
7480–7494 Nucleic Acids Research, 2018, Vol. 46, No. 15 Published online 3 July 2018
doi: 10.1093/nar/gky583

Time-lapse imaging of molecular evolution by
high-throughput sequencing
Nam Nguyen Quang1,2,3, Clément Bouvier1,2,4, Adrien Henriques1,2,3, Benoit Lelandais1,2,3

and Frédéric Ducongé1,2,3,*
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ABSTRACT

High-throughput sequencing of in vitro selection
could artificially provide large quantities of relic se-
quences from known times of molecular evolution.
Here, we demonstrate how it can be used to recon-
struct an empirical genealogical evolutionary (EGE)
tree of an aptamer family. In contrast to classical phy-
logenetic trees, this tree-diagram represents prolif-
eration and extinction of sequences within a popu-
lation during rounds of selection. Such information,
which corresponds to their evolutionary fitness, is
used to infer which sequences may have been mu-
tated through the selection process that led to the
appearance and spreading of new sequences. This
approach was validated by the re-analysis of an in
vitro selection that had previously identified an ap-
tamer against Annexin A2. It revealed that this ap-
tamer might be the descendant of a sequence that
was more highly amplified in early rounds. It also
succeeded in predicting improved variants of this ap-
tamer and providing a means to understand the influ-
ence of selection pressure on evolution. This is the
first demonstration that HTS can provide time-lapse
imaging of the evolutionary pathway that is taken by
a macromolecule during in vitro selection to evolve
by successive mutations through better fitness.

INTRODUCTION

Since the 1960s, when the idea of a pre-cellular world
was first introduced, Darwin’s theory was extrapolated to
the evolution of biomolecules outside living organisms (1).
Since then, in vitro selection studies have demonstrated that
nucleic acids and proteins can evolve in a test tube (2).
Such experiments have provided fundamental information

of how molecular function can arise from randomly synthe-
sized molecules and have contributed to the establishment
of the RNA-world hypothesis (3–5). Hence, in vitro selec-
tion has been used to study or design ribozymes with nat-
ural or novel catalytic activities (6). It has also been used
to identify the sequence motifs that are recognized by sev-
eral DNA- and RNA-binding proteins (7,8). The latter ap-
proach was popularized using the term SELEX (for sys-
tematic evolution of ligands by exponential enrichment)
(7). SELEX has also provided new types of artificial lig-
ands, usually called aptamers (9), which are increasingly
used in various biotechnology applications. For example,
they can be used to regulate gene expression (10), design
biosensors (11), purify therapeutic proteins (12), discover
new biomarkers (13), or the targeting of drugs, nanoparti-
cles, or contrast agents (14). Additionally, aptamers repre-
sent a new class of drugs, with one aptamer already com-
mercialized for the treatment of age-related macular degen-
eration and several others currently being evaluated in clin-
ical trials (15).

The growing interest in in vitro selection has led to sev-
eral improvements of the technology, but it is still based
on a Darwinian evolution process (16). First, a combina-
torial population with up to 1015 different sequences is syn-
thesized. These sequences are then screened for their abil-
ity to bind a target or their catalytic activity. The sequences
that satisfy such criteria are recovered by partition, whereas
the others are removed. The ‘winning’ sequences are then
amplified by PCR or RT-PCR and in vitro transcription
(for DNA or RNA libraries, respectively). The repetition of
selection and amplification gradually enriches the popula-
tion for sequences that are adapted to the selection pressure.
Additionally, these molecular species are also expected to
evolve by mutations during the amplification steps. These
mutations can produce new sequences that are slightly dif-
ferent from those of their parents. Those that contain ‘bene-
ficial’ mutations for their selection have a better chance to be

*To whom correspondence should be addressed. Tel: +33 146 548 641; Email: frederic.duconge@cea.fr
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enriched in the population. Therefore, only molecules with
the best-inherited traits from the starting library should sur-
vive and are expected to gradually evolve, leading to the
progressive enrichment of the best-suited nucleic acid struc-
tures inside the library. However, this mechanism of molec-
ular evolution remains largely theoretical and impossible to
visualize. Accordingly, it is still not known whether the final
winning sequences are already present in the original ran-
domly synthesized library or whether they originate from
variations of the original library sequences.

Until now, most aptamers have been identified after sev-
eral rounds of in vitro selection by cloning and Sanger se-
quencing of approximately 100 sequences. The identifica-
tion of aptamers by such low-throughput sequencing re-
quires significant enrichment of a few sequences in the final
population. However, the number of rounds and selection
parameters are usually chosen arbitrarily. Indeed, in vitro
selection is well known to be highly unpredictable due to
the influence of a large number of variables (for example,
the potential affinity of aptamers for the target, the amount
of potential aptamer structures in the starting library, the
effect of the selection parameters, etc.) (17). Additionally,
better molecules are often identified after a few rounds of
in vitro selection using a partially randomized (doped) li-
brary of aptamers or ribozymes (6,18,19). Therefore, for ev-
ery in vitro selection, the question remains whether better
sequences could have been identified with more rounds of
selection or if other parameters of selection had been used.

High-throughput sequencing (HTS) technologies have
been recently proposed to address this issue, enabling
deeper analysis of the population during in vitro selection
experiments (see for a review (20)). It allows, for the first
time, the analysis of millions of sequences from different
rounds to reveal the evolution of sequences inside the pop-
ulation. Such analyses have already demonstrated that the
most abundant aptamer sequences in the final population
are not always those with the highest affinity (21–24). They
have also demonstrated that HTS can detect sequences for
which their enrichment is significantly affected by a change
in a selection parameter (25,26). Nevertheless, there is still
no methodology for interpreting this data to understand
what happens during in vitro selection and how this knowl-
edge could be used to identify better compounds.

As for most big data, one of the major challenges of HTS
is to transform the information contained in millions of ob-
jects (here sequencing reads) into simple, easily understand-
able, graphics. One way to interpret evolution is to represent
it as a theoretical fitness landscape which links genotypes
and the fitness for a phenotype (27,28). The peaks in such
landscapes correspond to the fittest genotypes for a partic-
ular phenotype, whereas less fit sequences are down in the
valleys. Jason N. Pitt and Adrian R. Ferré-D’Amaré used
this concept in 2010 to analyse an in vitro selection exper-
iment that was performed to select RNA ligase ribozymes
(29,30). They used HTS to monitor the evolution of ∼107

variants of a previously known RNA ligase ribozyme. This
large amount of information was used to link the genotype
of each variant to its activity and allowed the generation of
an extraordinarily high resolution 3D graph representing an
empirical fitness landscape. The peak in this graph was steep
and narrow, showing that most variants of the ribozyme

lose their activity. It also identified several neutral positions
in which mutations had no impact. This method can be par-
ticularly efficient to analyse doped-SELEX, in which the en-
tire library is composed of variants from a known aptamer
or ribozyme. However, it is more difficult to use in a classi-
cal SELEX experiment because the library usually contains
several different aptamer families. Therefore, it provides sig-
nificantly fewer sequencing reads per family, allowing the
analysis of very few variants per family. As a result, Jimenez
et al. shown that the reconstructed fitness landscape from
a SELEX starting with a naive library was composed of
disconnected peaks formed by only a few hundred variants
(31).

Another way to estimate the fitness landscape through in
vitro selection is to study the variants that appear acciden-
tally through mutations by polymerases. Such mutations are
observable facts that are often assimilated as the raw mate-
rial for evolution. Accordingly, although the mutations are
random, selective pressure should promote increased en-
richment of those that provide better fitness to survive. Such
an evolutionary process was impossible to observe with low-
throughput sequencing because mutations are rare. How-
ever, HTS can detect many variants for the most abundant
sequences, with some point mutations. Some of these vari-
ants have already been identified to be better binders than
the most abundant aptamer from which they were derived
(24,25,32). Such variants were more highly enriched be-
tween two rounds of in vitro selection than the most abun-
dant sequence. This property was used by Hoinka et al. to
propose a score to predict the best variants (24). However,
superior enrichment did not automatically correlate with
better affinity, suggesting that comparing round-to-round
enrichment is not sufficient to highlight beneficial muta-
tions. Moreover, this method does not consider that evo-
lution is a dynamic process that is expected to progress se-
quentially. For example, if a variant contains a mutation (x)
that is beneficial, this variant will not only spread through-
out the population, but will also generate other variants
containing (x) and other mutations (yn) that may increase
in the population if they are neutral or provide an addi-
tional benefit. Among these new variants, those that contain
additional beneficial mutations that further improve fitness
should increase more rapidly in the population, and so on.
Finally, such an evolutionary process must gradually lead
to the extinction of other variants that were present in the
population at early stages, but which are less well adapted
to the selection conditions.

Evolution derived from the slight divergence of pheno-
typic traits, combined with the principles of selection and
extinction was described by Charles Darwin in his seminal
work ‘On the Origin of Species by Means of Natural Selec-
tion’ (33). He used a dendrogram to represent such an evolu-
tionary process, drawing the relationship between different
hypothetical variants through successive generations. Since
then, evolutionary trees based on phylogeny have been ex-
tensively used to depict evolution and most are now con-
structed from sequence alignments. Common methods of
phylogenetic-tree construction use a metric that measures
the distance between sequences to connect them by a com-
mon ancestor based on their similarity. Such reconstruc-
tions are extensively used to infer probable evolutionary
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pathways between species from the present to the past (34).
However, phylogenetic trees are often inappropriate for de-
picting the evolution that occurs during in vitro selection
because most selected sequences are different within a re-
stricted range of mutations. Thus, most are separated by a
similar Levenshtein distance and are connected to a small
number of connections.

Here, we reasoned that the HTS analysis of several
rounds of in vitro selection could artificially provide large
quantities of relic sequences from known times in an evo-
lutionary process. We use these relics, which are not com-
monly available in standard evolution studies, to construct a
new type of phylogenetic analysis that represents an empiri-
cal genealogical evolutionary (EGE) tree. This tree-diagram
is built by combining sequence alignments with historical
information to infer which sequences have mutated through
the selection rounds, leading to the appearance of new se-
quences in the population. Furthermore, it displays the fre-
quency of each variant at each round of in vitro selection.
This information can show the proliferation or extinction
of sequences within the population, which is directly related
to their evolutionary fitness. Consequently, an EGE tree can
reconstruct the evolution pathways taken during an in vitro
selection experiment to result in sequences with better fit-
ness. This tree can be used to study the impact of the selec-
tive pressure. More importantly, it can also be used for the
identification of better molecules.

We validated our approach by re-analysing a cell-SELEX
experiment that we had previously carried out and that led
to the identification of an anti-Annexin A2 aptamer, named
ACE4 (23). Annexin A2 is an important therapeutic target
that is involved in many biological processes and is over-
expressed at the surface of various types of cancer cells (35).
Our aim was to first evaluate whether an EGE tree can iden-
tify aptamers with a higher affinity than those previously
published. We also investigated how such analysis can be
used to study the effect of selection parameters and how
it can replace post-SELEX optimisation, such as doped-
SELEX, which is usually performed to improve aptamers
(6,18,19).

MATERIALS AND METHODS

Reagents

Oligonucleotides were chemically synthesized by Eurogen-
tec (Angers, France). Chemical reagents were purchased
from Sigma-Aldrich (Saint-Quentin Fallavier, France) and
the reagents used for molecular and cellular biology were
purchased from Thermo Fisher Scientific (Villebon-sur-
Yvette, France), unless otherwise specified.

Cells

MCF-7 cells derived from human breast adenocarcinoma
were purchased from ATCC (Manassas, VA, USA) and
grown in RPMI 1640 media supplemented with 10% FBS
and 1% antibiotics, at 37◦C in a 5% CO2 atmosphere.

High-throughput sequencing

HTS was performed on a GAIIx instrument (Illumina, Lit-
tle Chesterford, UK). Adapter and indexing sequences re-

quired for Illumina multiplexing sequencing were added to
the DNA libraries by PCR. The PCR products were purified
on a 3% agarose gel and recovered by passive elution in TE-
NaCl buffer (1× Tris–EDTA, 25 mM NaCl). Each eluate
was concentrated and precipitated with ethanol before re-
suspension in distilled water. Samples were then mixed and
loaded with 5 to 10% PhiX into a flow-cell and sequenced
according to the provider’s instructions. HTS data were de-
multiplexed and recovered in FASTQ format using bcl2fastq
Conversion Software v1.8.4 (https://support.illumina.com/
downloads/bcl2fastq conversion software 184.html).

Primer trimming and quality filtering of sequences.

All FASTQ files were processed using a software suite
called PATTERNITY-SEQ, developed from the aptamer
platform in MIRCen (http://jacob.cea.fr/drf/ifrancoisjacob/
english/Pages/Departments/MIRCen/Platforms.aspx?
Type=Chapitre&numero=6). The different steps of the
sequencing analysis are provided in Supplementary Figure
S1. First, adapter and primer sequences were removed
from each sequence, keeping only variable regions. Then,
sequences that contained at least one base with a quality
score (Q) below 30 were removed before being saved in
a FASTA format. This quality score can be converted
to a probability of error (P) using the formula P =
10(–Q/10). Thus, the recovered sequences contain bases with
a potential probability of error below 0.001 (1 in 1000).

Clustering of sequences in families based on Levenshtein dis-
tance

First, the frequency of each sequence in the different li-
braries was calculated. Only sequences with a frequency
>0.001% in at least one round were recovered to decrease
the time of analysis and to remove sequences of poor in-
terest. These sequences were then sequentially clustered in
families using a Levenshtein distance of 10 (i.e. sequences
with no more than 10 substitutions, insertions or deletions)
using an approach similar to that described by Alam et al.
(36). Clustering was performed by putting the sequences
in a list sorted by their maximum frequencies (whatever
the round) through SELEX. The sequence with the highest
maximum frequency was used as a reference and compared
to the others. All sequences meeting the distance criteria
were separated from the others and defined one cluster. The
algorithm repeats the same process with the remaining se-
quences and continues until the list is empty. All steps were
performed using PATTERNITY-SEQ.

Correlation between the coefficient of variation (CV) and
sampling size

The DNA library corresponding to round 15 of the cell-
SELEX was re-sequenced to obtain a higher number of se-
quences from this library (11 563 613 sequences). This li-
brary was chosen because it contains sequences with hetero-
geneous frequencies including enriched sequences that rep-
resent up to 10% of the library. Ten samples of various sizes
(100 000; 200 000; 500 000 and 1 000 000 sequences) were
randomly extracted using the web-based platform Galaxy

https://support.illumina.com/downloads/bcl2fastq_conversion_software_184.html
http://jacob.cea.fr/drf/ifrancoisjacob/english/Pages/Departments/MIRCen/Platforms.aspx?TypeChapitre&numero=6


Nucleic Acids Research, 2018, Vol. 46, No. 15 7483

Project (37). The frequencies of each sequence in the dif-
ferent samples were then measured. These values were fur-
ther used to calculate the mean frequency and coefficient of
variation (CV) for each sequence for each sample of differ-
ent size.

Phylogenetic tree of the ACE4 aptamer family

All variants of the ACE4 family representing at least 0.01%
of the library in one round were used to build a phy-
logenetic tree using the software MEGA7 (38). The tree
was generated by the Maximum Parsimony method using
the Subtree-Pruning-Regrafting (SPR) algorithm (39). The
branch lengths were calculated using the average pathway
method and are in the units of the number of changes over
the whole sequence.

Empirical genealogical evolutionary (EGE) tree of the ACE4
aptamer family

The EGE tree of the ACE4 family was built using Cytoscape
(40). For each round of selection, every variant of the ACE4
family representing at least 0.01% of the library was recov-
ered and used to establish a node. At every round R, each
variant was linked to a single variant of R-1 with the clos-
est similarity (i.e. Levenshtein distance) and which was the
most abundant at R-1. Alternatively, the Levenshtein dis-
tance can be replaced by a similarity distance calculated by
other methods of multi-alignment such as Clustal Omega
(41) or MAFFT (42). This method is fully explained in the
Results and in Supplementary Figure S2. It produces a net-
work of interactions between variants through the rounds
of selection down to a single node, which is the first variant
that represents >0.01% of the population. This variant can
be defined as the ‘potential ancestor’ of the ACE4 family.
Once the network is imported into Cytoscape, it is first or-
ganized using the Tree layout of the software. Every node is
then horizontally aligned per round of selection. Finally, the
size and color scale of each node is defined by the percent-
age of each variant in the family at one round. The name of
each variant was manually added to the dendrogram.

Evaluation of the error rate due to PCR or sequencing errors

A chemically synthesized DNA sequence of ACE4 was am-
plified in triplicate by 7 or 24 PCR cycles using primers elon-
gated with illumina adapter sequences, allowing for multi-
plexed sequencing. The PCR was performed in a final vol-
ume of 200 �l using the same condition of the cell-SELEX.
One pmole of matrix was added in a PCR mix that con-
tained a PCR buffer with 3mM MgCl2, 5% of DMSO, 1
�M of each primer, 0.2 mM dNTP and 5 units of Taq poly-
merase. The buffer and the Taq polymerase were from the
DyNAzyme EXT DNA Polymerase (Thermo Fisher Sci-
entific). The cycles of PCR were 94◦C for 30 s, 53◦C for
1 min and 72◦C for 1.5 min. The resulting libraries were
sequenced and two million sequences per condition were
randomly extracted using the web-based platform Galaxy
Project (37). The positional nucleotide frequency was ob-
tained using BioEdit (43).

Preparation of radiolabeled 2′F-Py RNA aptamers

Chemically synthesized ssDNA templates were amplified
by PCR before being in vitro transcribed in 2′F-Py RNA
and purified as previously described (23,44). The sequence
used as a negative control corresponded to a scrambled
sequence of ACE4 (ACE4scr): 5′-GGG-AGA-UGA-
UCC-GUU-GAU-GCG-AGC-ACU-ACA-ACU-GCU-
GGU-CAG-CAC-UAC-UGG-GAC-GCC-AGC-UGA-
CGG-CGG-AGA-AGU-CGU-CGU-UCG-UAG-GCA-
GAA-UC-3′. The sequence of the ACE4 aptamer was:
5′-GGG-AGA-UGA-UCC-GUU-GAU-GCG-AGG-
GAA-CGC-AAG-AAC-UGA-GGC-CAU-GAG-GCG-
CCU-UCC-CUU-GCU-CAG-GAC-GCA-AGU-CGU-
CGU-UCG-UAG-GCA-GAA-UC-3′. Sequences of ACE4
variants corresponded to the ACE4 aptamer, in which point
mutations were introduced according to the nomenclature
XnY, where X is the original base, n is the number of its
position, and Y corresponds to the mutation. If several
point mutations were introduced they are separated by
‘/’. For example, ACE4 G33A/A44G corresponds to the
sequence of ACE4 in which the guanine in position 33 and
the adenine in position 44 where substituted by an adenine
and a guanine, respectively. For all binding experiments,
2′F-Py RNAs were gel purified before [32P] radiolabeling
at the 5′ extremity, as previously described (44,45), to
achieve a labelling yield of approximately 3–6 MBq/pmol
of oligonucleotides.

Radioactive binding of aptamers to adherent cells

Competitive and saturation bindings were performed in
triplicate using a liquid handling robot (Microlab Star-
let – Hamilton, Villebon-sur-Yvette, France) and 24-well
plates containing approximately 100 000 MCF-7 cells per
well. For competitive binding, a radioactive ACE4 aptamer
was incubated at a final concentration of 5 nM in 200 �l
RPMI 1640 containing 100 �g/ml of both tRNA and Polyi-
nosinic acid (Poly(I)). The cells were incubated at 37◦C
for 15 min in the presence of an equimolar concentration
of an unlabelled ACE4’s variant or wildtype ACE4. Un-
bound oligonucleotides were then removed by washing five
times with 500�L RPMI 1640 and the amount of radioac-
tive ACE4 aptamer attached to cells was counted using
a MicroBeta TriLux counter (Perkin Elmer, Villebon-sur-
Yvette, France). The ratio of competitive binding compared
to ACE4 was calculated for each ACE4 variant by dividing
the amount of radioactive ACE4 bound in the presence of
wild-type ACE4 by the amount of radioactive ACE4 bound
in the presence of a variant.

Saturation binding experiments were performed using a
protocol extensively described elsewhere (45). Briefly, cells
were incubated with radiolabelled 2′F-Py RNA aptamers
at different concentrations, in 200�L RPMI 1640, contain-
ing 100 �g/ml of both tRNA and Poly(I), at 37◦C for 15
min. After washing five times with 500 �l RPMI 1640, the
amount of radioactive ACE4 aptamer attached to the cells
was counted using a MicroBeta TriLux counter. The spe-
cific binding of aptamers was measured by subtracting the
background values obtained with ACE4scr and apparent
Kd values were determined by fitting the binding curves with
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GraphPad Prism 6 (GraphPad Software, La Jolla, USA) us-
ing a one site-specific binding model.

Kinetic binding studies were performed using the White
Ligand Tracer instrument (Ridgeview Instruments AB),
which can measure the amount of radiolabelled aptamer
bound to the cells in real time. One day before the bind-
ing experiments, 106 MCF-7 cells were seeded in a 10 cm2

dish according to the supplier’s instructions, to obtain a
monolayer of cells in part of the dish. Just before bind-
ing, cells were washed with DPBS Mg2+/Ca2+, to remove
dead cells, before adding 3 ml RPMI 1640 containing 0.1%
sodium azide to avoid cellular internalization by endocy-
tosis. The dish was then placed on the inclined support of
the instrument for 10 min of background acquisition in the
presence of tRNA and Poly(I) (100 �g/ml each). Radiola-
belled aptamer (at a final concentration of 3nM) was added
and its association with cells was measured for 30 min. The
media was then replaced by fresh RPMI 1640 containing
0.1% sodium azide and the dissociation of aptamers from
the cell surface was measured for 60 min. Measurements
were performed using the 2 × 3 opposite positions mode
and a 4 s integration time per measure. The dissociation rate
constant (koff) was calculated using Trace Drawer software
(Ridgeview Instruments AB). The association rate constant
(kon) was calculated by dividing the koff by the apparent Kd
previously measured during the saturation binding experi-
ments.

Doped cell-SELEX

A partially randomized DNA library was synthesized
based on the sequence of the ACE4 aptamer 5′-GGG-
AGA-TGA-TCC-GTT-GAT-GCG-AGg-gaa-cgc-aag-
aac-tga-ggc-cat-gag-gcg-cct-tcc-ctt-gct-cag-gac-gcA-
AGT-CGT-CGT-TCG-TAG-GCA-GAA-TC-3′ (bases in
lowercase correspond to the ACE4 aptamer in which point
mutations were introduced at a rate of 7.5% with an equal
mixture of all three other bases; bases in uppercase are
identical to the ACE4 aptamer and correspond to primer
binding sites used during amplification).

Doped-SELEX was performed as the cell-SELEX pre-
viously described for the identification of the ACE4 ap-
tamer (23,44). Briefly, the doped DNA library was am-
plified by 12 cycles of PCR and in vitro transcribed us-
ing 2′F-Pyrimidines (Trilink Biotechnologies, San Diego,
CA, USA) and a mutant form of T7 RNA polymerase
(T7Y639F, kind gift of R. Souza). After treatment with
DNAse I and PAGE purification, 25 pmol 2′F-Py RNA li-
brary containing approximately 1012 sequences was heated
at 85◦C for 5 min, snap-cooled on ice for 5 min, and al-
lowed to warm to 37◦C. Then, 2′F-Py RNAs were incu-
bated 10 min at 37◦C with 1.65 × 106 adherent MCF-7
cells in 500�l RPMI 1640 containing 5 �g yeast tRNA. The
cells were washed five times with 5 ml RPMI 1640 to re-
move unbound sequences (the last wash lasted 5min). Fi-
nally, bound oligonucleotides were recovered using the Nu-
cleoSpin RNA II RNA extraction kit (Macherey-Nagel,
Hoerdt, France). Then, 2′F-Py RNAs were reverse tran-
scribed with Superscript II RT before re-amplification by
PCR and in vitro transcription. Four rounds of doped cell-
SELEX were performed. An aliquot from each PCR was

analysed by two independent high-throughput sequencing
runs.

Analysis of the mutational landscape from the doped cell-
SELEX

Galaxy Project was used to randomly select 800 000 se-
quences from the starting doped library and each round
of selection. The positional nucleotide frequency of each li-
brary was obtained using BioEdit (43). For each position p,
a normalized enrichment ratio (RN) between rounds 4 and
0 (starting doped library) was calculated for each base b as
described by the formula:

RNp,b = rp,b,4/0
∑

bεB rp,b,4/0

where B = {A,U,C,G} and

rp,b,4/0 = Pp,b,R=4

Pp,b,R=0

where Pp,b,R = 4 is the percentage of base b at position p at
round 4 and Pp,b,R = 0 is the percentage of base b at position
p at round 0.

These RNs have been previously used by Carothers et al.
to analyse a doped-SELEX experiment (46). They were
added, using the software VARNA (47), as a color scale to
the predicted secondary structure of ACE4 built by MFold
(48).

The percentage of each sequence x and their Leven-
shtein distance to the wildtype ACE4 were obtained by
PATTERNITY-SEQ to reconstruct a 2D mutational land-
scape of the ACE4 aptamer. Only sequences with a fre-
quency >0.001% in one round were recovered. The relative
enrichment factor (E) between rounds 4 (R4) and 0 (R0) rel-
ative to that of the wildtype ACE4 was then calculated for
each sequence x by the formula:

E =
Px,R=4

Px, R=0

PACE4, R=4

PACE4,R=0

where Px,R = 4 is the percentage of the sequence x at round
4, Px,R = 0 the percentage of the sequence x at round 0,
PACE4,R = 4 the percentage of the wildtype ACE4 sequence
at round 4 and PACE4,R = 0 the percentage of the wildtype
ACE4 sequence at round 0. Finally, a 2D mutational fitness
landscape was drawn by GraphPad Prism 6, plotting E on
the y-axis and the Levenshtein distance on the x-axis for
each sequence.

RESULTS

HTS sequencing reveals the Darwinian evolution that occurs
during in vitro selection

We reanalysed fifteen rounds of a cell-SELEX, that we pre-
viously published, to investigate the type of evolution that
can be measured during in vitro selection using HTS (23).
One aptamer, called ACE4, was judged to be particularly
attractive during this SELEX because it targets Annexin
A2, a protein that is overexpressed at the surface of several
types of cancer cells (35). We conducted a more in-depth
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analysis by examining approximately 15 million sequences,
which corresponds to approximately 500 000 to 2 000 000
sequences per round, to better study the evolution of se-
quences during this SELEX.

We observed that sequences with a shorter random re-
gion were enriched during this SELEX (Supplementary Ta-
ble S1). We decided to recover all the sequences with a ran-
dom region between 47 and 52 nucleotides to allow the de-
tection of sequences with deletions or insertions. All the se-
quences were clustered in families using a Levenshtein dis-
tance of 10. Thus, every family was composed of similar
sequences with no more than 10 substitutions, insertions,
or deletions (Supplementary Table S2). The sequences of
most families were separated by a maximum Levenshtein
distance of four. We monitored the sequences that were en-
riched during the selection, by analyzing those that could
be detected in at least one round at a frequency >0.001%
in the library (i.e. 10 copies per million sequences, Supple-
mentary Table S3). We detected a few hundred sequences
with a frequency >0.001% in the library until the round
5; but they collectively represented less than 0.1% of the
population (solid lines in Figure 1A and B and Supplemen-
tary Table S3). Their number increases up to 8652 sequences
from round 6 to round 12 before slowly decreasing down to
6680 sequences by round 15 (Figure 1B). Simultaneously,
their total prevalence in the pool increased exponentially
and represented more than half the pool by round 7 and
83% by round 15 (Figure 1A). The fact that the number
of sequences >0.001% decreased after round 12 while their
prevalence increased in the library demonstrates that some
sequences started to disappear from the population due to
greater amplification of others. Such extinction could be
clearly seen for instance for the sequences of the ACE22 and
ACE105 families, which were the most amplified families
at round 7, but which progressively disappeared from the
library thereafter (Supplementary Tables S2 and S3). This
correlated with an increase in the number of families to 1737
at round 8 before a continuous decrease to 296 at round 15
(Figure 1C). This demonstrates that there is predominant
amplification of a few families relative to the others from
round 8. Moreover, some of these families contained an in-
creasing number of variants and, consequently, the number
of sequences >0.001% decreased less rapidly than the num-
ber of families. As an example of such an evolutionary pro-
cess, the frequency of the family that contained the ACE4
aptamer steadily increased up to 9.5% at round 14 before
decreasing slightly to 7.7% at round 15 (dotted line in Fig-
ure 1A).

This family contained an increasing number of variants
for which the frequency in the pool was >0.001% (dotted
line in Figure 1B, Supplementary Tables S3 and S4). One of
these variants (named U63C because the uracil in position
63 of ACE4 is replaced by a cytosine) was predominantly
amplified in the family between rounds 6 and 10, with an
increase in frequency from 0.07% to 2.8% (Figure 1D and
Supplementary Table S4). The percentage was then stable
for two rounds before continuously decreasing to 0.3% by
round 15. This decrease was concomitant with the enrich-
ment of other variants, including ACE4, which was the most
abundant variant of the family by round 15, where it repre-
sented ∼4% of the total library and 63% of the family (Fig-

ure 1D). Overall, these observations suggest that ACE4 was
a variant of an ancestral sequence (U63C), which was pre-
dominantly enriched in the population by round 6. It also
suggests that this ancestral sequence was less well adapted
than ACE4 to the selection pressure that increased progres-
sively (Figure 1E). In conclusion, accordingly to previous
studies (24,25,32), HTS analysis of the population from ev-
ery round of our cell-SELEX clearly depicts several evo-
lutionary patterns described by Darwin’s theory, including
the amplification, extinction, and divergence of sequence
species inside families (33).

The frequencies of variants detected in the ACE4 family are
higher than the mutation rate that may result from sequencing
errors or mutations introduced by PCR

It is well known that sequencing errors can occur, even
though the quality of HTS has been considerably improved
during past few years (49). In addition, some positions
within a sequence may be more prone to mutations intro-
duced by the polymerases than others. We wished to know
whether the ACE4 variants come from mutations during
PCR or were due to sequencing errors. Thus, we amplified a
chemically synthesized sequence of the ACE4 aptamer for
7 or 24 PCR cycles under the same conditions of our SE-
LEX, but using primers that were elongated with adapter
sequences for multiplexing HTS. We then analysed two mil-
lion sequences per PCR products by HTS in triplicate. The
number of variants dramatically increased between 7 and
24 PCR cycles and, consequently, the non-mutated ACE4
sequences decreased from 96% to 83%, respectively (data
not shown). This suggests that the mutations were mainly
due to polymerase errors rather than sequencing errors.
This was further confirmed by comparing the mutation fre-
quency per position. Indeed, the primer sequence, which is
not enzymatically synthesized during PCR but elongated,
was seven times less mutated after 24 PCR cycles than the
sequence synthesized by Taq polymerase (Figure 2A). The
polymerase mutated twice as many adenines and uracils
as guanines and cytosines. Furthermore, transitions were
favoured over transversions, regardless of the position (Fig-
ure 2B). Thus, a purine was more prone to be mutated in
another purine, whereas a pyrimidine had a higher chance
of being mutated to another pyrimidine. This result further
confirms that observed mutations are predominantly intro-
duced by Taq polymerase, as recent studies demonstrated
that Illumina’s technologies introduce many more A to C
and G to T substitutions (50). Thus, the Taq polymerase
that was used during our cell-SELEX can generate a high
number of variants, although the mutations are not entirely
random. Nevertheless, the highest frequency of mutation
was around 0.01 (Figure 2A). As a result, an ACE4 vari-
ant generated by PCR or sequencing errors should repre-
sent no more than 0.0005% in the library because the ACE4
aptamer was detected at a maximum frequency around 5%.
This mutation frequency is too low to explain the high en-
richment of particular variants observed during the cell-
SELEX, which likely correlates with their evolutionary fit-
ness.
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Figure 1. Evolution of the library and ACE4 family during the cell-SELEX. (A) Percentage of the library that is composed of sequences with a frequency
>0.001% (solid line). Percentage of the ACE4 family inside the library (dotted line). (B) Number of sequences with a frequency > 0.001% (solid line).
Number of sequences inside the ACE4 family with a frequency >0.001% (dotted line). (C) Number of families that are composed of sequences higher than
0.001% of the library. (D) The heatmap shows the evolution of the 70 most amplified sequences of the ACE4 family from round 6 to round 15. Frequencies
at 0.01% or less are in darkest green; frequencies at 0 are in grey. The sequences corresponding to the random region are presented, highlighting their
mutations relative to the wildtype ACE4 aptamer at the top. The sequences were named according to their mutations relative to ACE4. (E) Selection
pressure used during cell-SELEX (23). The grey highlighting corresponds to the conditions that changed between two rounds.
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Figure 2. Mutation frequency of the ACE4 aptamer after 24 cycles of PCR.
The mutation frequencies were calculated from 2 000 000 sequences ob-
tained after 24 cycles of PCR (n = 3). (A) Mean mutation frequency for
each position of the ACE4 aptamer. The mutation frequencies in a part of
the primer sequence (positions 72–80) revealed errors that are strictly due
to sequencing since this region is not synthesized by the Taq polymerase.
These errors were seven times less frequent than those in the region elon-
gated by the Taq polymerase during PCR (positions 24–71). The mutation
yield appeared to be approximately constant for each base, regardless of the
position. However, the mutation rate was approximately two-fold higher
for adenines (green) and uracils (red) than for guanines (yellow) and cy-
tosines (blue). (B) Mutations for each base of the ACE4 aptamer elongated
by Taq polymerase. Transitions were favoured over transversions for each
base. For example, purines were much more frequently mutated to another
purine, and pyrimidines much more frequently to another pyrimidine.

An empirical genealogical evolutionary (EGE) tree can high-
light the evolutionary pathway used during cell-SELEX to-
wards the ACE4 aptamer

Phylogenetic analyses based on sequence alignment are of-
ten performed to build family relationships between dif-
ferent variants of aptamers. However, these methods pro-
vide little information on the possible evolution of aptamers
that may have occurred during the successive rounds of in
vitro selection. Accordingly, such analysis of the ACE4 fam-
ily only reveals two groups of variants, those containing a
U63C mutation with respect to ACE4 and those without
(Figure 3A). It does not provide any information about the
evolution of these sequences during the rounds of SELEX
nor predict possible better variants. Nevertheless, the data
provided by HTS analysis of the population during the se-
lection rounds represent a high number of relic sequences
from different times of the evolution. We reasoned that this
information could be used in addition to sequence align-
ment analysis to reconstruct an empirical genealogical evo-

lutionary (EGE) tree of an aptamer family during in vitro
selection.

For this purpose, we postulated that a threshold needs
to be arbitrarily set to define at which round a variant ap-
peared in the population at a frequency that indicates unde-
niable enrichment. We defined this threshold by performing
several population analyses to estimate the effect of sam-
pling size on the coefficient of variation (CV) of the mea-
sured frequencies. As expected, the CV decreases when the
frequency increases and the CV for a given frequency de-
creases when the sampling size increases (Supplementary
Figure S3). Based on this analysis, we chose a frequency of
0.01% as the threshold because we analysed at least 500 000
sequences per round, which should have guaranteed mea-
surements with a CV below 20%. Among the 476 different
variants of ACE4 aptamer that were detected, only 70 could
be detected in at least one round at a frequency above this
threshold. We then used two rules to reconstruct the most
probable family relationship between these variants. Rule 1:
every variant should be the descendant of a ‘potential par-
ent’ that is one of the several variants detected above the
threshold in the previous round. Rule 2: this potential par-
ent is defined as the most highly similar and most highly
abundant variant in the previous round (see Supplementary
Figure S2 for an illustration of the method). These rules
were used to link the variants through the rounds of selec-
tion down to a ‘potential ancestor’. These connections were
further used to draw an EGE tree that represents a time tree
of evolution in which the time unit is one round of selection
(Figure 3B). For every round, the percentage of each vari-
ant in the family was added to the tree as a node using both
colour and size codes. Thus, this tree also provides an in-
dication of the evolutionary fitness of the variants showing
the enrichment and decrease of every variant inside a fam-
ily. To the best of our knowledge, this is the first dendrogram
that can simultaneously represent both the fitness and fam-
ily Relationship of variants during evolution.

Using this diagram, we observed that a ‘potential ances-
tor’ of the ACE4 family appeared at round 6 and was not
the ACE4 aptamer previously identified as the most abun-
dant variant after 15 rounds of cell-SELEX. This ancestor
has a cytosine at position 63 instead of the uracil found in
ACE4. Until round 10, this ancestor was the principal rep-
resentative of the family, although it generated numerous
variants, including the ACE4 aptamer, which was first de-
tected at round 7. The frequency of several of these vari-
ants increased in the population between rounds 7 and 9.
However, the frequency of the ancestor and all its variants
containing a cytosine in position 63 decreased dramatically
from round 10. Simultaneously, the frequency of the ACE4
aptamer steadily increased and generated new variants with
a uracil in position 63, whereas the ancestor produced al-
most no new variants. This result demonstrates the validity
of our model as the appearance of variants correlated with
the abundance of their potential parents. It also demon-
strates that there was an important shift in the evolution of
the family after round 9. Furthermore, although the ACE4
aptamer was the most abundant sequence of the family at
round 15, the EGE tree shows that the frequency of three of
its variants started to increase in the family during the last
three rounds (shown by arrows in Figure 3B). This suggests
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Figure 3. Classical phylogenetic tree and empirical genealogical evolutionary (EGE) tree of the ACE4 family. Every variant of ACE4 that was detected in
the library with a frequency that is > 0.01% was used to build evolutionary trees. The name of each variant is shown at the top of each tree. (A) Classical
phylogenetic tree built using the Maximum Parsimony method. (B) The EGE tree was drawn using Cytoscape (40). Nodes with a gradient of different size
and colour present the percentage of each variant in the family at each round. These nodes are aligned horizontally for each round, indicated at the right
of the tree. These nodes are connected through their potential parents in the previous rounds by lines. The identification of the potential parents is inferred
based on the methodology described in Supplementary Figure S2. This dendrogram highlights different evolutionary profiles for groups of variants. It
should reflect their fitness to survive the selection pressure during rounds of selection, summarized in Figure 1E. The left branch, which corresponds to the
evolution of a potential ancestor sequence (U63C), contains nodes that reflect a high percentage in the family until round 9. All the variants that appear
between rounds 7 and 10 are linked to this branch, meaning that they should have been created by mutations of this sequence. After round 9, the frequency
of one of the mutants, the ACE4 aptamer with a uracil in position 63, increases within the family and starts to generate new variants through further
mutations (branches on the right). Simultaneously, the frequency of variants with a cytosine in position 63 decreases within the family (branches on the
left). Despite over-representation of the wildtype ACE4, some of its variants (A44G, G33A and G38U) start to increase within the family from round 13
(black arrows). This suggests that these new variants could be better binders than ACE4 and possibly become dominant within the family and generate
other variants if further rounds were performed.



Nucleic Acids Research, 2018, Vol. 46, No. 15 7489

that these variants (containing either the mutation A44G,
G33A, or G38U relative to ACE4) may be better ligands
than the ACE4 aptamer.

The shift of evolution is correlated with the selection of vari-
ants with slower dissociation rate

We evaluated five variants by competitive binding assays,
using ACE4 as a reference, to determine whether the evolu-
tion observed with the EGE tree correlated with the ampli-
fication of better ligands (Figure 4A). As anticipated, the
three variants (A44G, G33A and G38U), which demon-
strated better enrichment than ACE4 during the last three
rounds, showed a 2-fold better competitive binding. Fur-
thermore, variant U63A, which was highly stable in the
family during selection, demonstrated the same binding as
ACE4. However, variant U63C, which is the ancestor that
progressively decreased during selection relative to ACE4,
showed an unexpectedly similar binding affinity to that of
ACE4. We also performed binding experiments on cells
to measure the apparent dissociation constant Kd of these
variants (Figure 4B and Supplementary Figure S4). These
studies confirmed the previous results, as the ancestor and
the U63A variant had the same affinity as ACE4, whereas
the three other variants had an approximately two-fold
lower Kd than ACE4.

The fact that ACE4 and the ancestor had the same affin-
ity was unanticipated, because the frequency of variants
with a cytosine in position 63, such as the ancestor, de-
creased from round 9 relative to those containing a uracil,
such as ACE4 (Figure 3B). Several selection parameters
varied during this cell-SELEX to progressively improve the
stringency of the selection (Figure 1E). The shift in evolu-
tion from round 9 correlated with a more stringent wash-
ing of the cells (5 min), which was introduced from round
9 to favour the enrichment of aptamers with a slow dissoci-
ation rate. Therefore, we compared the binding kinetic of
the ancestor, the wildtype ACE4 aptamer and the G33A
variant, which demonstrated the best affinity. We measured
the interaction of radioactive aptamers with living cells in
real-time using LigandTracer (Figure 4B and C). Although
the three aptamers had similar Kd, their interaction kinet-
ics were markedly different. The ancestor displayed a faster
dissociation rate from cells, with a dissociation rate constant
(koff) approximately two- and 10-fold higher than those of
ACE4 and the G33A variant, respectively. Based on these
koff values and the Kds that were previously calculated from
saturation binding experiments, we estimated the associa-
tion rate constant (kon) of the aptamers. The ancestor dis-
played a kon approximately 2- and 4-fold higher than those
of ACE4 and the G33A variant, respectively (Figure 4B).
Overall, these results suggest that our cell-SELEX condi-
tions favored the enrichment of aptamers with slower dis-
sociation rates from round 9, although they also had slower
association rates. In contrast, aptamers with faster associa-
tion rates may have been favored in early rounds.

Doped cell-SELEX provides a better fitness landscape of the
ACE4 aptamer but does not generate better variants

The EGE tree reveals the evolutionary pathway that was
taken during the cell-SELEX experiment to generate better

variants. However, the question remains whether the muta-
tions introduced by PCR are sufficient to fully explore the
fitness landscape of the aptamer, i.e. whether the same vari-
ants would have been identified if the in vitro selection had
been carried out several times. We addressed this question
by performing four rounds of cell-SELEX using a library
of doped ACE4 aptamers that contain 92% of the original
residues and 2.7% of each other residue at each position.
This method, called ‘doped-SELEX’, is usually performed
post-selection for the identification of better variants by ex-
ploring the fitness landscape of aptamers (6,18,19,29). The
starting doped library and the library from each round were
analysed by HTS. ACE4 represented only 1.8% of the start-
ing doped library, whereas most of the library contained
ACE4 variants with one, two, or tree mutations (Supple-
mentary Table S5). As expected, variants with more muta-
tions were found at a lower frequency in the library. For ex-
ample, each variant with one mutation was present at a fre-
quency of approximately 0.06%, whereas each variant with
two mutations was at a frequency of approximately 0.003%.
However, three variants were unexpectedly overrepresented
in the starting library, two with one mutation (A35C or
A47G) and one with both mutations (each variant repre-
sented 1.8, 1.6, and 1.4% of the library, respectively). This
bias was therefore observed for the base frequency per po-
sition. Indeed, the mutations A35C and A47G were present
at the same frequency as their corresponding wildtype bases
(Supplementary Figure S5). The frequency of the other mu-
tations was ∼50–100 times lower than their corresponding
wildtype base. Mutations of uracils were also two-times less
frequent than mutations of the other bases. This informa-
tion on the bias of the starting doped library was used to
normalize the evolution of the base frequencies during se-
lection using a method previously described by Carothers
et al. (46). It clearly highlighted an increase in several base
frequencies at various positions, mostly in the 5′ region (Fig-
ure 5A). Such increases should reveal the bases that play
a key role in the binding of the aptamer. In contrast, the
base frequencies for some positions, mostly in 3′ region,
were mostly unchanged, suggesting that they are not crucial
for the aptamer. When this information was added to a pre-
dicted structure of ACE4 it revealed that some predicted G-
C base pairs (positions 24–57, 25–56, 29–52, 30–51 and 42–
49), as well as some bases in a predicted bulge (A34, A35,
C36, A39 and G40), appear to be crucial and do not tol-
erate mutation (Figure 5B). In contrast, the frequencies of
five bases in a bulge and a loop increased much more than
their original base, suggesting that these mutations (A32C,
G33A, G38U, A44G and A47C) may be beneficial for the
aptamer. Three of these mutations included the three bene-
ficial mutations that were previously identified by the EGE
tree. Two other mutations (A26G and C50U) were also en-
riched, although they were predicted to be engaged in base
pairing. Accordingly, most of the 1,124 variants that dis-
played a better enrichment than ACE4 contained at least
one of these mutations (Supplementary Table S5). We stud-
ied several variants that presented the highest amplifica-
tion during the doped cell-SELEX and contain the muta-
tion (A32C, A47C and C50U) (Figure 6 and Supplemen-
tary Table S5). Unexpectedly, competitive binding revealed
that the variants A47C, A44G/C50U, and A32C/A44G did
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Figure 4. Binding of ACE4 variants to MCF7 cells overexpressing Annexin A2. (A) Competitive binding assays of ACE4 variants compared to wildtype
ACE4. [32P]-radiolabeled ACE4 aptamer was incubated in the presence of an unlabelled ACE4 variant or wildtype ACE4. The competitive binding ratio
was calculated by dividing the amount of radioactive ACE4 bound in the presence of wildtype ACE4 by the amount of radioactive ACE4 bound in the
presence of a variant (n = 3). The results are presented in log 2: the variants with higher competitive binding than ACE4 have positive values and those
with lower competitive binding have negative values. (B) Equilibrium and kinetics constants for the binding of ACE4 variants to cells. Apparent Kds were
measured by saturation binding experiments (n = 3, see Supplementary Figure S3). Apparent dissociation rate constants (koff) were measured by fitting
the dissociation of aptamers from the cell surface measured by the Ligand Tracer instrument in (C) The apparent association rate constant (kon) was
calculated by dividing the apparent koff by the apparent Kd previously measured during saturation binding experiments. (C) Association and dissociation
of radioactive wildtype ACE4 and two variants (U63C and G33A) measured in real time by the Ligand Tracer instrument. Association and the dissociation
were measured for 30 and 60 min, respectively. The fit of the dissociation allows calculation of the koff presented in (B).

not have a higher affinity than ACE4, whereas they were
much more enriched (Figure 4A and B). Only the A32C
variant provides a slightly higher affinity than ACE4. How-
ever, its competitive binding was lower than that of the vari-
ants previously identified by the EGE tree. In contrast, the
G33A/A44G variant, which also appeared in the two last
rounds of the tree, had a much higher affinity. This result
suggests that the EGE tree may be as effective as a doped-
SELEX in identifying mutations that provide the highest
affinity.

DISCUSSION

For more than half a century, in vitro selection has generated
a high number of new peptides, proteins, and nucleic acids
some of which are even used as medicines (1,2,4). However,
the evolutionary processes engaged during this approach
have remained largely unknown, although the rise and fall
of isotypes during a selection was already observed since the

first original experiments (7,51). Until recently, the popula-
tion was only sequenced at the end of the experiment. In
addition, a hundred or fewer sequences were usually anal-
ysed by Sanger sequencing, which provided a very low res-
olution snapshot of the population. HTS provides an op-
portunity to improve the resolution of this analysis, in an
unprecedented way, by investigating millions of sequences.
Most importantly, it also offers the ability to perform time-
lapse analysis of the population during selection. There-
fore, it can provide access, for the first time, to something
only dreamed by evolutionary biologists: a large quantity
of relics from precise moments of evolution. We used relic
sequences from various rounds of in vitro selection to recon-
struct an empirical genealogical evolutionary (EGE) tree
that represents the evolution of several anti-annexin A2 ap-
tamer variants. Our method only analyses sequences that
are sampled above a certain threshold. As such, we hypoth-
esize that the observed species in later rounds are more likely
to arise from species whose frequencies are higher than this
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Figure 5. Evolution of nucleotide frequencies per position during doped-SELEX. (A) Normalized enrichment ratio (RN) for each base per position after
four rounds of doped SELEX. RNs are presented as an artificial sequencing chromatogram. It emphasizes important positions of the aptamer for which
some bases are predominantly amplified, suggesting that they play an important role in the interaction of the aptamer with its target. Each base that is
predominantly amplified per position was used to compose the sequence at the top. Bases that were different from those of wildtype ACE4 are shown
in red. Y designates pyrimidines, R purines and N (in green) positions for which it is difficult to observe the enrichment of a single base. (B) Structural
prediction of the ACE4 aptamer showing bases that were predominantly amplified after four rounds of doped-SELEX. RNs were added as a colour scale
to the predicted secondary structure of ACE4. Arrows indicate mutated bases that are more highly amplified than the original bases.

Figure 6. Mutational landscape of the ACE4 aptamer based on doped-
SELEX. The relative enrichment of 5872 ACE4 variants relative to that
of wildtype ACE4 was measured after four rounds of doped-SELEX (pre-
sented in log 10 in the y-axis). These variants contained up to four mu-
tations relative to ACE4 (x-axis). Most variants were less enriched than
ACE4, but 1124 variants were more enriched (relative enrichment supe-
rior to 1). Variants evaluated in the binding experiments are encircled in
red.

limit of detection in prior rounds. We believe that this in-
ference used by the EGE tree may be better for the anal-
ysis of in vitro molecular evolution processes than classi-
cal phylogenetic trees because it uses historical information
on the abundance of each variant throughout the process,
in addition to sequence alignment, to determine the fam-
ily relationships between variants. In contrast, most classi-
cal phylogenetic analysis simply use sequence homology to
infer family relationships. Furthermore, the EGE tree can
also show the increase or extinction of individual sequences
inside the population. Thus, it can reveal the evolutionary
pathways taken by macromolecules by successive mutations
to evolve towards variants with the best fitness to survive the
selection pressure. It is impossible to obtain such informa-
tion using a classical phylogenetic tree built from multiple
sequence alignments (see Figure 3A).

Our study was inspired by the diagram published by
Charles Darwin in 1859 to explain his theory of evolution
(33). His diagram resembles a genealogy tree in which differ-
ent hypothetical species with slight variations are depicted
at different times of evolution and connected to their par-
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ents up to a hypothetical ancestor. Darwin used this dia-
gram to show that all variations may not appear simultane-
ously, but rather by successive variations. Furthermore, he
supposed that only the variations that are profitable would
be preserved and generate new variations. Moreover, the
improved variants may take the place of earlier, and less
well adapted variants, leading to their extinction. All these
patterns of evolution described for the evolution of animal
species were directly observed at a molecular scale for the
evolution of anti-annexin A2 aptamers. An ancestor of the
aptamer was highly abundant in the earlier rounds of selec-
tion and generates several variants. One variant, the ACE4
aptamer, was much better adapted to the selection pressure
and enriched in the population in the further rounds of in
vitro selection. This led to the progressive extinction of the
ancestor and other variants. At the same time, ACE4 gener-
ated several new variants, some of which were better suited
to withstand the selection pressure that was increased ex-
perimentally by increasing the time of washing. Accord-
ingly, the EGE tree showed that the uracil in position 63,
in addition to the mutations G33A, A44G, or G38U, may
provide variants with slower dissociation rates, which was
confirmed by binding experiments. These mutations all con-
cerned bases that are predicted to be in single-strand loops,
suggesting that these loops may be important for the bind-
ing of the aptamer.

Previously, Hoinka et al proposed a method, called ‘Apta-
mut’, to highlight the best variants of an aptamer family cal-
culating a Log score (24). We compared our results with this
method (Supplementary Tables S6 and S7). One of the main
differences is that Aptamut used a Locality sensitive hash-
ing approach to cluster sequences. As a result, we observed
that the clustering was never rigorously identical when we
use this method several times. It identified about 690,000
different families while our approach reproducibly identi-
fied 1,887 different families. More importantly, Aptamut
clustered ACE4 variants in several different families, which
complicated the analysis. In addition, it takes in account se-
quences whose frequency is less than 0.001% whereas we
demonstrated that they are subject to high measurement
errors (Supplementary Figure S3). Focusing on the most
abundant ACE4 family identified by Aptamut (Supplemen-
tary Table S6), several sequences with the highest Log score
matched the wild-type ACE4 sequence with mutation in the
primer regions. Some sequences also contained the G33A,
A44G and G38U mutations. However, they have been di-
luted with several sequences containing mutations that were
not enriched during the doped-SELEX, which raises ques-
tions about their relevance for improving binding (i. e. the
mutations C57G, C64G, G66U, G67U, G67A, A68G or
A68C). These results suggest that identifying the best vari-
ants could be easier and more reproducible with the EGE
tree.

The evolution of the ACE4 aptamer reveals that in
vitro selection is far more than just an improved screen-
ing method. Hence, several mathematical models have been
developed to understand the possible evolution of a popu-
lation during in vitro selection. Most of the mathematical
models consider that the starting population contains the
aptamer sequences and they do not take into account mu-
tations (17). Based on this assumption, it has been proposed

that aptamers could be selected in only one round of selec-
tion using a very stringent protocol. Although such selec-
tion has been successfully used on occasion, it usually leads
to aptamers of lower affinity than those identified by classi-
cal SELEX. Our study suggests that the starting population
may not contain the aptamer sequence that will be identi-
fied after several rounds of in vitro selection. Instead, the
population may contain some sequences close to the final
sequence, but with lower affinity. Therefore, several rounds
of selection are likely necessary to select and mutate these
sequences to obtain better aptamers in the population. This
hypothesis may explain why selection is sometimes more or
less rapid depending on whether the population contains se-
quences more or less close to the aptamer structure with the
best fitness.

Favouring and controlling the mutation rate during the
amplification steps seems therefore crucial for in vitro se-
lection. HTS analysis is a powerful technique to investigate
this parameter. Under our conditions, the mean mutation
rate per PCR cycle was estimated by HTS to be ∼1.7 ±
0.6 × 10−4 (an error every 5,882 incorporated nucleotides),
consistent with the mutation rate calculated for Taq poly-
merases that are not improved to increase fidelity (52). Af-
ter 24 cycles of PCR amplification of ACE4, only 83% of se-
quences were unmutated and 16% contained one mutation
(approximately 0.1% for each sequence). Therefore, a vari-
ant with one mutation has a high chance of being generated
during each round of in vitro selection, and PCR may be
considered to generate a library of doped ACE4 aptamers
that contains ∼99.6% of the original residues and 0.13% of
each other residue at each position. In contrast, our start-
ing library for the doped cell-SELEX contained many more
variations and only 1.8% sequences corresponded to the
wildtype sequence. The frequency of sequences with only
one mutation was ∼0.05% for each and more than half se-
quences contained two to four mutations. This result could
explain why the doped cell-SELEX did not succeed in gen-
erating better variants.

Our SELEX used the natural mutation rate of poly-
merases. However, mutagenic PCR has long been used dur-
ing in vitro selection to explore the sequence space around
species that survive the early selection cycles (6,32,53). We
believe that the EGE tree could be particularly useful for
analysing such experiments and evaluating how the mu-
tation rate can improve SELEX. Indeed, Pressman et al.
have already used HTS to study the in vitro selection of a
ribozyme that was conducted using mutagenic PCR (32).
They showed that, for half the identified families, sequences
containing a few mutations, usually corresponding to a sin-
gle nucleotide mutation, replaced the sequence with the
highest abundance in the previous rounds. By focusing on
four families, they demonstrated that three of these variants,
which displayed the highest abundance in the last round, ex-
hibited a higher activity than the sequences previously iden-
tified by cloning and Sanger sequencing analysis. We built
an EGE tree for all these families that confirmed that these
better ribozymes have a high enrichment in their respective
family. However, the EGE tree allowed to identify benefi-
cial mutations and to predict better variants that were not
identified during this previous study (Supplementary Fig-
ure S6).
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Finally, a chain of mountains, for which the peaks repre-
sent sequences with the best fitness, is often used to illustrate
the theoretical fitness landscape of nucleic acids or proteins.
Such a landscape is difficult to access because it would be
necessary to know the fitness of all possible sequences. Nev-
ertheless, an EGE tree can reconstruct the pathways that
have been taken during in vitro selection to climb to the
top of these mountains. Here, we demonstrated how it can
improve the discovery of aptamers and allow a better un-
derstanding of the effect of selection pressures. However, it
may be useful for other molecular evolution studies, such as
those concerning ribozymes or proteins.
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