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Summary 
Interleukin (IL) 6 has been suggested to be the major cytokine responsible for proliferation of 
neoplastic plasma cells in both human myeloma and mouse plasmacytoma. Much of the evidence 
supporting this suggestion is derived from in vitro studies in which the survival or proliferation 
of some plasma cell tumors has been found to be IL-6 dependent. However, it remains unclear 
whether this dependency is the consequence of in vivo or in vitro selective pressures that preferentially 
expand IL-6-responsive tumor cells, or whether it reflects a critical in vivo role for IL-6 in plasma 
cell neoplasia. To address this question, we have attempted to induce plasma cell tumors in normal 
mice and in IL-6-deficient mice generated by introduction of a germline-encoded null mutation 
in the IL-6 gent. The results demonstrate that mice homozygous (+ /+)  or heterozygous ( + / - )  
for the wild-type IL-6 allele yield the expected incidences of plasma cell tumors. In contrast, 
mice homozygous for the IL-6-null allele ( - / - )  are completely resistant to plasma cell tumor 
development. These studies define the essential role of IL-6 in the development of B lineage 
tumors in vivo and provide experimental support for continued efforts to modulate this cytokine 
in the treatment of appropriate human B cell malignancies. 

I L-6 is a pleiotropic cytokine associated with a diverse set 
of systemic and tissue-specific biological responses (for re- 

view see references 1-4). Many of these responses occur within 
the immune system, where the effects of IL-6 include en- 
hancement of hematopoietic progenitor cell proliferation (5), 
initiation of primary immune responses (6), induction of ter- 
minal B cell differentiation (7, 8), and activation of T cells 
(9-13). In addition to mediating these normal immune func- 
tions, IL-6 is also a growth factor for several neoplastic cell 
types. In mice, IL-6 is thought to be important for the growth 
of plasmacytomas arising in the granulomatous tissue formed 
by the intraperitoneal injection of pristane. The evidence sup- 
porting this conclusion is twofold. First, the in vitro prolifer- 
ation of plasmacytomas derived from primary tumor isolates 
(14) as well as some established plasmacytoma cell lines is 
enhanced or completely dependent on addition of IL-6 to 
the medium (14-19). Second, treatment of mice with anti-IL-6 
or anti-IL-6R antibody protects •50% of the animals from 
subsequent challenge with an in vitro-cultured IL-6-depen- 
dent plasmacytoma cell line (17). 

The apparent role of IL-6 in plasma cell neoplasia is fur- 

tThis manuscript is dedicated to the memory of Georges K6hler, whose 
untimely death occurred during the course of these studies. 

ther supported by studies of an analogous human disease, 
multiple myeloma. Like the murine granuloma, the bone 
marrow microenvironment in which malignant plasma cells 
develop is a rich source of IL-6. Recent studies indicate that 
the levels of this cytokine are routinely elevated in myeloma 
patients (18-20), possibly through direct interaction of tumor 
cells with bone marrow-derived stromal elements (21). Al- 
though the functional relevance of elevated IL-6 levels in these 
patients remains unclear, the demonstrated ability of primary 
myeloma explants (22, 23) and some myeloma-derived cell 
lines (24-27) to proliferate in response to IL-6 suggests that 
this cytokine may be an important myeloma growth factor. 
Consistent with this view is a recent study in which anti- 
IL-6 or anti-IL-6R antibodies have transiently reduced tumor 
burden in a late-stage myeloma patient (28). 

The routine and human studies described above dearly dem- 
onstrate that the proliferation of some neoplastic plasma cells 
is IL-6 dependent. More recent studies have demonstrated 
that a subset of these tumors is also induced to proliferate 
in response to other cytokines such as oncostatin M, ciliary 
neurotropic factor, IL-11, and leukemia inhibitory factor (4, 
29, 30), whose cell surface receptors use a common gp130 
signal-transducing molecule. In light of this functional redun- 
dancy among cytokines, it remains unclear whether the IL-6 
dependency of plasma cell tumors is the consequence of subtle 
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in vivo or in vitro selective pressures that preferentially ex- 
pand IL-6-responsive tumor populations, or whether IL-6 
dependency truly reflects a unique and requisite role for IL-6 
during the development of plasma ceLl tumors. In the cur- 
rent study, we have addressed these possibilities by attempting 
to induce plasma cell tumors in mice made deficient in IL-6 
production by a targeted germline-null mutation in exon 2 
of the IL-6 gene (31). The induction protocol chosen uses 
the myc/raf-expressing retrovirus, J3V1, that has previously 
been shown to induce both myeloid and plasma cell tumors 
in normal BALB/c mice (32-35) and B cell lymphomas in 
T ceLl-deficient nude mice (35). If IL-6 dependency is a con- 
sequence of preferential expansion of IL-6-responsive tumor 
cells, IL-6-deficient mice should yield B or plasma cell tumors 
that will be IL-6 independent but may display novel cytokine 
requirements. If, on the other hand, IL-6 imparts a unique 
and requisite signal during tumorigenesis, IL-6-deficient mice 
should be resistant to tumor development. 

and tumor cell popuhtions was determined by flow cytometric anal- 
yses as previously described (34, 35). Tumor samples were analyzed 
using the following reagents, all of which were purchased from 
Pharmingen (San Diego, CA): FITC- or PE-rat anti-mouse CD45, 
FITC-rat anti-mouse ThB, PE-rat anti-mouse CD45 (B220), 
PE-anti-mouse CDllb, FITC-anti-mouse Ia d, PE-CD43, PE- 
GR-1, and FITC-anti-mouse CD5. The specificity of each reagent 
used in these analyses was confirmed on normal mouse spleen, lymph 
node, or appropriate tumor cell lines. FITC- and PE-labeled irrele- 
vant antibodies were included in each assay as controls for nonspecific 
staining. FcR-mediated binding of labeled antibodies was precluded 
by preincubation of cells with unlabeled mAb 2.4G2 specific for 
mouse Fc3,KII (36). All samples were analyzed on a FACScan | 
(Becton Dickinson and Co., San Jose, CA). Nonviable cells were 
excluded by propidium iodide staining. 

In Situ Hybridization. Freshly isolated tumor tissues were fixed 
in 10% buffered formalin, paraffin embedded, sectioned, and hy- 
bridized to IgL Cr- and X-specific probes as described (Hausner, 
P., and S. Rudikoff, manuscript in preparation). 

Materials and Methods 

Mice. Mice heterozygous for a germline-encoded null muta- 
tion in exon 2 of the IL-6 gene (31) were backcrossed to plasmacy- 
toma-susceptible BALB/cAnNCR mice (Frederick Cancer Research 
Facility, Frederick, MD) for three generations using an accelerated 
breeding scheme in which successive generations were derived from 
progeny containing the greatest proportion of BALB/c chromo- 
somes as determined by simple sequence length polymorphism anal- 
ysis of chromosome-specific markers that distinguish BALB/c, 
C57BL, and 129 inbred strains. Resultant N3 mice were interbred 
to yield homozygous Ib6-deficient ( - / - ) ,  heterozygous (+/-) ,  
and homozygous IL*6 wild-type (+/+) animals. N3F1 homozygotes 
were further interbred to generate sufficient numbers of mice for 
use in induction studies. All mice were housed in the specific 
pathogen-free National Cancer Institute animal facility (Frederick, 
MD) under barrier conditions. 

Tumor Inductions. Tumors were induced in mice by a single in- 
traperitoneal injection of 0.5 ml pristane (Sigma Chemical Co., 
St. Louis, MO) 2 d before intraperitoneal injection of 1.25 x 104 
focus-forming units (0.2 ml) of the myc-raf-containing J3V1 
retrovirus (32, 34, 35). Tumor-bearing mice were killed and ascites 
fluid or tumor-bearing granulomatous tissue was transferred to 
pristane-primed BALB/c mice for subsequent tumor analyses. 

PCR-basedldentificationoflL6-deficientAllele. The presence of 
the defective IL-6 allele in mice and tumor samples was determined 
by PCR as previously described (31). Briefly, three PCR primers 
were used to identify the wild-type and null alleles: Pl (TTCCATC- 
CAGTTGCCTTCTTGG), an upstream primer hybridizing to the 
5' portion of exon 2 in the Ib6 locus; P2 (TTCTCATTTC- 
CACATTTCCCAG), a downstream primer hybridizing to the 3' 
portion of exon 2 in the Ib6 locus; and Pneo (CCGGAGAACCTG- 
CGTGCAATCC), a downstream primer hybridizing to sequences 
within the neomycin gene used to disrupt exon 2. Using Pl and 
P2, the wild-type allele is amplified as a 174-bp fragment while 
the mutated allele is 1,314 bp. Although these fragments are 
suffacient to differentiate wild-type and mutant alleles, the preferen- 
tial amplification of the smaller wild-type allele makes identification 
of heterozygotes (+ / - )  difficult. Accordingly, an additional PCR 
reaction was performed using Pl and Pneo that sdectively amplifies 
the mutant aUele as a 380-bp fragment. 

Flow Cytometric Analyses. The cell surface phenotype of normal 

Results and Discussion 
To assesS directly the in vivo role of IL-6 in the develop- 

ment of plasma cell tumors, we have compared the incidence, 
latency, and phenotype of J3Vl-induced tumors arising in 
mice homozygous for a germline-nuLl mutation in the IL-6 
gene ( - / - )  with those developing in heterozygous ( + / - )  
and homozygous wild-type (+ /+)  animals. In a preliminary 
induction study, it was determined that + / -  mice derived 
from the original 129 x C57B1/6 chimeric stock failed to 
yield plasma cell tumors (data not shown). These results sug- 
gested that the genetic background of the chimeric animals, 
like that of most other inbred mouse strains, was resistant 
to plasma cell tumor development. To generate susceptible, 
IL-6-deficient mice, the IL-6-nuU allele was backcrossed onto 
the plasmacytoma-susceptible BALB/c background for three 
generations. The resultant mice (+/+,  + / - ,  and - / - )  were 
subjected to the pristane/J3V1 induction protocol, and the 
phenotypes of arising tumors were compared with those de- 
veloping in similarly treated BALB/c mice. 

The hematopoietic lineage association of tumors arising 
in aLl animals was determined by a combination of flow cyto- 
metric and immunohistologic analyses. As shown in Fig. 1 
A, a typical plasma ceU tumor expresses membrane-associated 
ThB but not the B lymphoid marker CD45R (B220), the 
myeloid lineage marker CDllb, or MHC class II determinants. 
Minor populations of CD11b + cells are also found in the as- 
cites of virtually all tumor-bearing mice and represent normal 
MHC class II positive and negative peritoneal macrophages. 
In situ hybridization with L chain-specific probes indicates 
that plasma cell tumors also express high levels of cytoplasmic 
IgL-encoding messenger RNA (Fig. 1 A, right). The H chain 
expressed in these tumors is predominantly IgM with an oc- 
casional IgA- or IgG-producer detected (data not shown). 
In contrast, myeloid tumors are readily identified by their 
expression of membrane-associated CDllb but not ThB, 
CD45R(B220), or cytoplasmic L chain (Fig. 1 B). MHC dass 
II expression on myeloid tumors is variable, with approxi- 
mately half of all myeloid tumors expressing these determinants 
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Figure 1. Flow cytometric and immunohistologic analyses of J3Vl-induced tumors. (A) Typical plasma cell tumor phenotype. (B) Typical myeloid 
tumor phenotype. Flow cytometric analyses were performed on tumor cells recovered from ascites fluid of tumor-bearing mice. Immunohistochemistry 
was performed using dioxigenin-labeled L chain riboprobes specific for murine C~ and Ch. Hybridized probe was visualized with horseradish peroxi- 
dase-labeled sheep antidioxigenin Fab fragments and 3,3' diaminobenzidine. Plasma cell tumors expressing either IgL K or ~ are stained brown, whereas 
myeloid tumor cells exhibit only the hematoxylin counterstain. 

(data not shown). Analysis of tumors arising in + /+  and 
+ / -  mice (Table 1) indicates that plasma cell tumors de- 
velop at incidences of 34 aad 38%, respectively. These fre- 
quencies are comparable to the 50% observed among simi- 
larly treated BALB/c mice. Myeloid tumors also develop in 
+/+, + / - ,  and BALB/c mice at comparable incidences of 
32, 33, and 30%, respectively. Chi square analysis indicates 
that there are no significant differences in the occurrence 
(X 2 = 1.73, P >0.35) or latency (X 2 = 2.09, P >0.42) of 
myeloid and plasma cell tumors in these animals. In contrast, 
mice homozygous for the IL-6-null allele ( - / - )  are com- 
pletely resistant to myc/rafplasma cell tumorigenesis, thereby 
defining an essential role for IL-6 in the development of these 
tumors in vivo. These results do not preclude the possibility 
that other oncogenes or cellular mutations may induce IL-6- 
independent plasma cell tumors under similar conditions. 

It remains unclear at which point in tumor development 
IL-6 exerts its effects. In keeping with its role in vitro, IL-6 
may function as a late-acting pristane/granuloma-derived 
progression factor that induces the proliferation or facilitates 
survival of transformed plasma cells. Without this cytokine 

such cells fail to expand and/or survive, thus precluding the 
occurrence of overt tumor. Alternatively, IL-6 may act much 
earlier in tumor development by promoting the appearance 
of appropriate target cells in which transforming oncogenes 
may exert their effects. It is also possible that IL-6 may be 
required at multiple steps in this pathway. Regardless of where 
the IL-6 requirement is manifested in tumorigenesis, it may 
not correspond precisely to an analogous point in the gener- 
ation of normal plasma ceils. This suggestion follows the ob- 
servation that IL-6-deficient mice contain normal numbers 
of IgM-secreting plasma cells and can produce antigen-specific 
IgM in response to challenge with foreign antigen (31, 37). 
The existence of IL-6-independent plasma cells in - / -  mice 
suggests that the failure to generate IgM-secreting plasma 
cell tumors is due to a tumor-specific requirement for signal(s) 
unique to the IL-6/IL-6R transduction pathway. 

The resistance of IL-6-deficient mice to plasma cell tumor 
induction appears to be lineage specific, since myeloid tumors 
are detected in - / -  mice with an incidence comparable to 
that seen among + /+  and + / -  animals. These results indi- 
cate that myeloid tumorigenesis proceeds via an IL-6-inde- 
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Table 1. Incidence and Phenotype of J3Vl-induced Tumors in Normal and IL6-deficient Mice 

Tumor phenotypes s 

Number Tumor Plasma B cell T cell 
Genotype of mice* latency* cell tumor lymphoma lymphoma Myeloid 

BALB/c 10 83 +_ 5 50 (5) 0 (0) 0 (0) 30 (3) 
+ / +  47 88 + 5 34 (16) 2 (1) 0 (0) 32 (15) 
+ / -  21 97 + 5 38 (8) 0 (0) 0 (0) 33 (7) 

/ 35 98 _+ 7 0 (0) 3 (1) 6 (2) 37 (13) 

* Number of mice receiving intraperitoneal injection of pristane/J3V1. Three mice in the + / + and - / - groups died during the experiment without 
indication of tumor development. 
* Calculated as the number of days between virus injection and appearance of tumor _+ SEM. 
S Percentage of tumor-bearing mice of indicated hematopoietic lineage (number of mice developing tumor). 

pendent pathway. Similarly, the appearance of rare B and T 
cell lymphomas in + /+  and - / -  groups (Table 1) suggests 
that they too may occasionally arise in an IL-6-independent 
fashion. The relationship of these lymphomas to the more 
common myeloid and plasma cell tumors remains unclear, 
but they have been seen sporadically in all mouse strains sub- 
jected to the pristane/J3V1 induction protocol (34), including 
plasmacytoma-resistant DBA/2 mice, suggesting that these 
lymphomas may represent a distinct class of IL-6-indepen- 
dent tumors. 

The failure of IL-6-deficient mice to develop plasma cell 
tumors is somewhat surprising in light of the apparent func- 
tional redundancy inherent in many cytokine pathways within 
the immune system. Recent reports have suggested that on- 
costatin M, leukemia inhibitory factor, IL-11, and ciliary neu- 
rotropic factor share many of the biological functions associated 
with IL-6 (for review see reference 4). Most relevant to the 
current study is the ability of these factors to stimulate the 
proliferation of several IL-6-dependent human myeloma cell 
lines through use of cytokine-specific receptors and the com- 
mon gp130 signal-transducing molecule (4, 29, 30). Our 
results indicate that these functionally redundant cytokines 
cannot replace the unique and requisite signals imparted by 
IL-6 during the genesis of murine plasma cell tumors. How- 
ever, it remains unclear if these cytokines are capable of sup- 
porting the in vivo growth of an established IL-6-dependent 
murine plasmacytoma in a manner analogous to that described 
for their support of human myeloma lines in vitro. To ad- 
dress this question, we challenged IL-6 + /+  and - / -  mice 
with the IL-6-dependent murine plasmacytoma Tl165. As 
shown in Table 2, Tl165 grew only in those mice that were 
both IL-6 competent and that had been treated with a single 
injection of pristane to condition the peritoneal cavity. IL-6- 
deficient mice ( - / - )  failed to support the in vivo growth 

of this tumor even after pristane priming. These results confirm 
and extend the efficacy of IL-6 deprivation-based therapies 
originally reported by Vink et al. (17), in which they suc- 
cessfully protected '~50% of BALB/c mice challenged with 
an IL-6-dependent tumor by pretreatment with anti-IL-6 
or anti-IL-6R antibody. By analogy, the current results also 
suggest that the relatively modest clinical benefits of anti- 
IL-6-mediated therapies for the treatment of plasma cell neo- 
plasia may be attributable, at least in part, to inefficient 
neutralization of IL-6. Thus, the identification of IL-6 as a 
critical in vivo growth factor for the emergence and subse- 
quent propagation of plasma cell tumors provides experimental 
evidence to support continued efforts to develop more efficient 
IL-6 deprivation-based therapies for the treatment of human 
B cell malignancies. 

Table 2. Growth of lL-6-dependent Plasmacytoma T1165 
in Normal and IL-6-deficient Mice 

In vivo survival of 
Host genotype Pristane* IL-6-dependent Tl165 cells* 

BALB/c - 0/4 
BALB/c + 4/4 
+ / + - 0/4 
+ / + + 3/3 
- / - - 0/4 
- / - + 0 / 4  

* 0.5 ml pristane administered intraperitoneally 2 d before tumor transfer. 
* Number of mice in which tumor grew/total number injected with 
5 x 10 6 Tl165 cells. 
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