and fi(x) is the ‘saturation function’ of the enzyme, which is dependent on metabolite

concentrations x. This function, fi(x), is often nonlinear, includes the thermodynamic driving

force, (allosteric) activation or inhibition, and other enzyme-specific effects.

To model the maximization of the cell-synthesis flux we have to account for bounds on

enzyme concentrations, originating for example from limited solvent capacities of cellular

compartments, or from a limited ribosomal protein synthesis capacity. We model these bio-

physical limits by imposing K constraints, each modelled by a weighted sum of enzyme con-

centrations:

Cð1ÞS :¼
X

i

wð1Þi ei � 1 . . . CðKÞS :¼
X

i

wðKÞi ei � 1:

These constraints correspond to limited enzyme pools. Overexpression of one enzyme is there-

fore at the expense of others that are subject to the same biophysical constraint. The weights,

wðjÞi , determine the fraction that one mole/liter of the ith enzyme uses up from the jth con-

strained enzyme pool. For example, for a constraint describing the limited solvent capacity of

the membrane, the weight of an enzyme is the fraction of the available membrane area that is

used up by this enzyme; this weight is thus nonzero only for membrane proteins. We call a

constraint ‘active’ when it limits the cell in increasing its growth rate, indicating that the corre-

sponding enzyme pool is fully used. One enzyme can belong to one, several or none of these

limited pools.

Note that these constraints on enzyme concentrations are different from the constraints on

reaction rates that are often used in stoichiometric methods (e.g., through Flux Balance Analy-

sis). For these linear models, it is known -similar to what we will derive in the general, nonlin-

ear case in this work- that few minimal pathways constitute the optimal solutions in such
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models [15]. However, constraints on reaction rates do not reflect the ability of microorgan-

isms to adjust their enzyme content: any reaction rate constraint could in principle be over-

come by an increase of the corresponding enzyme’s concentration. The enzyme constraints

that we model are due to biophysical laws and can thus not be alleviated by metabolic regula-

tion. These must thus be investigated to study the evolution of metabolism, although this

forces us to include the complicated (and often unknown) enzyme saturation functions, fi(x),

in our theory.

The number of constraints and the exact value of the weights may vary per organism. In

general we expect this number to be low, and indeed not many different enzyme expression

constraints have been proposed in the literature. Many aspects of microbial growth have been

successfully described using constraints that are (or can be reformulated as) enzyme expres-

sion constraints, like limited reaction rates and limited solvent capacities within cellular com-

partments [4, 5, 10, 16–20].

The introduction of enzyme kinetics in Eq (2) allows us to rewrite the enzyme constraints

as:

X

i

wð1Þi

kcat;i fiðxÞ
vi � 1 . . .

X

i

wðKÞi

kcat;i fiðxÞ
vi � 1: ð3Þ

We note that, although written in terms of the fluxes, these constraints are not equivalent to

the normal flux constraints used in FBA, since the weighted sums now depend on metabolite

concentrations. To maximize the cell-synthesis flux, not only the enzyme concentrations

should be optimized, but also the intracellular metabolite concentrations. Due to the necessary

inclusion of enzyme kinetics, flux maximization is turned into a complicated nonlinear prob-

lem. This is the problem we have investigated. Remarkably, we will prove below that the solu-

tion still uses only a few minimal metabolic pathways.

The minimal building blocks: Elementary Flux Modes

A minimal metabolic pathway is called an ‘Elementary Flux Mode’ (EFM). In words, EFMs are

support-minimal subnetworks that can sustain a steady state [21]. The ‘support’ of a flux vector

is the set of participating reactions: R(v) = {j: vj 6¼ 0}. That an EFM, EFM, is support-minimal

means that if there is another flux vector, v0 2 P, such that R(v0)� R(EFM) then we must have

v0 = αEFM for some α� 0. Another way of phrasing this is that none of the used reactions can

be set to zero in the EFM without violating the steady state condition. These metabolic subnet-

works turn out to be determined completely by reaction stoichiometry, and thus for their iden-

tification no kinetic information is needed. However, because of the many combinations of

parallel, alternative metabolic routes in metabolic networks, it is currently computationally

infeasible to find the complete set of EFMs in a genome-scale network [22, 23].

We exploit EFMs because any steady state flux distribution can be decomposed into posi-

tive linear combinations of EFMs. Indeed, Gagneur and Klamt showed that in any metabolic

network in which reversible reactions are split in two irreversible reactions, the EFMs coincide

with the extreme rays of the pointed polyhedral cone P [13]. We can thus write:

v ¼ l1EFM
1 þ . . .þ lFEFM

F; where li � 0; ð4Þ

where the multiplication factors λi denote how much the ith EFM is used and F denotes the

total number of EFMs in the network. Eq (4) shows that EFMs are the basic building blocks of

steady state metabolism. Note that, although the Elementary Flux Modes are constant vectors

defined by stoichiometry, the λi-factors are variable and dependent on metabolite concentra-

tions. We will make this dependence more precise in S1 Appendix Section 5.

The number of active metabolic pathways is bounded by the number of constraints
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EFMs are defined up to a constant: if v is an EFM, then so is αv for any a 2 R�0. This has

two important consequences. First, the ratio between flux entries in an EFM are fixed, and sec-

ond, we may scale one entry of an EFM to 1. We will consider optimisation of some objective

flux vr at steady state. Therefore, we only need to consider those EFMs which have a nonzero

rth flux value, because we assume that all EFMs (even the ones that do not produce objective

flux) will use up some of one of the limited enzyme pools. We will thus not consider the patho-

logical case in which there is an EFM that does not produce objective flux but also does not

bring any costs, since this EFM can always be added to an optimal solution. Without loss of

generality, we make the objective flux the last entry in the flux vector, and we will always scale

this entry to 1. The ith EFM can thus be denoted by EFMi ¼ ðVi
1
; . . . ;Vi

r� 1
; 1Þ

T
2 Rr

, with all

Vi
j uniquely determined by stoichiometry. The λi factor in (4) can now be reinterpreted as the

flux that EFMi contributes to the objective flux.

Using EFMs, we can unambiguously quantify metabolic complexity as the number of flux-

carrying Elementary Flux Modes. We call an EFM a minimal unit of metabolic complexity

because the flux values through its participating reactions can only scale with one overall fac-

tor. A flux distribution that is a sum of K EFMs thus has K flux degrees of freedom. A small

number of degrees of freedom gives rise to metabolic behaviour with simple relations between

the growth rate and flux values.

The cost vectors: A low-dimensional view at metabolism

Given K constraints, we can, for each EFM, calculate the cost per constraint for making one

unit objective flux. These K costs turn out to comprise all relevant information for growth

rate optimisation. Therefore, we will here define the cost vectors that have these costs as their

entries. We will use the cost vectors to study metabolism in low-dimensional constraint space
throughout this paper.

As discussed above, we can rescale each EFM such that it is a vector of the form

EFMi ¼ ðVi
1
; . . . ;Vi

r� 1
; 1Þ

T
2 Rr

. To produce one unit objective flux, we thus need a flux of

Vi
j through reaction j. Since we have vj = kcat,j ej fj(x), we get

eij ¼
Vi

j

kcat;j fjðxÞ
;

where eij denotes the necessary concentration of enzyme j for one unit objective flux through

EFM i. We can then define the cost vector di(x) for the ith EFM, with components given by the

total costs that this EFM brings per constraint:

di
kðxÞ :¼

Xr

j¼1

wðkÞj eij;

¼
Xr

j¼1

wðkÞj

Vi
j

kcat;j fjðxÞ

ð5Þ

Because enzyme kinetics determine the enzyme concentrations and thereby the enzymatic

costs, it is unlikely that several EFMs have exactly the same costs. Different EFMs use at least

one different enzyme, and it is highly improbable that the necessary concentrations of these

different enzymes are exactly the same real number. If one of these non-overlapping enzymes

is part of a constrained pool, the EFMs will thus have different costs. If, however, none of the

non-overlapping enzymes are part of the constrained pools, several EFMs can indeed have the

same costs. To deal with this case we introduce the notion of equivalent EFMs. In modelling

The number of active metabolic pathways is bounded by the number of constraints
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methods that do not include kinetic information, such as FBA, having equivalent EFMs is

much more probable, such that the solution spaces are often multi-dimensional subspaces.

Definition 1. Given a set of constraints, Cð1ÞS ; . . . ;CðKÞS , two EFMs, EFM1, EFM2, are called
equivalent with respect to the constraints if their associated cost vectors are equal: d1(x) = d2(x).

Because the cost vectors play a central role in the whole paper, we illustrated their definition

and use in Fig 1. Many of our results followed from studying these cost vectors.

The extremum principle: The number of active EFMs is determined by the

number of constraints on enzyme expression

We here prove the main result of this study, the extremum principle. For a general metabolic

model, as introduced above, it states a necessary condition for a flux vector v 2 P to be a maxi-

mizer of the objective flux.

Theorem 1. Consider a metabolic network characterized by the stoichiometric matrix N.

Let vr be an objective flux, which is to be maximized at steady state, under K linear enzymatic

Fig 1. The cost vector formalism shows what determines the number of EFMs in the optimal solution. We here consider a simplified model

with 2 EFMs (blue and orange), and 2 constraints. In reality, the costs of many more EFMs have to be compared, and potentially also of more

constraints. The cost vector di
ðxÞ ¼ ½di

1
ðxÞ; di

2
ðxÞ�T of the ith EFM denotes the fractions of the first and second constrained enzyme pool that this

EFM uses when producing one unit of objective flux. The cell-synthesis flux produced by EFM i is denoted by λi, and the corresponding enzyme

costs are λidi(x). The cost of mixing EFMs 1 and 2 corresponds to the weighted sum of the cost vectors: λ1 d1(x) + λ2 d2(x). The mixture is

feasible as long as none of the constraints is exceeded: λ1 d1(x) + λ2 d2(x)� 1. The objective value, λ1 + λ2, is maximized by fitting a vector sum

of as many vectors as possible in the constraint box. This solution is shown by the dashed vectors. The pure usage of one EFM with off-diagonal

cost vector leads to underuse of one constraint, while diagonal cost vectors can exhaust both constrained pools. A mixture of EFMs will always

be a combination of an above-diagonal and a below-diagonal vector. All EFMs and mixtures thereof, can be ranked by a dot on the diagonal that

denotes the average cost per unit cell-synthesis flux (see Lemma 4 in S1 Appendix for a proof). Pure usage of above-diagonal cost vectors is

ranked by projecting the cost vector horizontally to the diagonal, while pure usage of below-diagonal vectors is ranked by vertical projection.

Mixtures are ranked by placing a dot at the intersection of the diagonal with the line between the two cost vectors. The (mixture of) EFM(s) with

the lowest average cost (i.e., with the dot closest to the origin) leads to the highest growth rate (the mathematical proof is included in S1

Appendix). The enzymatic costs of an EFM depend on the intracellular metabolite concentrations, i.e., the saturation of enzymes. The shaded

regions indicate alternative positions for the cost vectors at different intracellular metabolite concentrations, two of them are shown. The blue

and orange cost vectors lead to the highest growth rate when using only that EFM. We see that in the left figure the orange EFM gives rise to a

higher growth rate. Upon a change of environmental conditions, the cost vectors can change, and the mixture of EFMs can become better than

either single EFM (right figure). A change like this would lead to a change in metabolic behaviour.

https://doi.org/10.1371/journal.pcbi.1006858.g001
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constraints of the form:

CðkÞS :¼
Xr

j¼1

wðkÞj ej � 1 for k 2 f1; . . . ;Kg:

Then, at most K non-equivalent Elementary Flux Modes are used in the optimal solution.

Proof. We assumed that vj� 0 for all reactions in the network because, without loss of gen-

erality, we split all reversible reactions into a forward and a backward reaction [13]. Let us for

now also assume that none of the EFMs are equivalent (where equivalence is defined according

to Definition 1) we will handle the case with equivalent EFMs at the end of the proof.

According to Eq (4), the optimal solution can always be expressed as a conical

combination of EFMs. As before, we rescale every EFM such that it is a vector of the form

EFMi ¼ ðVi
1
; . . . ;Vi

r� 1
; 1Þ

T
2 Rr

. The objective flux for a flux vector v can now be written as

vr ¼
�
l1EFM

1 þ . . .þ lMEFM
M
�

r
¼ l1 þ l2 þ . . .þ lM; where li � 0; ð6Þ

where M is the number of EFMs containing a nonzero vr. Since the EFMs are fixed vectors,

the λi become our optimisation variables. Since
PM

i¼1
liVi

j ¼ vj ¼ kcat;iej fjðxÞ, we have

ej ¼
XM

i¼1

li

Vi
j

kcat;j fjðxÞ
:

This allows us to rewrite enzyme constraint CðkÞS as

CðkÞS ¼
Xr

j¼1

wðkÞj ej

¼
Xr

j¼1

wðkÞj

XM

i¼1

li

Vi
j

kcat;j fjðxÞ

¼
XM

i¼1

li

Xr

j¼1

wðkÞj

Vi
j

kcat;j fjðxÞ

≕
XM

i¼1

lid
i
kðxÞ:

ð7Þ

In the last step, we recognized the cost vector components defined in Eq (5).

The kth entry of cost vector i denotes the cost for the enzymes in constraint k (the k-

enzymes) to obtain one unit of objective flux through EFMi (and therefore also the enzymatic

cost to increase this flux by some factor). We can rewrite our optimization problem in terms of

these cost vectors. We will hereby designate each metabolite concentration as either external,

xE, or internal, xI, such that: x = (xE, xI). This distinction is important, because the external

concentrations are given by the environment and therefore part of the parmeters of the opti-

misation problem, while the internal concentrations can be tuned by the cell and are therefore

part of the solution. We need to solve

max
xI ;ej

n
vr

�
�
� v 2 P; CðkÞS � 1 for 1 � k � K

o
; ð8Þ

and using Eqs (6) and (7), this is equivalent to

max
xI ;λ

nX
li

�
�
� li � 0; DðxÞ � λ � 1

o
; ð9Þ

The number of active metabolic pathways is bounded by the number of constraints
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where D = [d1(x) � � � dr(x)] is the cost vector matrix. The relation D(x) � λ� 1 shows that the

optimal λ vector indeed depends on the metabolite concentrations x, as was indicated below

Eq (4).

Largely following Wortel et al. [24], we now use a subtle mathematical argument. We fix

x = x0, so that the enzyme saturations fj(x0) are constant. This will give us a fixed cost vector

for each EFM. The remaining optimization problem is then visualized in Fig 1, where cost

vectors of some EFMs are plotted in a box of constraints. Finding the optimal solution is equiv-

alent to finding a sum of scalar multiples of the cost vectors without leaving the box of con-

straints while maximizing the sum of these multiplicities. The example in Fig 1 shows only 2

constraints, but in general we would have M vectors in a K-dimensional cube.

In the general case, it might seem intuitive that K constraints lead to the usage of at most K
EFMs since all K linearly-independent vectors form a basis of a K-dimensional space. We can

thus always take a combination of K vectors to reach the point where all constraints are met

with equality. However, we should be careful because we could end up with negative λ’s for

some of the EFMs. We continue with the proof by rewriting the problem in a Linear Program-

ming (LP) form,

Maximize vr = 1 � λ,

subject to

Aλ� z,

where

A ¼
� IM�M

D

� �

; z ¼
0M�1

1K�1

� �

:

The solutions of this linear programming problem form a polytope in RM
, bounded by the

hypersurfaces given by the constraints. The most important theorem of LP teaches us that an

optimal solution is found among the vertices of this polytope. The dimension of such vertices

is zero, which means that optimal solutions satisfy at least M of the K + M constraints with

equality. Therefore at most (K + M) −M = K constraints can be satisfied with strict inequality.

These K inequalities could be concentrated in the λi� 0 part, which means that the corre-

sponding K Elementary Flux Modes are used. Thus, an optimal solution can use no more

EFMs than there are active constraints in the system, thereby proving the theorem for any

arbitrary vector of metabolite concentrations x.

There is one possible exception to the above reasoning. Let’s say that K EFMs are used in the

optimum: vopt ¼
PK

i¼1
liEFMi. If one EFM, say EFMK, has an equivalent EFM, say EFMK+1,

then we can replace the usage of EFM K by any convex combination of EFMs K and K + 1 and

the solution will still be optimal. So, in the case that the costs of several EFMs are the same,

the optimal flux vector could consist of more EFMs than the number of constraints. That’s why

the theorem only tells us that no more than K non-equivalent EFMs are used in the optimal

solution.

Finally, it follows that, since the theorem is true for any set of metabolite concentrations x,

it is of course also true for the optimal set, xopt ¼ ðxE; xIoptÞ.
We note that the optimal internal concentrations, the choice of EFMs, and thereby the opti-

mal enzyme concentrations, all depend on the external concentrations xE. Which specific

EFMs are the optimal ones, thus does not follow directly from the theorem.

We think that the case where several EFMs are equivalent is not very common in biology.

First, the constraints on enzyme expression are due to biophysical limits and we expect these

to act on many enzymes together. This reduces the chance of having several EFMs that use

The number of active metabolic pathways is bounded by the number of constraints
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exactly the same enzymes within the constrained pool of enzymes. Second, even if several

EFMs would use the same enzymes, then the enzyme costs depend on the enzyme saturations,

and these depend on the optimal metabolite concentrations. These optimal concentrations

depend on the rest of metabolism, such that the non-overlapping part of the EFMs can still

influence the enzyme costs. For these two reasons, we will assume in the rest of this work that

EFMs are generally not equivalent.

The previously published theorem that maximal specific flux,
vBM
etot

, is attained in an EFM [24,

25] is a special case of Theorem 1. In the cost vector formalism that we described in Fig 1, it is

visualized by cost vectors on a line rather than in a box, because there is only one enzymatic

constraint (total enzyme concentration is bounded). In this case, there is indeed a shortest cost

vector for all but a negligible subset of situations (as discussed in the proof).

The following corollary can be used to find out how many constraints are active when we

observe a certain number of active EFMs. It is the contrapositive of Theorem 1 and therefore

mathematically equivalent. The reason that it is stated separately is the difference in biological

applicability: the theorem is a predictive statement while the corollary is descriptive. As we will

see in the Results section, the theorem tells us that metabolic complexity is low because the

number of enzymatic constraints is typically low. The corollary however, enables us to infer

from experimental data how many constraints must be active, and thus gives us physiological

insight from population-level data.

Corollary 2. If a flux vr is optimized and K non-equivalent Elementary Flux Modes are used,
then at least K linear enzymatic constraints must be active.

EFMs are not the only set of building blocks that we could have used. In the context of Flux

Balance Analysis, constraint-based rate maximization can be studied by calculating Elemen-

tary Flux Vectors (EFVs) [26, 27], which are the minimal pathways that generate all flux distri-

butions that satisfy not only the steady-state assumption, but also the additional constraints.

Therefore, for fixed enzyme saturations and constraints, EFVs provide a set of feasible building

blocks of which convex combinations automatically satisfy all constraints. However, since

every EFV is a conical combination of EFMs, and since we wanted to study evolutionary

growth-rate maximization, we preferred to do our analysis on the set of EFMs. This is because

the EFMs provide a set of invariant (at least on timescales on which stoichiometry is not

evolved) objects for which regulatory circuits can be evolved. In principle, the extremum prin-

ciple can also be written in terms of EFVs. We can show, in a similar manner as in the proof

above, that rate-maximal solutions will use only one EFV, which is a convex combination of at

most K EFMs.

Biological summary of the extremum principle and its proof

The extremum principle, stated in Theorem 1, is a statement about all metabolic networks,

independent of the network size, topology, or the specific enzyme kinetics. All microorganisms

are subjected to a small number of enzymatic constraints, and all metabolic networks have Ele-

mentary Flux Modes as their building blocks: minimal pathways that make all cellular compo-

nents from external sources. The fluxes through the participating reactions in an EFM can

only be rescaled with one overall factor. We concluded that the use of an additional EFM thus

only adds one flux degree of freedom, so that experimental data will show low complexity if

few EFMs are used. We then proved the extremum principle, stating that the number of flux-

carrying EFMs in the maximal growth rate solution is always bounded by the number of con-

straints on enzyme expression. As a whole, this leads to the prediction that microbial behav-

iour will show low complexity.

The number of active metabolic pathways is bounded by the number of constraints
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In the proof, we compared the costs and benefits of the different EFMs. To be precise, we

rescaled the EFMs such that the benefit of each EFM was equal: they all give one unit of objec-

tive flux. If we have K constraints, we also have K different costs for which we need to compare

the different EFMs. We showed that the optimal solution is a combination of up to K of these

EFMs. This is in accordance with the intuition that one EFM can be selected for each con-

straint because it has a low cost with respect to this constraint.

To find the proof, we developed a framework using cost vectors. In Fig 1 we summarize

how this framework allows us to study high-dimensional metabolism in the few dimensions

that actually matter: we can compare the enzyme costs of all EFMs in the low-dimensional

‘constraint space’ defined by the limited enzyme pools. This perspective enables us to design

experiments that characterize the active biophysical constraints, as we will discuss in the

Results section.

Results

The metabolic complexity is typically very low

We called an EFM a minimal unit of metabolic complexity because the ratios between the

fluxes through all participating reactions are fixed, and none of its reactions can be removed.

Consequently, a microorganism that uses one EFM can only change all reaction rates with the

same factor. In other words, there is only one regulatory degree of freedom, instead of many if

all reaction rates could have been tuned separately. In this case, flux values can be described by

only one straight line. This becomes more complex when the number of flux-carrying (active)

EFMs increases. Using this knowledge, the number of active EFMs can be estimated from flux

measurements.

We re-analysed data from carbon-limited chemostats and indeed observed that uptake

rates of glucose and oxygen could be described by a straight line for a large range of growth

rates, testimony of single EFM usage (Fig 2, S1 Appendix Section 8). A possibility that we

cannot exclude, however, is that many EFMs are used, but that these EFMs all have the same

relation between growth rate, glucose uptake and oxygen uptake. On the other hand, the

experimentally measured linear growth laws between cellular building blocks and growth [11,

12, 18], and the success of coarse-grained models [4, 5], do provide some additional indica-

tions of the usage of a small number of EFMs. A more definite proof could be found in two

ways. First, if many different reaction rates are measured in balanced growth across slightly

different environments, or second, if all internal fluxes in the cell are measured, and complete

knowledge of the stoichiometric network is available. However, to our knowledge, currently

available fluxome datasets were collected across mutants, or across very different growth envi-

ronments, making them unsuitable for our purposes. For now, based on the available data, we

cautiously argue that the number of simultaneously active EFMs is typically very low, in the

order of 1 to 3. That microorganisms would choose only a handful of EFMs out of billions of

alternatives is in accordance to our extremum principle, Theorem 1. These alternatives are

apparently not evolutionarily equivalent, and only a small number has been selected because

of their superior kinetics.

The extremum principle: The low number of biophysical constraints causes

low metabolic complexity

The extremum principle states: when the rate of a particular reaction in a metabolic network is

maximized, the number of flux-carrying EFMs is at most equal to the number of constraints

on enzyme concentrations that limit the objective flux. In particular, the principle holds for

The number of active metabolic pathways is bounded by the number of constraints
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the cell-synthesis reaction. Therefore, if the number of active constraints is low, so is the

number of active EFMs at maximal growth rate. This is the basis of our finding that maximal

growth rate requires minimal metabolic complexity, and this extends the result that rates are

maximized by one EFM under a total protein constraint [24, 25]. This earlier result could not

explain –from a resource allocation perspective– datasets in which several metabolic pathways

are used, such as overflow metabolism, metabolic switches, and the expression of unutilized

proteins.

The extremum principle holds regardless of the complexity of the metabolic network, i.e.,

of its kinetics and its structure. The metabolic complexity is only determined by the number of

active constraints; the kinetics and structure subsequently determine which EFMs are optimal

and selected by evolution—as illustrated by in silico evolution of metabolic regulation towards

only one active EFM [34]. For this reason, also genome-scale metabolic models, which contain

all the annotated metabolic reactions that a microorganism’s genome encodes [35], and even

the ones that have been studied with different additional resource constraints [36, 37], behave

qualitatively similar to simplified core models. Coarse-grained models can thus be used with-

out loss of generality, which greatly facilitates our understanding of metabolic behaviour.

Using the cost vector formalism that we used in the proof of Theorem 1, we can study

metabolism in the low-dimensional constraint space, instead of in the high-dimensional flux

space (see Fig 3). In the case of two constraints (also illustrated in Fig 1), the extremum princi-

ple states that both constrained enzyme pools can always be fully used with two cost vectors

Fig 2. Proportionality of reaction rates and growth rates, shown by many microorganisms, is an indication of low metabolic complexity.

Measured uptake rates [28–33] were gathered from experiments in which growth rate was varied in carbon-limited chemostats. For each species

we normalized the measured growth rate to the so-called critical growth rate: the growth rate at which the production of overflow products

starts. Uptake rates were normalized relative to the uptake rate of the species at the critical growth rate. Up to the critical growth rate, all

microorganisms show a simple proportional relation between the growth rate and uptake rates of glucose and oxygen. In Section 8 we explain

why this proportionality is an indication of the usage of only one EFM. After the critical growth rate, the reaction rates are no longer

proportional, a phenomenon called overflow metabolism.

https://doi.org/10.1371/journal.pcbi.1006858.g002
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Fig 3. Illustration of the extremum principle. The extremum principle states that the dimensionality of the solution space is determined by

the number of enzyme-expression constraints, rather than by the dimensionality of the metabolic network. The constraints result from

biophysical limits, e.g., limited solvent capacities within cellular compartments. Our cost vector formalism, explained in Fig 1, enables us to

analyze metabolism in the low-dimensional constraint space, instead of in the high-dimensional flux space that is normally used.

https://doi.org/10.1371/journal.pcbi.1006858.g003
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(EFMs), not more. However, an EFM with a diagonal cost vector can make full use of both

pools on its own: hence, the number of EFMs that maximize flux can also be less than the

number of active constraints. Another instance in which only one EFM is optimal, is when

all cost vectors lie above or below the diagonal. In this case, there is only one active constraint;

the other pool does not limit the total possible flux of the system under these conditions. We

have derived the necessary and sufficient conditions under which it is optimal to use EFMs in

mixtures (S1 Appendix Section 5). Plotting the cost vectors for different internal metabolite

concentrations also shows that the length and direction of the cost vectors are affected by

metabolite concentrations via enzyme kinetics (depicted by the shaded areas in Fig 1). We

show in S1 Appendix Section 5 that this metabolite-dependency makes it much more probable

that less than K EFMs are used in a system with K constraints, because internal concentrations

can be changed to make cost vectors diagonal.

The number of enzymatic constraints can be inferred from experimental

data: The extremum principle applied to overflow metabolism

A well-known phenomenon observed across microbes is overflow metabolism: the apparently

wasteful excretion of products. Examples are the aerobic production of ethanol by yeasts

(Crabtree effect), lactate by cancer cells (Warburg) or acetate by Escherichia coli [4, 38, 39].

The onset of overflow metabolism is generally studied as a function of growth rate (e.g., in che-

mostats where the growth rate is set by the dilution rate of the culture). Before some critical

growth rate, cells fully respire, but when the growth rate is increased above some critical value,

respiratory flux decreases and the flux of overflow metabolism emerges.

According to our theory, an additional enzymatic constraint must have become active at

the critical growth rate (see Fig 2). Below the critical growth rate, the respiratory flux is propor-

tional to the growth rate, which is a characteristic of single EFM usage (see S1 Appendix Sec-

tion 8). Above the critical growth rate however, the decreasing respiratory flux and increasing

overflow flux indicate that at least two EFMs and therefore two constraints must be active.

Indeed, current models of overflow metabolism all use such an additional constraint, but the

biophysical nature of the first constraint (mostly an uptake constraint) is often kept implicit.

Many explanations of overflow metabolism therefore appeared to have only one constraint, for

example linked to total protein [4], or membrane protein [40], but within our theory an opti-

mal flux distribution with two EFMs is only possible with at least two constraints.

We can gain more insight on overflow metabolism by applying the cost vector formalism

on a coarse-grained model (Fig 4 and S2 Appendix). Note however, that this model has an

illustrative purpose only, to show that overflow metabolism can be easily explained with two

enzyme expression constraints. We do not claim that the imposed constraints are the real

constraints; for this, experiments are needed, as we will explain later. The model includes

a respiration pathway and an acetate overflow branch. All steps include enzyme kinetics, and

constraints are imposed on two enzyme pools: total cytosolic protein, and total membrane pro-

tein. We model overflow metabolism as a function of the glucose concentration, because even

though experimentally the growth rate is set by the dilution rate of the glucose-limited chemo-

stat, growth rate always correlates with the available glucose concentration. At low extracelullar

glucose concentrations, all cost vectors have high membrane costs and lie above or at best at

the diagonal (as the membrane constraint is on the y-axis): the membrane pool limits substrate

uptake and therefore favours efficient use of glucose via respiration. Our core model predicts

that, as extracellular glucose concentrations increase, so does the saturation level of the glyco-

lytic enzymes such that flux can increase without a change in protein level. Consequently,

across a large range of external substrate concentrations pure respiration leads to maximal

The number of active metabolic pathways is bounded by the number of constraints
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growth rate by fully exploiting the two available enzyme pools. The membrane constraint is

however more growth-limiting, i.e., loosening this constraint will give a larger growth rate ben-

efit. At high glucose concentrations, transporters are more saturated (cost vectors become

shorter in the membrane direction) and the respiration cost vector becomes below-diagonal:

pure respiration will leave the membrane protein pool underused, while the cytosolic pool

Fig 4. The cost vector formalism provides insight in how growth rate maximization leads to overflow metabolism. a) A core model with

two EFMs that individually lead to cell synthesis (orange: respiration and blue: acetate overflow). All considered reactions have an associated

enzyme, whose activity depends on kinetic parameters and the metabolite concentrations. We varied growth rate by changing the external

substrate concentration. Given this external condition, the growth rate was optimized under two enzymatic constraints (limited cytosolic

enzyme S ei,cyto� 1 and limited membrane area etransport� 0.3). b) The predicted substrate uptake fluxes directed towards respiration and

overflow are in qualitative agreement with the experimental data (shown before in Fig 2) of several microorganisms scaled with respect to

the growth rate (μcrit) and uptake rate (qcrit) at the onset of overflow [4, 38, 39]. c) The cost vectors (solid arrows) of the two EFMs before

(left) and after (right) the respirofermentative switch. The x-coordinate of the cost vectors denote the fraction of the cytosolic volume that is

needed to produce one unit objective flux with the corresponding EFM. The y-coordinate shows the necessary fraction of the available

mebrane area. The position of the cost vectors are shown for the optimized metabolite concentrations; the shaded regions show alternative

positions of the cost vectors at different enzyme and metabolite concentrations. The dashed vectors show the usage of the EFMs in the

optimal solution.

https://doi.org/10.1371/journal.pcbi.1006858.g004
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limits respiration. A better strategy is to respire less and make some of the cytosolic pool avail-

able for another EFM that can exploit the underused membrane pool. The net outcome is that

a mixture of EFMs attains a higher growth rate than either of the two EFMs alone.

We think that many published explanations of overflow metabolism are unified by the

extremum principle. The added value is not that it gives yet another model that qualitatively

captures overflow metabolism, but rather that it explains why published models are successful

by offering an overarching theory. Indeed, we show in S1 Appendix Section 4 that explanations

for overflow metabolism offered by other modeling methods, imposing different constraints,

such as coarse-grained whole cell models [4, 5] and constraint-based genome-scale M-models

[19, 41–43] are mathematically all instances (or simplifications) of the exact same constrained

optimization problem that we study here. Their maximizers thus all follow the extremum prin-

ciple, and overflow metabolism must be the result of a second constraint that becomes active.

So-called ME-models [36] fall under a slightly different class of mathematical problems, but

the onset of overflow metabolism is still caused by an additional active constraint. However,

since the above explanations all capture the phenomenon with different constraints and solve

the same mathematical problem, we cannot conclude on the mechanistic nature of the con-

straints, yet.

The identity of the enzymatic constraints can be revealed by experimental

perturbations

We can predict the effect of experimental perturbations on metabolism with the cost vector for-

malism. Examples of such perturbations are the expression of non-functional proteins or the

inhibition of enzymes, which can respectively be interpreted as reducing a limited enzyme pool,

or lengthening the cost vectors. The effect of such perturbations on growth, when two EFMs

are expressed, was analysed in the cost vector formalism (see S1 Appendix Section 6 and 7 for

the analysis). In Fig 5a–5d we predict the (qualitative) effect of reducing the accessible area in

constraint space for two cases (i) reduction of both enzyme pools by the same amount; or (ii)

reduction of only the first constrained pool. We subsequently compare these predictions with

the perturbation experiments carried out by Basan et al. [4] (see SI for a mathematical analysis).

With this analysis, we suggest a broadly-applicable experimental approach for validating

likely growth-limiting constraints. Given a candidate constraint, the theory suggests a pertur-

bation of the size of the corresponding limited enzyme pool, e.g., by the expression of a non-

functional protein in this pool. Then, the effect of this perturbation on the flux through the

active EFMs can be compared with the predictions, as in Fig 5. Now, we can validate or falsify

whether certain limited enzyme pools are truly growth-limiting. Alternatively, a specific

enzyme could be inhibited; this however introduces the risk of inhibiting some EFMs more

than others, leaving the results potentially uninterpretable.

The perturbation predictions can also be used to re-interpret published experiments. For

example, the overexpression of the unused protein LacZ coincides with our predicted effect

of an equal reduction of two enzyme pools (Fig 5e). The cost of making the cytosolic protein

LacZ thus takes up an equal fraction of both constraints. We think this can be explained

because LacZ can be considered an average protein in terms of resource requirements. Since

metabolism was already tuned to optimally use both limited enzyme pools, all EFMs will now

require more of both limited enzyme pools to maintain the growth rate (the cost vectors are

lengthened). Therefore, the additional synthesis costs reduce both constrained pools to a simi-

lar extent. As a consequence, this analysis cannot decide on the biological interpretation of the

constraints.

The number of active metabolic pathways is bounded by the number of constraints
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Fig 5. Predictions and experimental results of the perturbation of the size of limited enzyme pools during growth using a mixture of

EFMs. In the cost vector plots, panels a) and b), the red vector denotes the optimal solution in the unperturbed organism. Upon experimental

perturbation, the available area in constraint space can change, indicated by the shaded grey areas. The green, blue, and grey vectors show the

new optimal solutions under increasingly strong perturbations. The predicted effect on the flux through the acetate branch is shown in panels c

and d). a,c) Analysis of perturbations that tighten both protein pools with the same amount shows that flux and growth rate will decrease

proportionally, as observed experimentally (e)) for the overexpression of LacZ on different carbon sources (data from Basan et al. [4]). b,d)

Perturbations that tighten an enzyme pool that is mostly used by one EFM (here denoted by CO2) initially cause an increase in flux through the

other EFM in the mixture(Ac). Eventually, at stronger limitations, this flux also decreases. f) This behaviour is observed, a.o., for translation

inhibitor experiments using chloramphenicol (S1 Appendix Section 7).

https://doi.org/10.1371/journal.pcbi.1006858.g005
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The addition of chloramphenicol is an example where our analysis does indicate that one

enzymatic pool is affected more than the other (Fig 5f)). Chloramphenicol inhibits translation

and the cell therefore needs a larger number of ribosomes per unit flux. This again adds a cost

for protein synthesis, thereby reducing both pools. The dataset however shows that chloram-

phenicol has a more dominant effect on the first pool (x-axis) than on the second pool (y-axis).

Technically, this is because the inhibition of translation lengthens the cost vectors of all EFMs

in the x-direction to different extents. We study this case in S1 Appendix Section 7 and show

that the effects are equivalent to the effects of resizing the first enzyme pool. This means that

the increased number of ribosomes has an additional effect on the first pool, which could well

be related to the large cytosolic volume that the ribosomes take up. This suggests that one of

the constrained pools is the sum of cytosolic proteins.

Our kinetic, constraint-based approach provides novel biological insight

Under-utilization of enzymes appears to be in conflict with optimal resource allocation. For

example, Goel et al. [44] studied the switch of L. lactis from mixed-acid fermentation to homo-

lactic fermentation. Since they found constant protein expression as a function of growth rate,

they concluded that this metabolic switch cannot be explained from protein cost consider-

ations. However, in Fig 6a) we show that a kinetic model that incorporates different strengths

Fig 6. Under-utilization of enzymes and co-consumption can be understood with our kinetic, constrained-based approach. a) Model

simulations of the metabolic switch of L. lactis are shown (dashed lines), along with experimental data from [44]. The flux predictions for both

pathways are expressed as a fraction of the total flux through both pathways. Enzyme concentrations are normalized to the concentrations at a

growth rate of 0.15 and then log-scaled. The model reproduces the switch from mixed-acid to homolactic fermentation at constant enzyme

concentrations, because of its consideration of enzyme kinetics. Details of this model are described in S3 Appendix. To obtain a perfect fit with

the data, a larger model should be invoked, but this is beyond the scope of this paper. We emphasize that protein concentrations can remain

constant while pathway usage changes. b) An example is shown of a metabolic network with EFMs that use either succinate or xylose (orange

and blue circles respectively), and an EFM (green circles) that uses two carbon sources. Grey squares denote products that are essential for cell

growth. The co-consumption EFM can synthesize one cell component with succinate, and the other with xylose. The reaction that connects the

upper and lower parts of the network therefore becomes inessential. This leads to a possible reduction in protein costs and therefore to a growth

rate advantage. We indeed measured a growth rate increase by the co-consumption of succinate and xylose, as shown in the inset in which

different biological replicates are indicated with different points. Results of the other combinations that were tested can be found in S4

Appendix.

https://doi.org/10.1371/journal.pcbi.1006858.g006
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of product inhibition of ATP onto the fermentation pathways can lead to the experimentally

observed behaviour when protein allocation is optimized. In our model, the saturation of

homolactic fermentation enzymes rapidly increases with growth rate, while the saturation of

mixed acid fermentation enzymes decreases slightly due to the increased product inhibition of

ATP. As such, metabolic flux can be reallocated without a change in protein allocation (we

provide the details in S3 Appendix). Another example is the expression of large fractions

of under-utilized proteins by E. coli at low growth rates [45]. This is also in agreement with

optimal resource allocation when one considers the kinetics of enzymes, such that their

saturation with reactants is variable. In these two examples, the underutilization of proteins is

thus used as an indication that microorganisms do not optimally allocate their resources. We

here showed that these supposed counterexamples can in fact be in agreement with optimal

resource allocation when one considers a kinetic model, thus including variable metabolite

concentrations and enzyme saturations.

In the presence of multiple carbon sources, microorganisms might consume them simul-

taneously [46–48]. We confirmed experimentally that E. coli only co-consumes carbon

sources when this increases its growth rate (S4 Appendix). However, it is yet unclear why co-

consumption can be favourable. Optimization models have been made that show simulta-

neous substrate uptake [47, 48], but the approach of Hermsen et al. [47] is mechanistic

and does not provide a fundamental cause, and Beg et al. [48] state that “cells preferentially

using the more efficient carbon source would outgrow those that allow the simultaneous uti-

lization of other carbon sources”. Aidelberg et al. [46] state that single objective optimization

approaches cannot explain co-consumption. However, we show that co-consuming EFMs

(S4 Appendix) exist that reduce resource costs per unit growth rate, hence leading to higher

growth rates. These new EFMs exist when each substrate makes a different set of precursors

(see Fig 6b) for an illustration). Consequently, co-consumption can become favourable when

reactions connecting a carbon source to a distant precursor are no longer essential. Follow-

ing this reasoning, one would expect the largest growth benefit if substrates are co-consumed

that enter the metabolic network far from each other. Indeed we, as well as others [47],

observed the largest growth benefit when lower-glycolytic substrates are combined with

upper-glycolytic substrates.

Some microbial strategies are seemingly growth rate reducing, such as the anticipatory

expression of stress proteins [39] and alternative nutrient transporters [49], and the overca-

pacity of ribosomes [50]. That these strategies were still selected by evolution is often

ascribed to fitness benefits in dynamic conditions. However, in our constraint-based

approach these types of behaviours do not have to be growth rate reducing. Some of the pro-

tein pools might not be completely exploited, and the expression of proteins might then

bring little or no costs. For example, our analysis of overflow metabolism shows that one of

the constrained enzyme pools is underused at low growth rates. This underused pool can

accommodate proteins that might be favourable for future conditions. For example, say that

a microorganism faces a cytosolic and a membrane constraint, but suppose that only the

membrane constraint is active at low growth rates. The unused cytosolic capacity can then

be exploited for other purposes. The sole activity of a membrane constraint at low growth

rates indeed explains why O’Brien et al. observed E. coli to have a ‘nutrient-limited’ [36]

growth region at slow growth.

Discussion

The extremum principle that we derived and illustrated in this work predicts the evolutionary

direction on a short timescale, dictating optimal enzyme expression levels. At a given time, the
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extremum principle predicts that resources are reallocated to the most efficient enzymes at the

expense of others that are less active per unit enzyme: evolution reduces the number of active

EFMs. On a longer timescale, kinetic parameters and network stoichiometry can evolve,

thereby changing the phenotypic potential: evolution modifies the cost vectors. In this new set-

ting, the extremum principle will again predict minimal complexity, although the EFMs that

are selected and the flux through these EFMs may have changed. Our theory predicts that a

microorganism selected for maximal growth rate will, in static conditions, only express a small

number of EFMs and therefore its metabolism is low-dimensional. This could very well be the

explanation of the simple linear relations that many experimentally measured relations show

[10–12]. This simplicity may also provide an explanation how only a few number of metabo-

lites or proteins (“master regulators” such as CcpA or Crp) seem to regulate (central) metabo-

lism [51].

The insight that the dimensionality of metabolism is bounded by the number of active con-

straints is applicable to earlier modelling approaches that have used resource allocation princi-

ples. Furthermore, we show that the same principles also hold for nonlinear models that

include enzyme kinetics and thereby metabolite dependencies. The kinetic self-replicator

model presented by Molenaar et al. [5] for example, does not show mixed strategies, but an

abrupt switch between respiration and fermentation, testimony of a single active constraint.

Indeed, although a membrane protein constraint was included, the size of cells could be freely

adjusted to alleviate this constraint. In many studies with genome-scale stoichiometric models,

mixed strategies do occur. In all these studies the glucose uptake flux was constrained (first

constraint), in combination with some linear combination of fluxes that reflects the (second)

constraint that was the focus of the study (solvent capacity, osmotic pressure [19, 52], prote-

ome limits [4, 42], membrane [20, 40]). Also in so-called ME (Metabolism and Expression)

models [36] and variants thereof [53], growth rate is fixed and nutrient uptake is minimized.

Again, overflow is observed in these models when an additional constraint (total proteome) is

hit.

Even though growth-rate maximization at constant conditions might at times be a rather

crude approximation of the selective pressure, we expect the extremum principle to provide an

‘evolutionary arrow of time’. When conditions change frequently, other aspects might come

into play and fitness will be captured by the mean growth rate over environments, i.e., the geo-

metric growth rate [1]. Whether extremum principles hold for the maximization of geometric

growth rate is an open problem for future theoretical work.

Even in static conditions, our theory is based on the assumption that a metabolic rate is

maximized. In principle, this rate does not have to be the cell-synthesis rate, but could be

another metabolic reaction. This might for example occur in case of specialization in multicel-

lular organisms. However, we do not know if in these cases the selective pressure is strong

enough to maximize this rate. Moreover, even microorganisms are not always optimally

tuned, as it was shown that titration of ArcA could increase the growth rate of E. coli on glyco-

lytic substrates significantly [54]. Indeed, the extremum principle does not describe metabo-

lism if no rate is maximized, and our theory thus does not describe all suboptimal points in the

fitness landscape. However, a principle that characterizes the peaks and shows the direction of

increase at every point in a landscape, can still be of great guidance.

The success of constraint-based modeling methods suggests that indeed biophysical con-

straints shape microbial metabolism. However, most constraints used in the literature are

postulated and remain unvalidated. Also, the imposed constraints can often not be directly

deduced from the physiology of the microorganisms. Our theory suggests a mechanistic way

forward for future constraint-based modeling methods. Our theory suggests that a constraint

should be imposed for each cellular compartment with a limited solvent capacity for proteins.

The number of active metabolic pathways is bounded by the number of constraints
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Since the number of compartments in prokaryotes is generally less than in eukaryotes, because

they lack organelles, metabolic behaviour of prokaryotes is generally simpler.

Large-scale kinetic models are not yet used to study optimal metabolism. Growth rate maxi-

mization in such models quickly becomes computationally infeasible, because all metabolite

and enzyme concentrations have to be tuned. Our results can offer some guidance in these

large, nonlinear optimization problems. Say there are K constraints in the model, the extre-

mum principle ensures that the optimum has to be found among conical combinations of K
EFMs. This fact was already exploited in the case of one constraint in a medium-scale network

[55]: EFMs could be optimized separately (which is a strictly convex problem [56]) and the

one with the highest growth rate was picked. However, it is doubtful if this computational fea-

sibility can be extended to models with more constraints. With two constraints all pairs of

EFMs should already be considered and rate maximization in two EFMs under two constraints

is not convex anymore.

The extremum principle is a null hypothesis about the course of a particular evolutionary pro-

cess [57]. It has direct operational implications for evolutionary engineering strategies, when

increasing or decreasing the complexity of microbial metabolism might be desired, for example

in industrial biotechnology when co-consumption of different sugars from biomass-hydrolysates

is pursued, or if prevention of overflow metabolism during heterologous protein production is

attempted. Perhaps, when the growth-limiting constraints for the microorganism of interest

have been identified, these could be perturbed to direct evolution in the preferred direction.

Conclusion

Our theory suggests that metabolism has only a few operational degrees of freedom. By shifting

perspective on rate maximization from the entire metabolic network to its representation in

the cost vector formalism, we have reduced the problem to its essential dimensions, equal to

the number of growth-limiting biophysical constraints. Together with the extremum principle,

this work provides a species-overarching, molecular, constraint-based perspective on micro-

bial metabolism.
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