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Estimation of perceptual scales using ordinal embedding
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In this article, we address the problem of measuring and
analyzing sensation, the subjective magnitude of one’s
experience. We do this in the context of the method of
triads: The sensation of the stimulus is evaluated via
relative judgments of the following form: “Is stimulus Si
more similar to stimulus S j or to stimulus Sk?” We
propose to use ordinal embedding methods from
machine learning to estimate the scaling function from
the relative judgments. We review two relevant and
well-known methods in psychophysics that are partially
applicable in our setting: nonmetric multidimensional
scaling (NMDS) and the method of maximum likelihood
difference scaling (MLDS). Considering various scaling
functions, we perform an extensive set of simulations to
demonstrate the performance of the ordinal embedding
methods. We show that in contrast to existing
approaches, our ordinal embedding approach allows,
first, to obtain reasonable scaling functions from
comparatively few relative judgments and, second, to
estimate multidimensional perceptual scales. In addition
to the simulations, we analyze data from two real
psychophysics experiments using ordinal embedding
methods. Our results show that in the one-dimensional
perceptual scale, our ordinal embedding approach
works as well as MLDS, while in higher dimensions, only
our ordinal embedding methods can produce a desirable
scaling function. To make our methods widely
accessible, we provide an R-implementation and general
rules of thumb on how to use ordinal embedding in the
context of psychophysics.

Introduction

The quantitative study of human behavior dates
back to at least 1860, when the experimental physicist

Gustav Theodor Fechner published Die Elemente
der Psychophysik (Fechner, 1860). Since Fechner’s
seminal work, the “measurement of sensation
magnitude”—nowadays typically referred to as
“psychophysical scaling”—has been one of the
central aims of psychophysics (Gescheider, 1988).1
Psychophysical scaling is formally defined as the
problem of quantifying the magnitude of sensation
induced by a physical stimulus (Marks & Gescheider,
2002; Krantz, Luce, Suppes, & Tversky, 1971).

In the following, we assume that there exists a
physical quantity—the external stimulus—that we can
objectively measure. The perception (or sensation,
the subjective or internal experience) of the stimulus,
however, is usually hard to measure and quantify.
The (difference) scaling problem refers to experiments
and methods designed to find the functional relation
between the perceived (internal) magnitude and the
(external) stimulus. An example of a scaling function is
shown in Figure 1. In this figure, the physical stimulus
S and its perceived counterpart ψ are denoted on
the x- and y-axes, respectively. Throughout the rest
of the article, we refer to this function as the scaling
function.

Traditional scaling methods

Early attempts to obtain the scaling function
by Fechner were based on the concatenation of
just-noticeable-difference (JND), the smallest amount
of change in the stimulus level that is noticeable
by a human observer. Fechner assumed that each
JND in S corresponds to one fixed-size unit of the
perceptual scale ψ and attempted to reconstruct the
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Figure 1. An example of a scaling function. The x-axis shows the
physical stimulus values (S) with 10 discrete steps. The y-axis
denotes the perceived value (ψ).

scaling function based on this assumption (Fechner,
1860; Luce & Edwards, 1958). Fechner thus tried to
link discriminability and subjective magnitude in a
simple way. However, the Fechnerian approach—albeit
sometimes successful—has been vigorously criticized
for both theoretical and empirical reasons and cannot
serve as a generic method to obtain scaling function
(e.g., Norris & Oliver, 1898; Stevens, 1957; Gescheider,
1988). Thurstonian scaling is an alternative approach
proposed to solve the scaling problem in the tradition
of linking discriminability to subjective magnitude,
incorporating an internally variable mapping from
stimulus to sensation (internal “noise” in modern
parlance) (Thurstone, 1927). Thurstonian scaling is
based on discrimination of stimuli pairs. The perceptual
distance of two stimuli is determined by the probability
that a human observer can discriminate them. However,
like Fechner’s JND approach, Thurstonian scaling
is criticized because discriminability is, at best,
only indirectly and in yet to be understood ways
related to sensory magnitude (Krantz, 1972; Stevens,
1961).

Another well-known approach to scaling, but this
time not based on discriminability, is termed direct
magnitude estimation (Stevens, 1957). In this approach,
a human observer is asked to provide intensity values
corresponding to physical stimuli in a way that ratios
of given values represent the ratios of perception.
However, Shepard pointed out that there might exist
an unknown and undesirable response transformation
function that the direct magnitude estimation method
neglects (Shepard, 1981).

For a much more detailed and in-depth overview
and discussion of the traditional psychophysical

scaling methods, we refer the reader to (Gescheider,
1988).

Scaling and the method of triads

An alternative approach to data acquisition—
neither based on JND-style discrimination nor on
direct magnitude estimation—is based on triplet
comparisons (Torgerson, 1958). This approach is often
referred to as method of triads in the psychophysics
literature. Based on a fixed discretization of the
physical stimulus, say S1, . . . ,Sn, the method of
triads asks participants to make comparisons of
the following form: “Is stimulus Si more similar to
stimulus Sj or to stimulus Sk?” In the computer science
and machine learning literature, such a question is
called a triplet question (or, interchangeably, a triplet
comparison).

Rather than attempting accurate quantitative
measurements of a particular phenomenon, triplet
questions aim at qualitative (ordinal) observations.
The obvious potential of such an approach is that the
statements do not depend as much on the response
transformation function of the observers and that
the issue of scaling answers across many observers
becomes easier. In addition, studies in the machine
learning literature indicate the robustness of the triplet
comparison approach (Demiralp, Bernstein, & Heer,
2014; Li, Malave, Song, & Yu, 2016). The obvious
challenge of the method of triads is how we can use the
participants’ answers to estimate the scaling function.
More precisely, we need to estimate the magnitudes of
perception ψ̂1, . . . ψ̂n in a way that is consistent with the
answers to the queried triplet questions.

Let us give an example. Consider a psychophysical
“slant-from-texture” experiment that has been designed
to find the functional relation of the perceived angle to
the true angle of a tilted flat plane with a dotted texture
(Rosas, Wichmann, & Wagemans, 2004; Rosas, Ernst,
Wagemans, & Wichmann, 2005; Rosas, Wichmann, &
Wagemans, 2007; Aguilar, Wichmann, & Maertens,
2017). Figure 2 (top) shows the various stimuli used in
the experiment by Rosas et al. (2004) and Aguilar et al.
(2017). The bottom, left image of Figure 2 depicts an
example of a triplet question designed for this task.
The participant is asked, “Which of the two bottom
images, Sj or Sk, is more similar to the top image Si?”
Based on the answers to a set of such triplet questions,
the goal is then to reconstruct the scaling function
that describes the relation of perceived angle ψ and
the slant degree S. Figure 2 (bottom, right) shows the
function that has been estimated with the t-distributed
stochastic triplet embedding (t-STE) method described
below.

The approach of triplet comparisons—the method
of triads—is not new to psychophysics; there has
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Figure 2. Top: Eight stimuli used in the slant-from-texture experiment (Aguilar et al., 2017). Bottom, left: An example of a triplet
question used for the experiment. The triplet question is: “Which of the bottom images, S j or Sk, is more similar to the top image Si?”
Bottom, right: The scaling function estimated by the comparison-based embedding method (t-STE). The red points on the x-axis
correspond to three stimuli (S), while the yellow points on the y-axis represents their perceived values (ψ). In the second section
(Embedding methods), we describe in detail, how the position of yellow points corresponds to the ordinal embedding from the triplet
questions.

been a very long tradition in psychology to explore
methods to estimate perceptual (difference) scales
from clearly visible supra-threshold differences in
stimulus appearance (Torgerson, 1958; Coombs,
Dawes, & Tversky, 1970; Marks & Gescheider, 2002).
There exists another line of research that estimates
the perceptual function based on the comparisons
between two pairs of stimuli levels (Schneider, 1980;
Schneider, Parker, & Stein, 1974). The simple coordinate
adjustment technique can estimate the one-dimensional
representations of perceptual scales if it has access
to the answers to all comparisons between stimuli
pairs (Schneider, 1980).

Recently, a more generic approach, called maximum
likelihood difference scaling (MLDS), has become
popular in vision science (Maloney & Yang, 2003;
Knoblauch & Maloney, 2010). There have been reports
that both naive as well as seasoned observers find the
method of triads with supra-threshold stimuli intuitive
and fast, requiring less training (Aguilar et al., 2017;
Wichmann et al., 2017) than for the more traditional
methods in psychophysics such as direct magnitude
estimation or, in particular, methods based on JNDs.

While clearly attractive, MLDS has one limitation,
however. It can only be used to estimate one-
dimensional scaling functions, that is, it cannot
deal with cases when perception is intrinsically

multidimensional (e.g., color perception). On the other
hand, the evaluation of comparison-based data has
been an active field of research in computer sciences
and machine learning (Schultz & Joachims, 2003;
Agarwal et al., 2007; Tamuz, Liu, Belongie, Shamir, &
Kalai, 2011; Ailon, 2011; Jamieson & Nowak, 2011;
Van Der Maaten & Weinberger, 2012; Kleindessner
& von Luxburg, 2014; Terada & von Luxburg,
2014; Ukkonen, Derakhshan, & Heikinheimo, 2015;
Arias-Castro, 2015; Jain, Jamieson, & Nowak, 2016;
Haghiri, Ghoshdastidar, & von Luxburg, 2017).
The core question of these studies is to use the
answers to triplet comparisons to find a Euclidean
representation of the items (in our case, psychophysical
stimuli). This problem is systematically studied in the
machine learning literature under the name of ordinal
embedding. A number of fast and accurate algorithms
have been developed to solve the ordinal embedding
problem (Agarwal et al., 2007; Van Der Maaten &
Weinberger, 2012; Terada & von Luxburg, 2014). As we
will show in this article, these algorithms may also be
useful in psychophysics, vision science and the cognitive
sciences in general.

This article is organized as follows: In the second
section (Embedding methods), we review two
traditional psychophysical scaling methods, nonmetric
multidimensional scaling (NMDS) and MLDS, that
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are used to analyze data from triplet comparisons. We
then introduce the ordinal embedding problem of the
machine learning literature and discuss its advantages
in comparison to the traditional embedding methods
of psychophysics. The third section (Simulations) is
dedicated to extensive simulations comparing the
performance of ordinal embedding to the applicable
competitors in psychophysics. In the fourth section
(Experiments), we examine the ordinal embedding
methods in two real psychophysics experiments. In the
fifth section (How to apply ordinal embedding methods
in psychophysics), we provide instructions and rules of
thumb on how to use the comparison-based approach
and the ordinal embedding algorithms in psychophysics
experiments. In the last section, we conclude the article
by discussing the advantages of the ordinal embedding
for scaling problem and mentioning some of the open
problems.

Embedding methods

NMDS

NMDS by Shepard and Kruskal is a well-established
method to analyze dissimilarity data (Shepard, 1962;
Kruskal, 1964a, 1964b). It assumes that a complete
matrix of dissimilarities (not necessarily metric
distances) between pairs of items is given. We denote
the dissimilarity of items i and j by δi j . In the context
of psychophysics, this matrix usually comes from a
human (psychophysical) experiment. Shepard posed
the problem of estimating a d-dimensional Euclidean
representation of items, say y1, y2, . . . yn ∈ Rd , such that
the pairwise distances of estimates are consistent with a
monotonic transform of the given dissimilarities. Key
to the method is that it only takes the rank order of the
dissimilarities into consideration. This is attractive in
many psychophysics experiments where the magnitude
of dissimilarities cannot be quantitatively measured,
whereas the rank order of distances is considered more
reliable—the same argument that we have made earlier
in favor of ordinal embedding (see above).

If di j = ‖yi − y j‖ is the Euclidean distance of the
embedded items yi and y j in Rd , then the quality of
a Euclidean representation is measured by a quantity
called stress (Kruskal, 1964b):

stress =
∑

i j (di j − g(δi j ))2∑
i j di j

2 , (1)

where g is a monotonic function to be determined.
The smaller the stress, the better the Euclidean
representation. The numerator measures the squared
loss between the transformed input dissimilarities
g(δi j ) and the Euclidean distances di j . By minimizing

the stress, we try to achieve that the distances di j are
as close as possible to the monotonic transform of
dissimilarities g(δi j ). The role of the denominator is
to prevent the degenerate solution where the di j all
converge to 0.

The goal of NMDS is to find the Euclidean
representation of items that minimizes the stress
function, where g can be chosen from the set of all
monotonic transform functions. The approach by
Kruskal (1964a) finds an estimation of the optimal
solution through an iterative two-step optimization
procedure. In the first step, a configuration of
embedding points y1, y2, . . . yn is fixed; this means that
the distance values di j are also fixed. Then a greedy
algorithm is suggested (later called isotonic regression)
to find the monotonic function g that minimizes the
stress function. In the second step of optimization,
the values of g(δi j ) are fixed and the embedding
points y1, y2, . . . yn are adjusted by a gradient descent
algorithm to minimize the stress. The two steps are
repeated iteratively until the stress value shows no
further improvement or it becomes smaller than a
certain threshold.

The NMDS algorithm has been used extensively
in psychology (Reed, 1972; Smith & Ellsworth, 1985;
Barsalou, 2014), neuroscience (de Beeck, Wagemans, &
Vogels, 2001; Kayaert, Biederman, de Beeck, & Vogels,
2005; Kaneshiro, Guimaraes, Kim, Norcia, & Suppes,
2015), and broader fields (Liberti, Lavor, Maculan, &
Mucherino, 2014; Machado, Mata, & Lopes, 2015).
The nonparametric flavor of the method makes it a
general-purpose algorithm that is easy to apply. In
addition, it can find representations in multidimensional
spaces. However, the algorithm has a major drawback:
As described above, the algorithm needs the full
dissimilarity matrix as input. Alternatively, in a setting
of triplet comparisons, one can also implement the
algorithm with just the knowledge on the ranking
(ordering) of all the distance values δi j . This ordering
can of course be computed from triplet questions, but
it requires in order of n2 log n triplet questions to sort
all pairwise distances. This property makes NMDS
infeasible for many applications in psychophysics, as
the number of required triplet comparisons grows
very quickly with the number of stimuli. For example,
consider the case of n = 15 stimuli. There exist
m = (15

2

) = 105 dissimilarity values. NMDS requires
the ordering of all these dissimilarity values. It is
well known in computer science that to order m
items, we need to ask about m logm comparisons;
thus, m logm = 105 · log2 105 ≈ 700 triplet questions
are required to run NMDS. For ordinal embedding
methods, the number of required triplet comparisons
depends on the embedding dimension, and it has
been proven to be of the order dn log2 n. If we embed
in a two-dimensional space, then this amounts to
2 · 15 · log2 15 ≈ 120 triplet comparisons.
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The difference becomes more drastic with larger n. If
we assume n = 50, using the same calculation, NMDS
requires about 12,570 triplet comparisons, whereas
ordinal embedding methods require only about 570
triplet comparisons.

A second disadvantage of NMDS is that the
optimization algorithm tries to solve a highly
nonconvex optimization problem and typically gets
stuck in a local but not the global minimum of the
stress function. This local optimum can be arbitrarily
far off from the global optimum. However, to be
fair, this nonconvex optimization problem is shared
with most of the other algorithms considered in this
article.

Many variants of NMDS exist. As an example,
consider (Ramsay, 1977; Takane, 1978) a situation
in which the authors make a number of explicit
model assumptions and then apply a maximum
likelihood approach. This approach has been adapted
for the analysis of data gathered by the method of
triads (Bonnardel et al., 2016), where the triad responses
are used to estimate the similarity matrix between items
directly. The main differences between these more
statistical approaches and machine learning might, up
to some point, be of a philosophical nature: Rather than
making many explicit model assumptions (for example
in Ramsay (1977), a lognormal noise model, explicit
weights on coordinates, powers of Euclidean distances
to deal with non-Euclidean data), machine learning
algorithms try to operate with minimalist assumptions
— because they tend to be applied to data that rarely
satisfy statistical model assumptions. This mind-set
also makes it necessary to take care of overfitting:
Rather than finding the best maximum of a likelihood
function, machine learning takes into account aspects
of robustness (as in t-STE) or, for example, the large
margin principle, as in soft ordinal embedding (SOE).
As another consequence, machine learning models
typically operate with one big optimization problem
rather than splitting the task into several separate steps
(such as first estimating distances and, in a second step,
constructing an embedding) the rationale being that
each intermediate estimation step is yet another source
of error and overfitting.

MLDS

Decades after the introduction of NMDS, MLDS
was proposed to solve a specific instance of the
difference scaling problem (Knoblauch, Charrier,
Cherifi, Yang, & Maloney, 1998; Maloney & Yang,
2003; Krantz et al., 1971). Originally, MLDS asked
quadruplet questions that involve four stimulus levels.
If we denote the perceptual scale of four stimuli
Si,Sj,Sk,Sl by ψi, ψ j, ψk, ψl , then a quadruplet
question asks whether the difference in perception

|ψi − ψ j | is larger or smaller than the difference of
perception |ψk − ψl |. Note, however, that triplet
questions are indeed a subset of quadruplet questions,
implying that the MLDS method is also applicable to
triplet questions.

The MLDS model (Maloney & Yang, 2003) assumes
that the perceptual scale is a scalar value denoted
by ψ—in the ordinal embedding language, it always
embeds in a one-dimensional space. In contrast to
NMDS, the MLDS method uses a parametric model.
For a quadruplet of stimulus levels Si,Sj,Sk,Sl , for
simplicity denoted by (i, j; k, l ), a decision random
variable is defined as

Dec(i, j; k, l ) = |ψi − ψ j | − |ψk − ψl | + ε,

where ε ∼ N (0, σ 2) is a zero-mean Gaussian noise
with standard deviation σ > 0. If Dec(i, j; k, l ) > 0,
then the observer would respond that the pair (i, j)
has a larger difference than the pair (k, l ). In this
case, the response to the quadruplet q = (i, j; k, l ) is
set to Rq = 1; otherwise, the response is Rq = 0. The
goal of the MLDS is now to estimate the perception
scale ψ that maximizes the likelihood of the observed
quadruplet answers. We first set ψ1 = 0, ψn = 1 to
remove degenerate solutions. Now, assuming that
R1,R2, . . . ,Rm ∈ {0, 1} denote the independent
responses to m quadruplet questions, the likelihood of
the perceptual scales given the quadruplet answers is

L (ψ2, . . . , ψn−1, σ |R1, . . . ,Rm)

=
m∏

q=1

�(�q)Rq [1 − �(�q)]1−Rq,

where �(.) denotes the cumulative distribution function
of ε ∼ N (0, σ 2), and �q = |ψi − ψ j | − |ψk − ψl | for
the quadruplet q = (i, j; k, l ).2 As it is the case for the
stress function of NMDS, the likelihood function of
MLDS is not convex with respect to the perceptual
scale values ψi. Thus, the proposed numerical methods
to maximize this likelihood might get stuck in a local
maximum.

Knoblauch and Maloney (2010) introduced a more
generalized version of MLDS, based on the generalized
linear model (GLM), that also accepts triplet questions
as inputs.

There are a number of advantages of the MLDS
method: From a theoretical point of view, the maximum
likelihood estimator is unbiased and has minimum
variance among the unbiased estimators (however,
these nice properties only hold for the global maximum
of the likelihood function, not the local one, possibly
discovered by the actual algorithm). It has been
shown empirically that a reasonably small subset
of quadruplets is enough to construct good scaling
functions. Finally, it has been demonstrated that the
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Figure 3. Left: The two-dimensional circle of color perception gathered by similarity measurements between 14 colors (Shepard, 1962).
The wavelength of each color is written on the right side of the colored dot. Note that we have reconstructed the color circle with
NMDS based on the original dissimilarity data. Right: The helix proposed by Shepard for the pitch perception. The physical stimulus,
that is, pitch, varies along the spiral path of the curve and the three-dimensional space describes the perception (Shepard, 1982).

variance of the output behaves reasonably with respect
to the input noise level (Maloney & Yang, 2003), and
MLDS can be interpreted within the framework of
signal detection theory (Green & Swets, 1966).

However, MLDS has one major drawback: The
algorithm only works for one-dimensional perceptual
spaces. In some cases (see the examples of color and
pitch perception in Figure 3), the scales definitely
need more than one dimension. To assess whether
one-dimensional spaces might be suitable for a
given data set at hand, Knoblauch and Maloney
(2010) suggest a certain goodness-of-fit criterion (the
“six-point condition”). If this condition is not satisfied,
this might indicate the requirement of embedding in
higher dimensions.

There have been attempts to extend the MLDS
model to the case of multidimensional perceptual scales.
For instance, Radonjić, Cottaris, and Brainard (2019)
proposed a model to study the perception of objects
in two dimensions, color and material, but they need
to make many strong assumptions. As we explain in
the next section, the ordinal embedding methods of
machine learning can deal with the multidimensional
perceptual case in general, without making assumptions
such as independence of perceptual scales, additive
noise, and independence of noise and stimulus.

Ordinal embedding

General setup
The comparison-based setting has recently

become popular in machine learning literature

(Schultz & Joachims, 2003; Agarwal et al., 2007; Van
Der Maaten & Weinberger, 2012; Amid & Ukkonen,
2015; Ukkonen et al., 2015; Balcan, Vitercik, & White,
2016). Instead of stimulus levels, machine learning
deals with a set of abstract items, say x1, x2, . . . , xn,
that come from some abstract space X . Furthermore,
we assume that there exists a dissimilarity function
δ : X × X → R that describes the dissimilarity of the
items. Often, in machine learning, we assume that δ is
symmetric but not necessarily a metric. In our current
setting in psychophysics, we assume that the function
δ is not available, yet we have access to an oracle that
responds to a triplet question t = (i, j, k), based on the
unknown dissimilarity. The triplet question will be “Is
item xi more similar to item xj or item xk”? We denote
this triplet question by t = (i, j, k), and sometimes
we will call the point xi the pivot of the triplet. The
response to the triplet is denoted by Rt and stored as
the following:

Rt =

⎧⎪⎨
⎪⎩
1 if the oracle responds that

xj is more similar to xi
−1 if the oracle responds that

xk is more similar to xi

(2)

Assume that the answers to a subset of triplet
questions T ⊂ {(i, j, k)|xi, xj, xk ∈ X } are collected
from the oracle. Given an embedding dimension d
and the answers to the triplet questions T , the ordinal
embedding aims to find points y1, y2, . . . yn ∈ Rd in a
d-dimensional Euclidean space such that the Euclidean
distances are consistent with the answers of the queried
triplet questions. The consistency of an embedding with
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respect to triplet t = (i, j, k) can be judged as follows:

Rt · sgn(‖yi − yk‖2 − ‖yi − y j‖2)

=
{
1, if the embedding is consistent with Rt
−1, if the embedding is not consistent with Rt

where function sgn returns the sign of a real value.
The goal of ordinal embedding is to find an embedding
y1, ..., yn that maximizes the number of consistent
triplets. Intuitively, we would like to solve the following
optimization problem:

max
y1,...,yn∈Rd

∑
t=(i, j,k)∈T

Rt · sgn(‖yi − yk‖2

−‖yi − y j‖2). (3)

However, this formulation leads to a number of
algorithmic obstacles. From a mathematical point
of view, it is not always possible to find a perfect
d-dimensional embedding for an arbitrary dissimilarity
function δ. Moreover, in a practical setting, the answers
to the triplets might be noisy. Therefore, the optimal
solution is not necessarily consistent with the full set of
triplets T . And finally, as written above, the objective
function is discrete-valued, which makes it even harder
to optimize. For all these reasons, various adaptations
of the stress function and optimization heuristics
have been suggested to address these problems.
Below we describe one particular algorithm in more
detail.

Connection to the scaling problem
Ordinal embedding solves the scaling problem of

psychophysics in the following way: The different
stimuli Si play the same role as the abstract items xi in
the ordinal embedding problem, and the perception
values ψi correspond to the embeddings yi. Concretely,
given a standard scaling function as in Figure 2 (bottom
right), the ordinal embedding output corresponds to
the positions of the perception values on the y-axis
(yellow points in Figure 2, bottom right). Thus, given
the ordinal embedding output (y-values) and the values
of the physical stimuli, we can reconstruct the scaling
function.

Consider again the example of the slant-from-texture
problem in Figure 2: Given the slant stimuli S1, ...,Sn,
participants were asked a number of triplet questions
involving the stimuli S1, ...,Sn. Then, we provided
the answers of these triplet questions to an ordinal
embedding algorithm and asked the algorithm to
construct a one-dimensional embedding. This resulted
in the yellow points y1, ...yn on the y-axis (in the plot,
we only marked three out of eight stimuli with yellow
points to keep it simple). These points can now be
identified as the perception values ψ1, ..., ψn, so we
can finally draw the scaling function by connecting the

points (Si, ψi). More details on this experiment are
provided in the Experiments section.

While in the example of the slant experiment, we
used a one-dimensional embedding, ordinal embedding
methods can also construct a multidimensional
embedding that describes the perceptual space of
humans. Let us discuss two examples that demonstrate
why this might be important. One famous example
is color perception. Figure 3 (left) shows the two-
dimensional color circle proposed by Shepard and
Ekman (Shepard, 1962; Ekman, 1954). The figure
has been constructed with the NMDS algorithm
based on a 14×14 similarity judgment matrix. The
wavelength of each color is written at the right side
of each colored dot. In our context, the important
observation is that human observers perceive the
violet colors with short wavelengths as similar to
the red colors with long wavelengths. This suggests
a circular perceptual internal space, which can only
be realized in at least two dimensions. A second
example is pitch perception of sounds. Even though
auditory frequency is again one-dimensional, the pitch
is perceived along a three-dimensional helix (Shepard,
1982; Houtsma, 1995). Figure 3 (right) shows the
proposed perception space by Shepard. In both
cases, pitch and color, multidimensional ordinal
embedding is the tool that can enable a researcher
to find perceived values in higher-dimensional
Euclidean spaces, which might be necessary to
properly capture the similarity structure of perception
(or cognition).

Stochastic triplet embedding
In recent years, there has been a surge of methods

to address the ordinal embedding problem in the
machine learning community, for example, generalized
nonmetric multidimensional scaling (Agarwal et al.,
2007), the crowd-median kernel (Tamuz et al., 2011),
stochastic triplet embedding (STE) (Van Der Maaten &
Weinberger, 2012), and SOE (Terada & von Luxburg,
2014). In general, the focus of the machine learning
community is to build methods that require only a small
number of triplets to embed a large number of items,
make as few assumptions as possible, and be robust
toward noise in the data.

In the following, we focus on one particular class
of methods, STE, and its variant, t-STE, because in
our experience, they work very well and are based on a
simple model that is also plausible in a psychophysics
setting. The STE method introduces the probabilistic
model defined in Equation 4 to solve the ordinal
embedding problem. Assume that y1, . . . , yn ∈ Rd were
the correct representations of our objects. The model
assumes that if participants are being asked whether yi
is closer to y j or to yk, then they give a positive answer
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Method Data required Statistical noise model Multidimensional

NMDS Complete order of all distances No Yes
MLDS Partial set of quadruplets (or triplets) Yes No
t-STE Partial set of triplets Yes Yes

Table 1. The comparison of ordinal embedding methods. Each row corresponds to one method, while the properties are listed in the
columns.

with probability

pi jk = exp(−‖yi − y j‖2)
exp(−‖yi − y j‖2) + exp(−‖yi − yk‖2) . (4)

Intuitively, “easy” triplet questions (where the
distances ‖yi − y j‖ and ‖yi − yk‖ are very different)
will be answered correctly in most of the cases, whereas
difficult triplet questions (where ‖yi − y j‖ is about as
large as ‖yi − yk‖) can often be mixed up. Given the
answers to a set of triplets, the STE algorithm attempts
to maximize the likelihood of the embedding point
configuration with respect to the answered triplets. If
the answer to a triplet question t = (i, j, k) is given
according to Equation 2, and if we assume that triplet
questions are answered independently, the likelihood of
an embedding given the answers to a set of triplets T is
given as

L (
y1, . . . , yn|R1, . . . ,R|T |

) =
∏

t=(i, j,k)∈T,Rt=1

pi jk ·

∏
t=(i, j,k)∈T,Rt=−1

(1 − pi jk).

The log-likelihood is maximized to find the solution
of ordinal embedding. In the above formulation, the
probability of satisfying a triplet goes rapidly to zero
when the difficulty of a triplet question increases.
As a result, severe and slight violations of a triplet
are penalized almost the same. To make the statistic
more robust, the authors propose to replace the
Gaussian functions exp(−‖yi − y j‖2) with Student-t
functions with a heavier tail kernel (Van Der Maaten
& Weinberger, 2012). The modified method is called
t-distributed STE (t-STE).

This algorithm can deal with a large number of
items (stimulus levels) and reasonable number of
triplets, and it is robust to noise, which is an important
characteristic when dealing with psychophysics data.
Unlike MLDS, the algorithm is capable of embedding
in higher-dimensional Euclidean spaces. However, as
with all the other methods, the proposed optimization
problem is not convex, which makes it vulnerable to
inappropriate local optima.

Summary of embedding methods

In Table 1, we summarize the properties of the
different embedding methods. The ordinal embedding
methods can produce high-quality results with a small
set of triplet answers. This property makes them
superior to traditional NMDS that requires the full
order of distances. On the other hand, the ordinal
embedding methods are not limited to the case of
one-dimensional functions, as it is the case for MLDS.

As the number of items (and consequently the
number of triplets) grows, many of the ordinal
embedding algorithms become computationally slow.
This is, however, more of a concern for machine
learning purposes, where we deal with thousands
of items and hundreds of thousands of triplets.
For standard psychophysics experiments, ordinal
embedding algorithms such as STE and t-STE have
an acceptable running time. Our experiments are
performed on an iMac 18.3 (2017) with a 3.4-GHz
i5 quad-core processor. On this machine, the (t)-STE
algorithm, implemented in MATLAB, requires about
30 min to embed 100 items in two dimensions using
2,000 triplet answers. As this analysis needs to run only
once after all the triplets of all participants have been
recorded, we do not think that this is a problem in a
typical psychophysical setting.

Simulations

In this section, we describe simulations that compare
ordinal embedding algorithms with the corresponding
approaches in psychophysics (NMDS and MLDS).

Simulation setup

Stimulus and perceptual scale
We assume that the stimulus lives on a scale from

0 to 1, and the true relation between the physical
stimulus and the perception is encoded by a function
f : (0, 1) → (0, 1)d , where the dimension d of the
perceptual space will typically be 1 or 2. We consider n
uniformly chosen steps for the stimulus levels, denoted
by S = {S1,S2, . . . ,Sn}. In our simulations, we assume
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that a true perceptual scale exists, for the stimulus
Si is denoted by yi = f (Si ). We will choose different
functions f for our different simulations below.

Generating subsets of triplet questions
In order to have a fair comparison, we will provide

the same number of triplet questions to each of our
algorithms. There are some subtle differences in the
implementations that we need to pay attention to.
MLDS (as in Knoblauch & Maloney, 2010) assumes
that the ordering between input stimuli is known.
Given three input stimuli Si, Sj , and Sk, it looks up
their relative order (e.g., Si < Sj < Sk) and then always
asks the triplet question ψ j − ψi > ψk − ψ j (with ψ j
as the “pivot point” and without absolute values).
Ordinal embedding methods, on the other hand, do not
assume any knowledge on the stimulus ordering (and
there might be cases where the latter does not exist, for
example, if we consider multimodal inputs). Instead,
given three input stimuli Si, Sj , and Sk, it can consider
three different triplet questions: |ψ j − ψi| > |ψk − ψi|
(here ψi is the pivot point) and the corresponding
questions with the other two as the anchor points.

Consequently, n stimuli levels give rise to
(n
3

)
valid

triplet questions for MLDS and 3
(n
3

)
valid triplet

questions for the ordinal embedding methods. In all our
simulations, we provide the same number of triplets to
all embedding algorithms. A random subset of triplets
is chosen uniformly without replacement from the set of
valid triplets for each algorithm, where this set of valid
triplets is slightly different for MLDS and the other
algorithms, as described above. In our simulations, the
size of the random subset of triplets will be chosen in
the range r · (n

3

)
with r ∈ {0.1, 0.2, 0.4, 1}. The value

r = 1 is equivalent to choosing the whole set of valid
triplets for the MLDS method and a third of the set of
valid triplets for the other methods.

Underlying model to generate triplet answers for MLDS
and ordinal embedding

In order to simulate answers to the triplet questions,
we construct a model that resembles a typical
observer of a psychophysical experiment. Given
a fixed perceptual scale function f , we assume
that the simulated observer answers the triplet
questions based on a noisy version of this function,
denoted by ỹi = f (Si) + ε, where ε ∼ N (0, σ · Id )
is a zero-mean Gaussian noise with unit covariance
matrix and standard deviation σ in d dimensions.
In our simulations, we use σ in the range of
{0.01, 0.05, 0.1, 0.5}. The process of generating triplets
for the ordinal embedding methods is as follows. The
simulated observer produces the answer to the queried

triplet question t = (i, j, k) (Si being the pivot of the
triplet comparison) by

Rt =
{
1 if ‖ỹi − ỹ j‖ < ‖ỹi − ỹk‖,
−1 otherwise.

Note again that the embedding values y play the
same role as the perceptual scale values ψ in the
psychophysics notation. We sometimes use a different
notation to emphasize that the embedding values y can
be multidimensional and to make a clear distinction to
scalar values of ψ . The scalar ψ is depicted in Figure 1
and also in the MLDS method.

As mentioned in the previous subsection, the GLM
formulation of MLDS requires a slightly different way
for asking triplet questions. The triplet answer for three
stimuli levels Si < Sj < Sj is constructed according to
the following equation:

Rt =
{
1 if ỹ j − ỹi < ỹk − ỹ j,
−1 otherwise.

Providing triplet answers to the algorithms. The above
mentioned model produces answers to the triplet
questions, for the methods based on triplet answers,
namely, SOE, (t)-STE, and MLDS.

Underlying model to create the input to NMDS
NMDS requires dissimilarities between all pairs

of items but in the end only makes use of the
order between these values due to the monotonic
transformation function g used in the definition of
stress in Equation 1. For our simulations, we generate
a set of noisy perceptual values for n stimuli levels as
before, ỹi = f (Si ) + ε, and then explicitly compute
all dissimilarity values δi, j = ‖ỹi − ỹ j‖. These are
then the values that we give to the NMDS algorithm.
Note that because NMDS requires the full matrix of
dissimilarities, we only apply and compare the NMDS
algorithm to the other methods when r = 1, that is, all
triplet questions are being asked. This procedure makes
sure that all three algorithms get the same amount of
information.

Embedding methods
We now apply various algorithms to generate

embeddings or perceptual scales. For STE and
t-STE, we use the MATLAB implementation by Van
DerMaaten andWeinberger (2012).3 We use the default
optimization parameters for both methods. The degree
of freedom for the t-Student kernel is set to α = 1 for
the t-STE method. We also use the R-implementation
of a second algorithm from the machine learning
community, SOE, with the default parameter settings.
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For MLDS, we use the R-package available on the
CRAN repository,5 again with the default optimization
parameter settings. For the NMDS algorithm, we use
the MATLAB implementation, which is available by
calling the function “mdscale.” The implementation
optimizes the stress function defined by Kruskal
(1964a); see Equation 1.

In all cases, we set the embedding dimension to the
dimension of true perceptual function. In the section
on real experiments, we also consider cases where the
embedding dimension is not known.

All embedding methods solve a nonconvex
optimization problem and thus are prone to find
inaccurate local optima. To reduce this effect, we run
all the algorithms 10 times with random initializations.
Among the 10 embedding outputs, we choose the one
that has the smallest triplet error (see next subsection
for a definition).

Independent of the above repetition, which is
supposed to reduce the effect of local minima, each
embedding method is executed 10 times, on 10
independent draws of the random input data. This
repetition is meant to analyze the statistical behavior
of the algorithm, average, and the variance. We plot
the average values over these 10 repetitions in the main
article and provide the standard deviations in the
supplementary material (so the figures are not overly
cluttered).

Evaluating the results
We consider two approaches to evaluate the

performance of the various methods:

(1) Mean squared error (MSE): For one-dimensional
perceptual spaces where the ground truth is
known, we can compute the MSE between the
estimated scales ŷ and the true perceptual function
values y. However, we need to be careful as the
embedding results are only unique up to similarity
transformations (scaling, rotation, and translation).
So before computing the MSE, we need two steps
of normalization. First, we transform the output
of embedding to be in the range of (0,1) as our
scaling functions are defined in this range (more
precisely, we shift the minimum value to zero
and divide all the values by the maximum). This
takes care of translation and scaling. Second, the
output is only unique up to rotation, which, in our
one-dimensional scenario, consists of flipping the
function values ŷ to −ŷ (note that if ŷ satisfies all
triplet questions, so does −ŷ). Therefore, we choose
the one among ŷ and −ŷ that results in the smaller
value of MSE. In this way, we choose the best
rotation of the output.

(2) Triplet error: The MSE criterion is cumbersome
to compute in multivariate scenarios, because we

have to take into account all possible rotations of
the embeddings. Moreover, in real-world scenarios,
the MSE cannot be computed at all because the
required, underlying ground truth is unknown. As
an alternative, we propose to evaluate the quality of
an embedding by its ability to predict the answers
to (potentially new) triplet questions. To this end,
we compute a quantity called the triplet error.
Intuitively, the triplet error counts how many of the
triplets are not consistently represented by the given
embedding. Given an embedding ŷ1, ..., ŷn and a
validation set T ′ of triplets, the triplet error of the
embedding with respect to T ′ is defined as

triplet error= 1
|T ′|

∑
t=(i, j,k)∈T ′

1
{
Rt · sgn(‖ŷi − ŷk‖2

− ‖ŷi − ŷ j‖2) = 1
}
, (5)

where the characteristic function 1 takes the value 1
if the expression in the curly parenthesis is true (that
is, if the estimated embedding is not consistent with
the new triplet t), and it takes the value 0 otherwise.
Typically, the given set of answered triplets needs to
be used both for constructing the embedding and
for evaluating its quality. There are two ways to do
this. The first, naive way is to set T ′ = T , meaning
that we use the same set of triplets to construct the
embedding and to measure its quality. In a second
way, we perform k-fold cross-validation to avoid
overfitting: We partition the set of input triplets
T into k nonintersecting subsets (“folds”). We
perform the embedding and the evaluation k times.
In each iteration, we pick one of the folds as the
validation set (T ′) and the rest of the folds as the
training set (the input to the embedding algorithm).
The final triplet error is the average over the triplet
errors of the k validation sets. Throughout the rest
of the article, we refer to the latter approach as
cross-validated triplet error, while the first approach
is simply called the triplet error.

One-dimensional perceptual space

Simulations with monotonic scales
Our first simulation involves a typical monotonic

function as it occurs in many psychophysics
experiments. The true perceptual function f (a
sigmoid function) is shown in Figure 4a. Figures 4b,
c shows the output embedding of the MLDS and
STE algorithms for 10 iterations, respectively. The
other ordinal embedding methods have a similar
performance, and the output embeddings are reported
in the supplementary material. The average (over 10
runs) MSE and triplet errors of various embedding
algorithms are depicted in Figures 4d, e, respectively.



Journal of Vision (2020) 20(9):14, 1–20 Haghiri, Wichmann, & von Luxburg 11

Figure 4. Comparison of various ordinal embedding methods (SOE, STE, t-STE) against the traditional embedding methods in
psychophysics (MLDS and NMDS) for a monotonic one-dimensional perceptual function (Sigmoid). (a) The true perceptual function
(y). (b) Ten embedding results (ŷ) of the MLDS method for a fixed value of standard deviation σ and triplet fraction r. (c) Ten
embedding results (ŷ) of the STE method for a fixed value of standard deviation σ and triplet fraction r. (d) The average MSE of
embedding methods. (e) The average triplet error of embedding methods.

Figure 5. Comparison of various ordinal embedding methods (SOE, STE, t-STE) against the traditional embedding methods in
psychophysics (MLDS and NMDS), for a nonmonotonic one-dimensional perceptual function (second-degree polynomial). (a) The true
perceptual function (y). (b) Ten embedding results (ŷ) of the MLDS method for a fixed value of the standard deviation σ and triplet
fraction r. (c) Ten embedding results (ŷ) of the STE method for a fixed value of standard deviation σ and triplet fraction r. (d) The
average MSE of embedding methods. (e) The average triplet error of embedding methods.

In both error measures, the MLDS method performs
slightly better than the ordinal embedding algorithms.
More detailed results regarding this simulation,
including the four ordinal embedding outputs and the
performance of algorithms with other values of σ , can
be found in the supplementary material; (see Figure 10).
We also examine another monotonic function in
Figure 11 of the supplementary material, and the
results are consistent with the ones presented here.

Simulations with nonmonotonic scales
We now perform the same experiment with a

nonmonotonic function: a second-degree polynomial
function is chosen as the true perceptual function f ; see
Figure 5a. Figures 5b, c shows the output embedding
of the MLDS and STE algorithms for 10 iterations,
respectively (the embeddings produced by SOE and
t-STE are quite similar to the STE; see supplementary
material). The average (over 10 runs) MSE and triplet

error of various embedding algorithms are depicted in
Figures 5d, e, respectively.

The function shapes depicted in Figure 5b show
the performance of the MLDS method for the
nonmonotonic function. Considering the embeddings
and two error plots, we can conclude that MLDS
and ordinal embedding methods have very similar
performance. MLDS performs slightly worse than
ordinal embedding methods, when provided with fewer
triplet answers (Figures 5d, e). In both monotonic
and nonmonotonic cases, we observe that all methods
converge to an output embedding with the same
MSE and triplet error, when they are provided with a
sufficiently large number of triplets.

Similar to the monotonic functions, we report
the full details of the simulation in supplementary
material; see Figure 13. We also perform the simulation
on a sinosoid function. The results are quite similar
to the second-degree polynomial function and are
demonstrated in the Figure 12 of the supplementary
material.



Journal of Vision (2020) 20(9):14, 1–20 Haghiri, Wichmann, & von Luxburg 12

Figure 6. Comparison of the ordinal embedding methods (MLDS, STE, and t-STE) against the traditional NMDS method of
psychophysics for the two-dimensional color perception function. (a) The true perceptual function in two dimensions. The stimulus
value, color wavelength, is written beside each color. The two-dimensional vector space represents the perceptual space. (b) The
embedding result of the NMDS method depicted in two dimensions for a fixed value of standard deviation σ and triplet fraction r. (c)
The embedding result of the STE method depicted in two dimensions for a fixed value of standard deviation σ and triplet fraction r.
(d, e) The average triplet error of various methods with embedding dimension d = 1 and d = 2, respectively.

Multidimensional perceptual space

So far, we considered simulations in which the
perception could be represented in a one-dimensional
Euclidean space. However, in some cases, such as the
examples of color and pitch perception in Figure 3,
more than one dimension is required to represent
the perception. Here, we perform a simulation
with a function mapping from one-dimensional
stimulus space into a two-dimensional perceptual
space.

In order to construct a realistic psychometric
function f , we use the color similarity data6 presented
in Ekman (1954). We first construct a two-dimensional
embedding using NMDS; see Figure 6a. In the
following, this embedding will be considered our
ground truth, which will then be used to generate
further data (let us stress: we do not argue that this
embedding is “correct” in any way; we just use it as a
ground truth to generate further simulations).

To generate noisy triplets from our ground truth, we
essentially proceed as before: We rescale the stimulus
sizes (wavelengths) to the range of S ∈ (0, 1) to be
consistent with the underlying model we defined
earlier. We define the true ground truth function
f by our ground truth embedding, which is the
true two-dimensional representation yi = f (Si) of
a stimulus Si given by the values in Figure 6. Now
we generate noisy versions ỹi of the perceptual scale
functions, random subsets of triplets and noisy answers
to triplet questions as described in the beginning of
this section, and use the various algorithms to compute
an estimated embedding ŷi of all the stimuli. Note
that the actual perceptual values are two-dimensional;
therefore, the Euclidean distances of stimuli (color)
values in the X-Y plane are used to produce the
triplets.

Given the noisy triplets, we can now apply the diverse
algorithms to the data. We generate embeddings in one
dimension using all algorithms (MLDS, NMDS, SOE,
STE, and t-STE), and embeddings in two dimensions
using all algorithms except MLDS (which is not
designed for this purpose).

We first study the difference between one- and
two-dimensional embeddings. Figure 6d shows average
triplet error of various embedding methods, when the
embedding dimension is fixed to d = 1. In this setting,
ordinal embedding algorithms and MLDS have very
similar performance, all having a rather high triplet
error (≈ 0.3 to ≈ 0.22). The comparison with triplet
error of embedding in two dimensions (Figure 6e)
reveals the difference. Indeed, the ability to embed in
two dimensions enables the algorithm to improve the
triplet error from ≈ 0.22 to ≈ 0.14, when r = 1. Thus, it
is plausible that the proper dimension to represent the
percept is (at least) two.

Next, we compare the results of the two-dimensional
embedding algorithms. Figures 6b, c shows the
two-dimensional embedding output of the NMDS
and STE algorithms, respectively. The embeddings are
shown for the parameter values σ = 0.1 and r = 1.
The comparison of Figures 6b, c reveals the different
performances of NMDS and ordinal embedding
methods in the presence of noise. NMDS is known
to be quite vulnerable to noise, and this can be seen
from the figures as well. While STE produces a circle
of colors fairly similar to the true perceptual function,
the colors are somewhat mixed up in the NMDS
embedding. The triplet error also shows that ordinal
embedding algorithms outperform the NMDS method
by a large margin—even though we have only half or
less of the triplets available. More details regarding this
experiment can be found in the supplementary material;
see Figure 14.
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Figure 7. (Top) Average and standard deviation of cross-validated triplet error for eight subjects of the slant-from-texture experiment.
Each group of bars shows the error for one subject, as each bar in the group corresponds to one of the embedding methods shown
with different colors. (Bottom) The embedding outputs for eight subjects with two embedding methods: MLDS and t-STE. The MLDS
method is depicted at the top row while the t-STE is shown at the bottom.

Experiments

In this section, we apply the comparison-based
approach and ordinal embedding methods to two real
experiments in visual perception: the slant-from-texture
experiment that we have already mentioned above and
a more complex “Eidolon” experiment.

Slant-from-texture experiment

This experiment intends to find the functional
relation between the perceived angle of the slant with
a dotted surface and the actual physical degree of
slant. The data set was collected by Aguilar et al.
(2017). Figure 2 (top) shows the eight stimuli used in
this experiment. The degree of slant is varied from
0 to 70 degrees in steps of 10 degrees, making eight
stimulus levels. Then participants had to answer
triplet comparisons. As the experiment has initially
been performed with the assumption of a monotonic
relation of slant degree and the perception, for each
combination of three stimuli Si < Sj < Sk (three
degrees of tilting), only one triplet question has been
asked: “Which of the two slant pairs have more
difference (Sj,Si) or (Sk,Sj )?” With eight levels of
the stimulus, this results in

(8
3

) = 56 possible triplet
questions. On this small order of magnitude, it is still

possible to ask the participants to answer all possible
triplet questions. Eight subjects participated in the
study. Each subject has answered all 56 triplet questions
several times, in order to reduce the effect of noisy
responses. Subjects {1, 6, 8} have answered 420 triplet
question in total, while the other subjects answered 840.

Since the ground truth embedding is unknown, we
can only rely on the triplet error for evaluation of
the embeddings. To avoid overfitting, we use 10-fold
cross-validation to compute the cross-validated triplet
error (see the definition in the simulation setup).
Figure 7 (top) shows the average and standard deviation
of the cross-validated triplet error for eight subjects and
the four embedding methods: MLDS, STE, t-STE, and
SOE. All algorithms have similar performance in this
task.

In addition to the triplet error, we also show the
embedding outputs of MLDS and t-STE for each of the
eight subjects individually in Figure 7 (bottom). Note
that these plots are generated with the full set of triplets,
not only the training folds that are used to evaluate the
triplet error. The resulting functions are similar, both
across the two methods and across the participants.
For some of the participants, we observe a noticeable
difference between the embeddings of MLDS and
t-STE, particularly Subjects 1 and 2. For these subjects,
(t)-STE constructs a nonmonotonic function, while
the MLDS function tends to be monotonic. The main
reason for that is the nature of triplet questions. The
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participants were asked, “Which of the two slant pairs
are more different (Sj,Si) or (Sk,Sj )?” If, for instance,
the true perceptual function is decreasing from Si to Sj ,
then the sign of Sj − Si is negative and a negative value
should be evaluated with the GLMmodel (see Equation
9 in MLDS: Maximum Likelihood Difference Scaling
in R (2010)). However, we believe that participants
evaluated the differences based on the absolute value
of the difference, that is, |ψ j − ψi|. This can make
a significant difference in the output embedding of
MLDS. Although we performed the experiments
considering the exact differences, in the real experiment,
people have presumably answered the triplets with the
notion of the absolute difference, as they were asked to
indicate the pair with “more difference.”

The Eidolon experiment

Our final setup concerns a more “global” and
less well-defined comparison of images. To generate
“distorted” variants of images, we use the Eidolon
Factory by Koenderink, Valsecchi, van Doorn,
Wagemans, and Gegenfurtner (2017)—more
specifically, its partially_coherent_disarray() function.
In this toolbox, a given basis image can be distorted
systematically using three different parameters called
reach, grain, and coherence. An eidolon of a basis image
corresponds to a parametrically altered version of this
image. Reach controls the strength of a distortion
(the higher the value, the stronger the amplification),
grain modifies the fine-grainedness of the distortion
(low values correspond to “highly fine-grained”), and a
parameter value close to 1.0 for coherence indicates that
“local image structure [is retained] even when the global
image structure is destroyed” (Koenderink et al., 2017).
From a perceptual point of view, we might want to
know which and to what degree the image modifications
influence the percept. Starting with a black and white
image of a natural landscape as the basis image (see
Figure 8, left), we generate 100 altered images, using
reach and grain in {5, 12, 26, 61, 128} and coherence
in {0.0, 0.33, 0.67, 1.0}. All possible combinations of
these parameter values result in 5 · 5 · 4 = 100 different
images.
Lab experiment setup: In our lab, we asked three
participants aged 19 to 25 to answer triplet questions;
see Figure 8 (right) for an example question. For this
purpose, participants use a standard computer mouse to
click on one of the two bottom images that they deemed
more similar to the top image. Stimuli were presented
on a 1, 920 × 1, 200- pixel (484 × 302 mm) VIEWPixx
LCD monitor (VPixx Technologies, Saint-Bruno,
Canada) at a refresh rate of 120 Hz in an otherwise dark
room. Viewing distance was 100 cm, corresponding
to 3.66 × 3.66 degrees of visual angle for a single
256 × 256- pixel image. The surround of the screen

Figure 8. (Left) The original image in our Eidolon experiment.
(Right) An example triplet question —: “Which of the bottom
two images is more similar to the top image?”

was set to a gray value of 0.32 in the [0, 1] range, the
mean value of all experimental images. The experiment
was programmed in MATLAB (Release 2016a; The
MathWorks, Inc., Natick, MA) using the Psychophysics
Toolbox extensions version 3.0.12 (Brainard, 1997;
Kleiner, Brainard, Pelli, Ingling, Murray, & Broussard,
2007) along with the iShow library of the Wichmann
lab (http://dx.doi.org/10.5281/zenodo.34217).

Answers had to be given within 4.5 s after a triplet
presentation onset; otherwise, the triplet was registered
as unanswered and the experiment proceeded to the
next triplet (this occurred in only 0.013% of all cases
and can thus be safely ignored). Once a participant had
answered a question, the next one appeared directly
after a short fixation time of 0.3 s, during which only a
white 20 × 20- pixel fixation rectangle at the center of
the screen was shown. Before the experiment started, all
test subjects were given instructions by a lab assistant
and performed 100 practice trials to gain familiarity
with the task. The set of practice triplets is disjoint from
the set of experimental triplets. Participants were free to
take a break every 200 triplet questions. They gave their
written consent prior to the experiment and were either
compensated €10 per hour for their time or gained
course credit toward their degree. All test subjects were
students and reported normal or corrected-to-normal
vision.
Experiment design: Note that in our setup, there exist
n = 100 stimuli (the different altered images), giving
rise to around 3 · (n

3

) ≈ 106 possible triplet questions. In
contrast to the previous slant-from-texture experiment
with only eight stimuli, it is now absolutely impossible
to ask a participant to evaluate all possible triplet
questions. This already rules out the NMDS algorithm.
This is now where the machine learning literature
comes to aid: It has been proven theoretically that
if the embedding dimension is d , then of the order
dn log n triplet questions are sufficient to reconstruct
the Euclidean representation of n items up to small

http://dx.doi.org/10.5281/zenodo.34217
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Figure 9. Cross-validated triplet error of three embedding methods for three subjects of the Eidolon experiment. Each plot
corresponds to one subject, and each curve denotes the cross-validated triplet error of one method. The x-axis is the dimension of
embedding.

error (Jain et al., 2016). Even though this is just an
asymptotic statement and constants are completely
ignored, it can serve as a guideline for our experimental
setup. For example, assuming that the perceptual
embedding dimension is not more than d ≈ 3 (because
three parameters are involved to modify the images),
then dn log n = 100 · 3 · log2(100) ≈ 2,000 triplet
questions should be enough to construct an accurate
embedding. To be on the safe side, we hence decided to
present 6,000 triplet questions to each participant of the
experiment. These triplets have been chosen uniformly
at random from the set of all possible triplets and were
presented in three sessions of 2,000 triplets each.

Based on the triplet answers, we now run the ordinal
embedding algorithms (STE, t-STE, SOE). As the best
embedding dimension is unknown, we test dimensions
in the range d ∈ {1, 2, . . . , 8}. The MLDS method is
performed only in the case of one dimension, as it is
not applicable in multidimensional cases. We perform
10-fold cross-validation, and the cross-validated triplet
error (see Equation 5) is reported as the evaluation
criterion.

Figure 9 shows the cross-validated triplet error
for three subjects with various dimensions and three
embedding methods. Each plot corresponds to one
subject, while each curve shows the error corresponding
to one of the embedding methods. We can see that
t-STE consistently outperforms the other methods.
Note that the results of MLDS in case d = 1 are
omitted from the plots: Even in dimension d = 1, the
cross-validated triplet error for MLDS is larger than
0.25 for all three subjects, way larger than the error of
the other methods. Thus, MLDS is not comparable
to the performance of the best embedding methods
and omitted from the plots—it would be off the
scale in each of the panels. For all three subjects,
increasing the embedding dimension from one to two
definitely improves the embedding error—hence, we

obviously need more than one dimension to describe
the perceptual space. Adding further dimensions in
most cases does not really help except perhaps for
Subject 3. It looks as if further investigations and in
particular more participants and a joint analysis over all
participants would be necessary to come to a conclusion
here if one wanted to know how the parameters of the
Eidolon Factory are connected to perception.

The Eidolon experiment also points to another
important methodological issue: The best embedding
method (t-STE) leads to a cross-validated triplet error
around 0.15—but is an error of 0.15 acceptable for this
task? Could a (significantly) lower error be achieved if
one, for example, collected more triplets? To answer
this question, we would need to know the error baseline
of human participants: There might be a proportion
of ambiguous triplets, for example, for which no
obviously “correct” answer exists. If, for example, we
knew that 80% of the triplet questions had an easy,
obviously correct answer, and 20% of the questions
were so ambiguous that the answer was essentially
random, then the best error rate we could hope for
would be around 10%: On 80% of the triplets, we do
not make any error, and on 20% of the triplets, we guess
randomly, getting about 10% right and 10% wrong.
Of course, in case of the Eidolon experiment, we do
not have any external knowledge about the “difficulty”
or “ambiguity” of triplets. But we can try to estimate
it, and to this end, we conducted the following side
experiment. We chose a set of 2,000 random triplets
and asked each of them three times to each participant
(triplets have been shuffled such that participants did
not realize that they are answering the same triplets
repeatedly). We now estimate the “difficulty” of a
triplet by how consistent the repeated answers were:
If a subject answers the same triplet question with
different answers, we consider the question as “hard”
and otherwise as “easy.”We performed this experiment
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with our three participants and they show the following
percentage of hard triplets: 9.2%, 9.8%, and 11%.
Consequently, a natural baseline for our embedding
algorithms would be a triplet error of about 0.10. The
cross-validated triplet errors reported in our plots above
are actually close to this value, suggesting that our
ordinal embeddings are close to what is achievable.

How to apply ordinal embedding
methods in psychophysics

In order to make ordinal embedding methods more
applicable for researchers who are unfamiliar with these
methods, we now provide some basic rules of thumb.

How many triplets?

For a set of n stimuli, there exist 3
(n
3

)
many triplet

questions—already for moderate n, these are by far
too many to ask to a participant of an experiment.
However, for the ordinal embedding methods, a small
subset of triplets already contains enough information
to accurately reconstruct the true embedding. It has
been proven that if the required embedding dimension
is d , then of the orderO(dn log(n)) triplets are sufficient
to reconstruct the true embedding of n items (stimulus
levels) up to a small error (Jain et al., 2016). According
to this result, we suggest to start with a subset of size
dn log(n) or 2dn log(n) triplets and perform the ordinal
embedding. If the time budget allows, one can still
increase the number of triplets and see whether the
error improves significantly, but dn log n should be a
good baseline.

How to choose the subset of triplets?

Consider a set of n stimuli. At the first step, one
needs to consider the whole set of possible triplets. As
we mentioned earlier in simulations, every combination
of three items from the stimuli set gives rise to three
questions. Therefore, the complete set of possible triplet
questions contains 3

(n
3

)
triplets. The set of all possible

triplets might be very large indeed, and thus a small
subset of triplets needs to be subsampled. A natural
question is: Which of the triplet questions among the
whole set of possible questions should be chosen?
Over the course of many years, we have tried many
subsampling strategies in our group (Luxburg-lab):
based on landmarks, based on active learning, based
on estimated confidence values, based on the difficulty
of triplet questions, and so on. However, in all our
experiments, the simple strategy of selecting triplets
uniformly at random from the set of all possible triplets

performs surprisingly well in terms of triplet error.
Hence, this is the strategy that we suggest to use.

How to evaluate the quality of the embedding?

We reported the MSE in our simulations; however,
the true perceptual scale is not available in a real
experiment. The general approach that we suggest for
the evaluation of ordinal embedding is through the
cross-validated triplet error (see Equation 5)—indeed,
we suggest that this may be a good idea for MLDS
and NMDS, too. The chosen subset of triplets needs
to be partitioned into training and validation sets. The
embedding method finds a Euclidean embedding for
the perceptual scales, given the training set of triplets as
input. We then calculate the cross-validated triplet error
on the validation set. This procedure is preferable to
the triplet error that is evaluated on the very same set
that is used to construct the embedding; the latter can
be highly biased and typically underestimates the true
triplet error (overfitting).

How to choose the embedding dimension?

Note that from a formal point of view, increasing the
embedding dimension can always lead to a decreasing
triplet error—in the extreme case, it is always possible
to embed n items in a space of d = n dimensions
without any error. But often it can be observed that
there is a sharp decrease of the error as long as the
dimension is still too small; once a sufficient dimension
has been reached, the error decrease fades out (see the
Eidolon example). We suggest to run the embedding
algorithms in various dimensions, say from 1 to 10,
and to choose the smallest dimension that shows an
acceptable cross-validated triplet error. Also note that
in some cases, it might also be possible to estimate the
dimension of the data based on particular distance
comparisons (Kleindessner & von Luxburg, 2015).

Which algorithm, which implementation?

Considering the results of the various algorithms
on the many tasks and our experience in running
ordinal embedding algorithms for many years,
we consider t-STE as our method of choice.
The original implementation of the authors
is available at https://lvdmaaten.github.io/ste/
Stochastic_Triplet_Embedding.html, implemented in
MATLAB.

Discussion

In this article, we introduced ordinal embedding
methods as a powerful approach to analyze triplet

https://lvdmaaten.github.io/ste/Stochastic_Triplet_Embedding.html
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comparisons gathered using the method of triads.
Contrary to widespread belief, such methods provably
require only a reasonably small (dn log n) subset of
triplet comparisons to achieve acceptable results
for embedding n items. This property makes them
preferable to traditional NMDS, which needs the rank
order of all n2 pairwise distances. Ordinal embedding
methods are capable of embedding in multidimensional
Euclidean spaces without restrictions on the scaling
function. Thus, they have an advantage over MLDS,
which is limited to one dimension. Furthermore, even in
one-dimensional scaling scenarios, their performance is
at least comparable to the one of MLDS. Hence, ordinal
embedding methods such as t-STE are promising
candidates to become a “default” psychophysical
scaling algorithm.

Open issues

There are a few open issues regarding the use of
ordinal embedding methods that need to be addressed
in the future.

Confidence intervals
There have been considerable efforts to propose

algorithms for the ordinal embedding problem.
However, no particular study provides confidence
intervals for the estimated embeddings. Although this
issue is not taken very seriously in machine learning, for
psychophysics, this is an issue of high importance. Some
first steps in this direction have been taken in Lohaus,
Hennig, and von Luxburg (2019), but there is definitely
room for improvement.

Interpreting the embedding
A challenging yet important step is to interpret the

embedding results. To make the point clear, consider the
Eidolon experiment discussed in the previous section.
After gathering a two-dimensional perceptual space
and a mapping of stimuli in this space, there are a
couple of natural questions arising. What does each
perceptual dimension mean? How are the perceptual
dimensions related to the parameters of the stimulus
(in this case reach, coherence, and grain)? These are
essential questions that can lead to better understanding
of human perception.

Conjoint measurement
In addition to the general scaling problem, ordinal

embedding is a promising candidate to tackle conjoint
measurement problems (Luce & Tukey, 1964; Ho,
Landy, & Maloney, 2008; Knoblauch & Maloney,
2012). In a conjoint measurement experiment, the
sensory stimulus consists of more than one modality.
Again we could ask participants to compare triplets

of items and subsequently apply ordinal embedding.
The approach of using triplet comparisons and ordinal
embedding would need much less restriction than many
of the approaches in conjoint measurement, which
often rely on independence or additivity assumptions
on the modalities.

Keywords: psychophysical scaling, maximum-
likelihood difference scaling (MLDS), nonmetric
multidimensional scaling (NMDS), psychophysics,
ordinal embedding
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Footnotes
1In fact, Plateau’s work on relating physical stimulus magnitude to
sensation precedes Fechner’s but is not well known (Laming & Laming,
1996): We thank one of our reviewers for pointing us to Plateau’s work.
Other central aims are to measure detection and discrimination thresholds,
or just-noticeable-differences (JNDs), reaction times (RT), and confidence
ratings; see, for example, Wichmann and Jäkel (2018).
2In order to eliminate the absolute values, Maloney and Yang (2003)
reorder the stimuli such that ψi − ψ j > 0 and ψk − ψl > 0.
3https://lvdmaaten.github.io/ste/Stochastic_Triplet_Embedding.html.
4https://cran.r-project.org/web/packages/loe.
5https://cran.r-project.org/package=MLDS.
6https://faculty.sites.uci.edu/mdlee/similarity-data/.
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