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Abstract

Transcriptome-wide association studies (TWAS and PrediXcan) have been increasingly

applied to detect associations between genetically predicted gene expressions and GWAS

traits, which may suggest, however do not completely determine, causal genes for GWAS

traits, due to the likely violation of their imposed strong assumptions for causal inference.

Testing colocalization moves it closer to establishing causal relationships: if a GWAS trait

and a gene’s expression share the same associated SNP, it may suggest a regulatory (and

thus putative causal) role of the SNP mediated through the gene on the GWAS trait. Accord-

ingly, it is of interest to develop and apply various colocalization testing approaches. The

existing approaches may each have some severe limitations. For instance, some methods

test the null hypothesis that there is colocalization, which is not ideal because often the null

hypothesis cannot be rejected simply due to limited statistical power (with too small sample

sizes). Some other methods arbitrarily restrict the maximum number of causal SNPs in a

locus, which may lead to loss of power in the presence of wide-spread allelic heterogeneity.

Importantly, most methods cannot be applied to either GWAS/eQTL summary statistics or

cases with more than two possibly correlated traits. Here we present a simple and general

approach based on conditional analysis of a locus on multiple traits, overcoming the above

and other shortcomings of the existing methods. We demonstrate that, compared with other

methods, our new method can be applied to a wider range of scenarios and often perform

better. We showcase its applications to both simulated and real data, including a large-scale

Alzheimer’s disease GWAS summary dataset and a gene expression dataset, and a large-

scale blood lipid GWAS summary association dataset. An R package “jointsum” implement-

ing the proposed method is publicly available at github.

Author summary

In the post-GWAS era, colocalization testing has been playing an increasingly important

role in inferring causal genetic variants and causal genes from GWAS trait-associated loci.

However, colocalization testing is challenging. We first discuss some severe limitations of

the existing methods, thus motivating our development of a general and powerful

approach. We use extensive simulations to demonstrate the advantages of our approach

over other existing methods. To further demonstrate the performance differences, we

apply our and other methods (when possible) for colocalization analyses of multiple corre-

lated GWAS traits and that of a GWAS trait and gene expression.
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Introduction

Genome-wide association studies (GWAS) have identified many loci associated with complex

traits or diseases, but causal relationships cannot be established, leading to lack of mechanistic

understandings [1,2]. Testing colocalization of a GWAS trait and a gene’s expression trait (i.e.

that the same variant is causal to both traits) can help gain insight into the mechanism[3]. For

example, if it can be established that a causal variant for a GWAS trait and that for a gene’s

expression (i.e. expression quantitative trait locus, eQTL) are the same, then it may suggest a

regulatory role of the causal SNP on gene expression in the pathway to the GWAS trait [4,5],

which can be also regarded as vertical pleiotropy (i.e., the SNP affects both traits but the effect

on the GWAS trait is mediated by the gene expression). Some integrative methods, such as

transcriptome-wide association studies (TWAS) [6], PrediXcan [7], summary statistics-based

Mendelian randomization (SMR) [8] and some related methods [9,10], have been proposed

recently to detect association between (the genetically regulated component of) a gene’s

expression (or another molecular trait) and a GWAS trait. Under their causal inference frame-

works, these methods may suggest, but cannot fully determine, a colocalization, because the

imposed assumptions may be violated such as due to linkage disequilibrium (LD) [11] and

horizontal pleiotropy (i.e., the SNP affects both traits but the effect on the GWAS trait is not

mediated by the gene expression) [12,13]. Besides detecting colocalization of possibly causal

SNPs for a GWAS trait and a molecular trait like gene expression, it is also of interest for colo-

calization analysis of multiple complex traits or diseases, which for example may be helpful for

understanding the shared biological pathways for multiple diseases and thus for drug repur-

posing and new therapeutic development. Studies have found that some diseases seem to have

commonly associated genetic variants [14,15], which by themselves cannot determine colocali-

zation either; when a variant is associated with multiple traits, it could be due to distinct causal

SNPs that are in linkage disequilibrium (LD) [16], which however can be distinguished

through joint/conditional modeling of multiple SNPs as in fine mapping [17,18,19]. This criti-

cal difference between marginal and conditional associations also highlights the difference

between the existing pleiotropy testing [20,21] and the proposed colocalization testing on mul-

tiple traits.

To test colocalization in a formal way, there have been extensive efforts in developing and

applying various approaches. However, they all have some severe limitations as briefly dis-

cussed below. First, the popular coloc [22] and HEIDI [8] can be both considered as propor-

tional approaches. A possible downside is that their null hypothesis specifies proportional

effect sizes as a result of colocalization, which will not be rejected if the sample size is too small

or the significance level is too stringent. Hence, smaller studies are more likely to conclude

with colocalization, which is undesirable. Second, many (e.g. coloc, HEIDI and JLIM [23])

assume the presence of no more than one causal SNP in a locus, inconsistent with the recently

discovered widespread allelic heterogeneity [24,25,26]; when the assumption is violated, they

may suffer from substantial power loss. Third, although eCAVIAR [27] does not impose such

an assumption, it requires specifying an upper bound on the number of causal SNPs in a locus,

typically at 6, to be computationally feasible. Such an assumption when violated may lead to

power loss as shown for real data [26]. Fourth, some (e.g. JLIM) require the availability of indi-

vidual-level genotypic and gene expression data, which may not be practical for large-scale

GWAS with only summary statistics available. Fifth, at least with their current implementa-

tions, most of the existing methods, with few exceptions [28,29], cannot handle more than two

traits with dependent/overlapping samples with only summary statistics from genome-wide

association studies for all the traits, which is important for multi-trait analysis to identify

pleiotropy.
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We develop a simple and general approach overcoming the above shortcomings of the

existing methods. We call this approach the conditional method, due to the central role of con-

ditional modeling in fine mapping; in addition, more general than most existing methods, our

approach applies to multiple traits with only summary statistics based on one or more possibly

dependent/overlapping samples. We demonstrate that, in certain scenarios, the new method

has power advantages over the existing methods using simulated data. Also, to show our meth-

od’s flexibility as well as its ability to detect significant loci, we compare different methods

using the large-scale GWAS lipid data [30] with four traits and summary statistics only, and to

the largest AD GWAS by IGAP [31] with GWAS summary statistics only and an individual-

level gene expression dataset from ADNI [32].

Methods

Existing methods

We will compare our method with some major representatives for the existing methods,

namely JLIM, coloc, coloc.abf, HEIDI and eCAVIAR, the details of which can be found in the

S1 Text. To summarize, JLIM needs individual level data for the second trait; JLIM, coloc,

coloc.abf and HEIDI mainly aim at the scenario with at most one causal SNP for each trait in a

locus; eCAVIAR is more robust when allelic heterogeneity (AH) exists (i.e. there are multiple

causal SNPs for a trait), but it still requires giving a (usually small) maximum number of causal

SNPs (to limit the computational burden).

Testing colocalization with conditional analysis

Suppose we are interested in p traits and q SNPs, and we want to test whether at least one of

the SNPs is causal for all the traits. We first assume the availability of individual-level data, and

will discuss its extension to GWAS summary data at the end. The kth SNP and the jth trait in

the individual level data are Xk = (X1k. . .Xnk)
0 and Yj = (Y1j. . .Ynj)

0, where n is the sample size.

With the individual level data, we can easily build a conditional model for each trait as

Yj ¼ Xbj þ ej; ð1Þ

where X = (X1. . .Xq), bj = (bj1. . .bjq)0, and ej = (e1j. . .enj)0; ej is assumed to be independently

normal with mean 0. The null and alternative hypotheses for our colocalization test are

H0 : no k satisf ies b1k 6¼ 0; b2k 6¼ 0; . . . ; bpk 6¼ 0;

H1 : at least one k satisf ies b1k 6¼ 0; b2k 6¼ 0; . . . ; bpk 6¼ 0:

Suppose the estimated coefficients and standard errors are b̂jk and seðb̂jkÞ, where k = 1,. . .,q

and j = 1,. . .,p. We can also get the p-value for b̂jk, denoted by Pjk. To test H0, we can apply the

principles of the Intersection-Union Test (IUT) and the Union-Intersection Test (UIT)

[33,34]. We divide the null hypothesis into simpler sub-hypotheses like

H0 ¼
\

k

H0k ¼
\

k

[

j

H0jk;

H1k : b1k 6¼ 0; b2k 6¼ 0; . . . ; bpk 6¼ 0;

H0k ¼ H1k
c;
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H0jk : bjk ¼ 0:

Pjk can be considered as the test statistic for testing H0jk. By IUT, maxj(Pjk) is a valid test sta-

tistic for H0k =
S

jH0jk. If maxj(Pjk) is small enough for SNP k, it suggests colocalization at this

position/SNP since all of its Pjk’s are small (i.e., its effects on all traits are significant). By UIT,

mink[maxj(Pjk)] is a valid test statistic for H0 =
T

kH0k. If mink[maxj(Pjk)] is small enough, it

suggests there is colocalization since at least one SNP’s maxj(Pjk) is small enough. Thus we can

simply define our test statistic for H0 as

P� ¼ min
k
½max

j
ðPjkÞ�:

Suppose the given nominal statistical significance level is α. The colocalization test can be

carried out by rejecting H0 if P�<α, which means for at least one SNP, its effects on all of the

traits are nonzero (p-value < α). However, this approach involves multiple testing, which will

lead to inflated type I errors. Hence, we propose using the Bonferroni correction: we reject H0

if and only if P�<α/q. In this way, the type I error rate is guaranteed to be controlled.

If we have only GWAS summary statistics, instead of individual-level data, we can also per-

form the colocalization test. Denote the estimated marginal effect size of the kth SNP on the

jth trait and its variance by b̂ jk and ^varðb̂ jkÞ, respectively. Suppose we also have some reference

panel to estimate the LD among the SNPs. We can use some well-known method, e.g.

described in [18], to estimate the coefficients and standard errors in each conditional model

(1). Now after obtaining our estimates b̂jk and seðb̂jkÞ, we can get the p-values and conduct the

above colocalization test.

The conditional method with monte carlo approximation

Since the Bonferroni correction may be quite conservative, we propose another way to calcu-

late the p-value, called the conditional method with Monte Carlo approximation (CMC), to

test colocalization, which is expected to be less conservative. For convenience, we denote the

previously described conditional method with Bonferroni correction by CB. Suppose Z = (Zjk)

is the Z-statistic matrix with Zjk ¼ b̂jk=seðb̂jkÞ for trait j and SNP k. Assume that the covari-

ance/correlation matrices are constant across the rows and columns, denoted as Cov(Zj.) =

corr(Zj.) = R1, and Cov(Z.k) = corr(Z.k) = R2. R1 and R2 are usually estimated by and regarded

as the correlations among the SNPs and among the traits respectively. Our test statistic is

Tcond ¼ max
k
ðmin

j
jZjkjÞ:

Suppose that the observed test statistic is t. The p-value is

Pðmax
k
ðmin

j
jZjkjÞ > tÞ ¼ 1 � Pðmax

k
ðmin

j
jZjkjÞ � tÞ:

If we know the mean of Zjk’s under the null, we can calculate P(maxk(minj|Zjk|)�t) by using

multivariate normal tail probabilities or Monte Carlo simulations. The challenge here is that

the means of Zjk’s are unknown under H0, which is a composite null hypothesis. For instance,

it is possible that the first SNP has some effect on the first trait but not the second trait, which

means Z11 has a nonzero mean while Z21 has a zero mean. It is also possible that the first SNP

does not have any effect at all, meaning that Z11 and Z21 both have a zero mean. In different sit-

uations, the distribution of maxk(minj|Zjk|) can vary a lot, which we will show numerically in
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the simulation section. What we know is for each SNP k, at most (p−1) of the Zjk’s have a non-

zero mean under the null and at least one has a zero mean. A conservative way to get around is

to assume all Z11,. . .,Z1q have a zero mean and use

Pðmax
k
ðmin

j
jZjkjÞ > tÞ � Pðmax

k
ðjZ1kjÞ > tÞ ¼ 1 � PðjZ11j < t; . . . ; jZ1qj < tÞ;

where P(|Z11|<t,. . .,|Z1q|<t) is now a calculable tail probability. The problem of this approach

is that it is quite conservative, due to its use of the above inequality.

We propose to use the current data to roughly estimate which of the Zjk’s have nonzero

means. For each SNP k, we compare its |Zjk|’s with |F−1(θ/2)|, where F is the probability func-

tion of the standard normal distribution and θ is a tuning parameter, usually chosen as 0.05 or

0.1. We will discuss more about it later. If |Zj�k| is greater than |F−1(θ/2)|, we assume under the

null, SNP k is associated with trait j�; otherwise SNP k has no effect on trait j�. Since each SNP

must have no effect on at least one trait under the null (no colocalization), we always assume

the effect corresponding to the smallest |Zjk| to be 0 regardless of how large this |Zjk| is. Let4

be the set of all the trait-SNP pairs (j,k) whose corresponding effects are assumed to be non-

zero. Then we assume for each k,

min
j
ðjZjkjÞ ¼ min

j:ðj;kÞ=24
ðjZjkjÞ;

which means |Zjk|’s with nonzero means are always larger than the other |Zjk|’s under the null.

If none of the |Zjk|’s is greater than |F−1(θ/2)|, we assume SNP k has no effect on any trait

under the null, so Zjk’s all have a zero mean. In this way, we can estimate

Pðmax
k
ðmin

j
jZjkjÞ � tÞ ¼ Pð min

j: ðj;1Þ=24
jZj1j < t; . . . ; min

j: ðj;qÞ=24
jZjqj < tÞ:

Now all of the Zjk’s on the right-hand side have a zero mean, and their covariance matrix

can be easily constructed with R1 and R2, because

CovððZj1; . . . ;ZjqÞ0Þ ¼ R1;

CovððZ1k; . . . ;ZpkÞ0Þ ¼ R2;

CovðZjk;Zj0k0Þ ¼ 0 ðj 6¼ j0; k 6¼ k0Þ:

We can break the whole probability down into tail probabilities that can be calculated by

the "pmvnorm" function, as shown in the appendix, but the number of tail probabilities is usu-

ally too big (e.g. 3q) due to the limitation of the function, which makes it computationally

infeasible for large q’s. A better way is to use a Monte Carlo approximation. For each iteration

b, we can simulate Zjk
(b) ’s that satisfy Zjk

(b)=24 from a multivariate normal distribution with

zero mean and then calculate tðbÞ ¼ maxkminj:ZjkðbÞ=24
jZjk

ðbÞj. Then the p-value is simply

1

B

XB

b¼1

IftðbÞ > tg:

Note that it is equivalent to simulate all of the Zjk
(b) ’s from MVN(μ,S) and calculate t(b) =

maxk minj|Zjk
(b)|, where S = R2�R1 and μ = (μ11,. . .,μ1q,μ21,. . .,μ2q,. . .,μp1,. . .,μpq)0. Now μjk =

0 if Zjk=24 and μjk = Inf otherwise, for defining μjk = Inf results in PðmaxkðminjjZjkjÞ � tÞ ¼
Pðminj:Zj1=24

jZj1j < t; . . . ;minj:Zjq=24
jZjqj < tÞ. In practice, we can use a large value like 999 for

μjk (j, k: Zjk24). For convenience, we denote this method by CMC. The choice of B depends
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on the significance level α. In the simulations where we aim at α = 0.05,B = 104 is usually more

than enough. For the real data application where α = 5×10−8 is often considered, we can try

B = 104 first. If the p-value of one locus turns out to be less than 0.005, we can try B = 106. If

the new p-value turns out to be less than 5×10−5, we can use B = 109 to get a final p-value for

that locus. We will follow this proposal in the next sections unless otherwise specified.

Model averaging

The previously described process uses |Zjk|’s to determine the null distribution and then uses

Monte Carlo simulations to estimate a p-value. Nevertheless, its performance may be affected

if the null distribution is not optimally determined (i.e. the assumed4 is far off from the

truth). Following the model averaging idea from [35], we can use different4’s to get different

p-values, and then take the weighted average to get a final p-value. The process to get different

4’s is:

(1) Order |Zjk|’s. Suppose (j1,k1) has the largest |Zjk|, (j2,k2) has the second largest |Zjk|, etc.

(2)40 is ϕ, the empty set, meaning that all of the means are zero.

(3) Examine each trait-SNP pair (j1,k1), (j2,k2), etc. Suppose currently the biggest4 we have

is4t and the trait-SNP pair we are looking at is (jl,kl).
Check whether (jl,kl) satisfies both

a. jZjlkl
j is larger than a cutoff ξ.

b. After adding (jl,kl) into4t, it still satisfies the null hypothesis (i.e. the new4 does not con-

tain all (j,kl)’s with the same kl).

If (jl,kl) satisfies these two conditions, then4t+1 =4t[{(jl,kl)}. If not, move to the next pair

(jl+1,kl+1) and check the conditions again. Continue this process until one of the following con-

ditions is met:

A. All of the |Zjk|’s that are larger than ξ have been examined.

B. We already have40,41,. . .,4u, where u is a pre-specified number.

For each4t, we can use the approach in the previous subsection to get a p-value Pt. We can

also get a weight, wt, for this p-value using the AICc value [36] as in [35], details of which are

provided in S1 Text. Then the final p-value for testing colocalization is ∑twtPt/∑twt. For short,

we call this method MA-CMC, or simply MA. If ξ is too small, it can lead to inflated type I

errors. Our recommended value for ξ is 1.64. To save computing time, we recommend using a

moderate u (e.g. 10 by default). Note that when we use the above process to get different4’s, if

the number of SNPs is large (e.g. 100), instead of adding one SNP at a time like described in

step (3), it may be beneficial to add multiple SNPs at a time. For example, if we add one SNP at

a time, the largest size of4 (or number of nonzero effects) is u. If we add s SNPs at a time, the

largest number of nonzero effects that can be considered is su.

Selecting the tuning parameters

As mentioned before, CMC depends on a tuning parameter θ. When θ is small, CMC will be

less conservative, but it can have inflated type I errors as well. When θ is large, CMC will be

more conservative with loss of power. As a result, we recommend choosing a θ that is not too

large or too small (e.g. 0.1). One way to interpret θ is that if the mean of Zjk is zero, the proba-

bility of getting |Zjk|>|F−1(θ/2)| will be θ. More extensive simulation studies and discussions

on choosing θ are provided in the S1 Text, based on which we decide to use θ = 0.1 by default.

MA involves two more tuning parameters s and u. We recommend choosing u = 10 and
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modifying s according to the number of SNPs in each locus (e.g. s = 1 for q�20; s = 2 for

20<q�50; s = 3 for q>50). This choice gives us a fairly reasonable su, which means the largest

number of nonzero effects that can be considered under the null. When su is fixed, choosing a

larger u and a smaller s means adding more models. This usually leads to higher power but

also larger type I errors, partly because the more models we add, the more likely one or more

of them have significant results with none-negligible weights. Based on our experience and to

keep it simple, we suggest using u = 10 by default, though cautions have to be taken (e.g. with

possible sensitivity analyses).

Package availability

The coloc method uses the "coloc.test" function (for hypothesis testing) and “coloc.abf” (for

drawing ROC curves) from the R "coloc" package. The HEIDI method was implemented by

the original authors in the "smr" software available at http://cnsgenomics.com/software/smr/

#SMR&HEIDIanalysis, while the eCAVIAR method is available at http://genetics.cs.ucla.edu/

caviar/download.html. The JLIM method was originally implemented as the "jlim.test" func-

tion in the "jlimR" package, which requires input files in specific formats (e.g. need to include

unnecessary SNP information); we re-implemented JLIM in our own R function, which only

needs the p-values, a reference panel and permuted genotypes as input. This function for JLIM

and the functions for CB, CMC and MA are included in the R package "jointsum", publicly

available at https://github.com/yangq001/conditional.

Results

Simulations

Possible null distributions. First, we use a simple example to demonstrate that the null

distribution of the test statistic of the conditional method largely depends on the unknown

truth of which effects are nonzero under the composite null hypothesis. Suppose we have 5

independent SNPs and 3 independent traits. Fig 1 shows the different densities of the test sta-

tistic Tconditional under different null scenarios. In the first scenario, no SNP has any effect on

Fig 1. Density curves of Tconditional in 3 different null scenarios based on 10000 replications. Scenario 1: All Zjk’s are

centered at 0. Scenario 2: Z11, Z21, Z12, Z22 are centered at 1. Scenario 3: Z11, Z21, Z12, Z22, Z13, Z23, Z14, Z24 are centered

at 1. In all scenarios, Zjk’s are independent and have variance 1.

https://doi.org/10.1371/journal.pcbi.1007778.g001

PLOS COMPUTATIONAL BIOLOGY A powerful and versatile colocalization test

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007778 April 10, 2020 7 / 18

http://cnsgenomics.com/software/smr/#SMR&HEIDIanalysis
http://cnsgenomics.com/software/smr/#SMR&HEIDIanalysis
http://genetics.cs.ucla.edu/caviar/download.html
http://genetics.cs.ucla.edu/caviar/download.html
https://github.com/yangq001/conditional
https://doi.org/10.1371/journal.pcbi.1007778.g001
https://doi.org/10.1371/journal.pcbi.1007778


any trait. In the second scenario, the first two SNPs have nonzero effects on the first two traits.

In the third scenario, the first four SNPs have nonzero effects on the first two traits. Since no

SNP has nonzero effects on all of the three traits, the null hypothesis holds (i.e., there is no

colocalization). As shown in Fig 1, the null distribution of the test statistic changes dramati-

cally with different scenarios. The 0.95-quantiles are 1.24, 1.42 and 1.51 respectively. If the

truth is scenario 3, but we use the null distribution in scenario 1 to generate test statistics, then

it will lead to inflated type I errors; it is not hard to imagine the scenarios of using an inappro-

priate null distribution would lead to substantial power loss too. This confirms the importance

of estimating the nonzero components as we did for CMC and MA.

Next, we did some simulation studies to compare the performances of different methods

(CB, CMC, MA, JLIM, etc.).

Independent samples. We simulated two traits for q SNPs in a small region in chromo-

some 19, making sure none of the correlations’ absolute values were greater than 0.9. For the

first trait, we selected the first 2000 subjects from the 4136 subjects in the Lung Health Study

(LHS) data, and then used a linear model Y = Xβ+ε to obtain the trait, where β = (β1. . .βq),
and ε was independently normally distributed with mean 0 and variance 1. βk was nonzero

when the kth SNP was causal for the first trait. For the second trait, we used the rest of the sub-

jects and a similar model Y� = X�β�+ε�. Note that X and X� represented the same set of SNPs

but for different samples, so the two traits, based on two non-overlapping samples, were inde-

pendent. We regressed Y and Y� separately on each SNP using the corresponding subjects to

get the summary statistics of marginal associations for each trait-SNP pair. The individual

level genotype data were also used as our reference panels.

We compared the conditional method with various approaches (i.e., without Bonferroni

adjustment, with Bonferroni adjustment, CMC, MA) along with JLIM, coloc and HEIDI,

using the suggested tuning parameters for the methods (e.g. the threshold for neighborhood in

JLIM was
ffiffiffiffiffiffiffi
0:8
p

). We used 500 permutations for JLIM. In addition to conducting these

regional tests, we also obtained the results of testing whether a certain SNP k is causal for both

traits. Simply reject the null hypothesis if both p-values of this SNP are smaller than α. The p-

values can be from the marginal models or the conditional models. For our simulations, we

only included the case looking at the first SNP using the conditional p-values. To distinguish

testing one SNP and testing a region in conditional analysis, we indicate the former by "1st" in

the tables.

First, we looked at the type I errors of JLIM, conditional methods, CMC and MA. In this

scenario, the rejection rates of coloc and HEIDI were their empirical power. As shown in

Table 1, the conditional method with Bonferroni’s adjustment for multiple testing was conser-

vative, as expected, while CMC and MA were less conservative. The type I error rate of CMC

went up as θ went down. As for JLIM, it had inflated type I errors in the last situation because

it only looked at marginal effects. Due to its correlation with other SNPs, a non-causal SNP

might turn out to have the most significant marginal association. In this case, SNPs 1 and 5

were causal for the first trait, but the correlation between these two SNPs and SNP 4 made

SNP 4 the most marginally significant. As a result, JLIM tended to falsely conclude with colo-

calization, yielding larger type I errors. We also discovered that JLIM had very low rejection

rates when the causal SNP for trait 2 was not SNP 1, which is due to JLIM’s definition of neigh-

borhoods. Detailed explanations can be found in S1 Text.

Next, we looked at the power of different methods. Since the conditional method without

adjustment had already been demonstrated to have inflated type I errors, we did not include

this approach anymore. For convenience, the conditional method will refer to the conditional

method with Bonferroni correction from this point unless otherwise specified. Besides, a
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smaller θ was shown to make CMC less conservative but it would also possibly lead to inflated

type I errors, so we chose θ = 0.1, a medium value, from this point on. More simulation results

and discussions on the choice of θ are provided in S1 Text. As Table 2 shows, when both causal

locations were SNP 1, the conditional method testing SNP 1 had lower power than JLIM,

which was probably due to estimating all those parameters in the conditional model. However,

sometimes JLIM had very low power when there were more than one causal SNP for a trait.

For example, when SNP 1 was causal for trait 1, and both SNP 1 and SNP 4 were causal for

trait 2, but the effect of SNP 4 was stronger, JLIM tended to take SNP 4 as the only causal loca-

tion for trait 2. As a result, it concluded that there was no colocalization, which led to loss of

power. In contrast, the conditional method was able to distinguish multiple causal SNPs and

thus maintaining its power in this case. Using CMC had much higher power than using the

Bonferroni adjustment. Here, MA performed similarly to CMC, but we will show later that

sometimes the former was more powerful.

In addition, we compared the receiver operating characteristic (ROC) curves of JLIM, CB,

CMC and coloc, as well as eCAVIAR (with the maximum number of causal SNPs set to 3).

This time we used the more recent and popular Bayesian version (coloc.abf) of coloc, which

gives the posterior probability of having one common causal variant [29,37]. We combined

the scenarios in Table 1 and Table 2 to calculate the true positive rates (TPR) and false positive

rates (FPR). Due to the close performance of CMC and MA, only the curve for CMC was

plotted for better visualization. As shown in Fig 2, JLIM did not perform well at all since its

Table 1. Rejection rates (type I errors for JLIM and conditional, power for coloc and HEIDI). q = 13. 1000 iterations. α = 0.05. The correlation is -0.69 between SNP 1

and SNP 3, 0.68 between SNP 1 and SNP 4, 0.02 between SNP 1 and SNP 5, -0.35 between SNP 4 and SNP 5. Different subjects for two traits. For CMC, B = 104. For MA,

B = 103, u = 10 and s = 1.

Causal locations for trait 1 (size) Causal locations for trait 2 (size) JLIM Conditional coloc HEIDI��

1st SNP CB (w/o adj.) CMC� MA

1 (0.3) None 0.047 0.054 0.005 (0.079) 0.031

(0.021)[0.015]

0.020 0.056 0.194 (0.006)

1 (0.3) 3 (0.3) 0 0.054 0.007 (0.117) 0.039 (0.025) [0.018] 0.025 0.964 0.076 (0.059)

1 (0.3) 4 (0.3) 0 0.054 0.007 (0.121) 0.039 (0.029)[0.020] 0.030 0.974 0.040 (0.038)

1 (0.3) 4 (-0.3) 0 0.054 0.007 (0.121) 0.051 (0.029) [0.025] 0.031 0.970 0.042 (0.040)

1 (0.2), 5 (-0.3) 4 (0.3) 0.393 0.049 0.009 (0.145) 0.048 (0.028)[0.022] 0.030 0.932 0.090 (0.085)

� The tuning parameter θ was chosen as 0.05 (0.1) [0.2].

�� When there was no causal location for trait 2, HEIDI sometimes output NA (after detecting the violation of its assumptions). We thus recorded two ratios A (B). A:

#rejected/#non-NA results. (B): #rejected/#iterations.

https://doi.org/10.1371/journal.pcbi.1007778.t001

Table 2. Rejection rates (power for JLIM and conditional methods, type I errors for coloc and HEIDI). q = 13. 1000 iterations. Different subjects for two traits. For

CMC, B = 103. For MA, B = 103, u = 10 and s = 1.

Causal locations for trait 1 (size) Causal locations for trait 2 (size) JLIM conditional Coloc HEIDI

1st SNP CB CMC MA

1 (0.2) 1 (0.2) 0.977 0.798 0.391 0.640 0.636 0.041 0.105 (0.048)

1 (0.7) 1 (0.2) 0.986 0.911 0.646 0.823 0.820 0.045 0.230 (0.105)

1 (0.2) 1 (0.2), 4 (0.4) 0.011 0.798 0.392 0.611 0.611 0.488 0.020 (0.020)

1 (0.2), 4(0.2) 1 (0.2) 0.514 0.798 0.395 0.613 0.623 0.262 0.171 (0.078)

1 (0.2), 4(0.4) 1 (0.2) 0.009 0.798 0.397 0.612 0.617 0.548 0.327 (0.210)

1 (0.2) 1 (0.2), 2 (0.3), 3 (0.3), 4 (0.4) 0.004 0.798 0.393 0.567 0.565 0.971 0.595 (0.549)

1 (0.2), 2 (0.3), 3 (0.4), 4 (0.5) 1 (0.2) 0.004 0.798 0.399 0.575 0.568 0.992 0.776 (0.524)

https://doi.org/10.1371/journal.pcbi.1007778.t002
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assumption (at most 1 causal SNP) was often violated. The assumption of eCAVIAR (at most 3

causal SNPs) was sometimes violated too. In the last two scenarios in Table 2 with more causal

SNPs, eCAVIAR had lower power because it failed to detect all the causal SNPs and thus was

less likely to establish colocalization. As a result, when all the scenarios were combined, eCA-

VIAR did not have much advantage. Meanwhile, CB and CMC were quite robust and did bet-

ter than the Bayesian coloc (using default settings) in these scenarios.

Note that JLIM’s ROC curve seemed to have an uncommon shape in Fig 1. The main rea-

son is that JLIM had many p-values of 0 or 1. We have already shown that sometimes JLIM

had zero rejection rates in some scenarios in Table 1. Most of the p-values in those cases were

1. Likewise, when the alternative was true, because of the way of constructing the test statistic,

the p-values of JLIM tended to be exactly 0 once it successfully picked up the right causal SNP.

We tried increasing the number of permutations, but it did not really change the result.

Dependent samples. In the above scenarios, we assumed the data for the two traits came

from different subjects. We also looked at some other situations where the two traits were cor-

related from the same subjects. This time we only used the 2000 subjects previously used for

trait 1. The models for two traits were Y = Xβ+ε and Y� = Xβ�+ε�. For subject i, the correla-

tion between εi and ε�i was 0.5.

As shown in Table 3, the results were similar to the previous ones. The conditional method

with Bonferroni adjustment was conservative, and CMC was less conservative. MA had higher

power than CMC. JLIM had better performance in some cases, but in others it could have

inflated type I errors or very low power because of its problematic assumption of at most one

causal SNP for each trait (and that this causal SNP should be marginally the most significant).

The conditional method did not have this issue at all.

Fig 2. ROC curve of JLIM, CB, CMC, eCAVIAR and coloc (Bayesian), combining all the scenarios in Table 1 and

Table 2 (12000 samples in total).

https://doi.org/10.1371/journal.pcbi.1007778.g002
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We did some other simulations that were closer to real scenarios, involving larger numbers

of SNPs and various effect sizes. The genotypes were obtained from all the subjects (around

4000) in the LHS data. We used the Lipid data from the Global Lipids Genetics Consortium

GWAS study [30] to get some loci on chromosome 1 and set up the linear models to simulate

2 traits, LDL and HDL. To determine the loci, we expanded from the marginally significant

SNPs for LDL in a similar way to what was done by [38]. We also made sure none of the corre-

lations were greater than 0.95. Then we used the Lipid data with the 1000G data as reference to

build linear models ~Y ¼ ~X~β þ ~ε and ~Y� ¼ ~X~β� þ ~ε� where ~Y and ~Y� here stand for LDL and

HDL, ~X is the genotypes of the subjects used for the Lipid data. The models we used to simu-

late two traits were Y = Xβ+ε and Y� ¼ Xβ� þ ε� where X is the genotypes from the LHS

data. β and β� were obtained by shrinking smaller effects (<τ) in ~β and ~β� to 0 and multiplying

larger effects (�τ) by 2. Then we applied the methods in the same way as previous. The "true"

effect sizes in each region can be found in S1 Text.

The first part of Table 4 shows the results for 2 regions (A1 and A2) with no colocalization.

Both JLIM and CMC were able to control type I errors, while the conditional method with

Bonferroni adjustment was much more conservative. Coloc did not reject its null hypothesis,

probably because its assumption of only one causal SNP for each trait was violated. The second

part of the table contains several examples of loci with colocalization (regions B1-B6). CMC

and MA worked well and showed higher power than JLIM and CB in most cases. JLIM often

had very low power when applied to these loci, because it only focused on the most significant

SNP for each trait, while the SNP(s) with colocalization usually did not have the largest mar-

ginal effect size. In the meantime, coloc had very high rejection rates because there were many

Table 3. Rejection rates. q = 13. 1000 iterations. α = 0.05. Same subjects for two traits. For CMC, B = 103. Colocalization = No: type I errors for JLIM and conditional,

power for coloc. Colocalization = Yes: power for JLIM and conditional, type I errors for coloc. For MA, B = 103, u = 10 and s = 1.

Colocalization Causal locations for trait 1 (size) Causal locations for trait 2 (size) JLIM Conditional coloc HEIDI

1st SNP CB CMC MA

No 1 (0.3) None 0.042 0.057 0.002 0.030 0.032 0.029 0.164 (0.027)

1 (0.3) 4 (0.3) 0 0.057 0.004 0.035 0.041 0.954 0.012 (0.011)

1 (0.2), 5 (-0.3) 4 (0.3) 0.395 0.040 0.004 0.029 0.028 0.849 0.040 (0.034)

Yes 1 (0.2) 1 (0.2) 0.980 0.815 0.439 0.621 0.680 0.001 0.017 (0.014)

1 (0.2) 1 (0.2), 4 (0.4) 0.013 0.815 0.439 0.584 0.655 0.292 0.006 (0.006)

https://doi.org/10.1371/journal.pcbi.1007778.t003

Table 4. Rejection rates. 1000 iterations. α = 0.05. Same subjects for two traits. For CMC, B = 103. τ = 0.2. Regions A1-A2: without colocalization (type I errors for JLIM

and conditional, power for coloc). Regions B1-B6: with colocalization (power for JLIM and conditional, type I errors for coloc). For MA, B = 103, u = 10. s = 3 for loci with

more than 50 SNPs, s = 2 otherwise.

Region # SNPs

(�)

JLIM Conditional coloc

1st SNP CB CMC MA

A1 43 (2/0/0) 0.039 0.011 0 0.014 0.026 0.027

A2 58 (17/2/0) 0.054 0.010 0.010 0.030 0.046 0.047

B1 28 (9/4/1) 0 0.018 0.189 0.276 0.288 1

B2 53 (7/18/2) 0 0.005 0.429 0.542 0.581 1

B3 62 (12/6/2) 0.724 0.011 0.546 0.721 0.739 1

B4 43 (18/10/5) 0 0.009 0.154 0.238 0.281 1

B5 43 (9/7/6) 0.179 0.016 0.683 0.859 0.877 1

(�) Numbers of SNPs that are causal for trait 1 / trait 2 / both traits.

https://doi.org/10.1371/journal.pcbi.1007778.t004

PLOS COMPUTATIONAL BIOLOGY A powerful and versatile colocalization test

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007778 April 10, 2020 11 / 18

https://doi.org/10.1371/journal.pcbi.1007778.t003
https://doi.org/10.1371/journal.pcbi.1007778.t004
https://doi.org/10.1371/journal.pcbi.1007778


causal SNPs and the proportionality assumption did not hold. These results are consistent

with what we had in Table 2 (rows 3, 5, 6 and 7).

Lipid Data: colocalization of two GWAS traits

We looked at the Lipid data from the Global Lipids Genetics Consortium GWAS study [30],

containing summary statistics for traits LDL, HDL, TG and TC. The 1000 Genomes Project

data [39] were used as the reference panel. To compare the performance of different methods,

we applied the conditional methods and coloc to test colocalization of only two traits, LDL and

HDL, in different regions, and we also tested each SNP in the marginal models and each lead

SNP in the conditional models for colocalization. First, we focused on several chromosomes

that had multiple SNPs associated with both LDL and HDL (marginal p-value < 5e-8). Then

we looked at the SNPs that were also present in the 1000G data (with 503 subjects) on those

chromosomes. Some of the SNPs were removed because they did not appear in the 1000G

data. Instead of using sliding windows, we defined the loci associated with LDL following the

procedure by [38]. JLIM could not be applied to this scenario because individual level data was

not available for either trait. The marginal analysis looking at one SNP at a time examined

each SNP on the chromosomes of interest, while the other methods only looked at the defined

loci associated with LDL.

According to Table 5, the conditional method with Bonferroni correction did not detect

any significant loci while CMC found many, proving that CMC can be much less conservative.

MA’s result was close to CMC’s. Coloc’s result was different, likely because its null hypothesis

was the opposite of the other methods’ while the chosen cutoff was the same; this might lead to

many false discoveries.

Lipid Data: colocalization of more than two traits

Using the conditional method with Bonferroni correction or CMC, we are also able to test

colocalization of more than 2 traits, while the other methods we discussed can only be applied

to 2 traits. We tested colocalization for LDL, HDL and TG with the same SNPs and loci as in

the previous section. As shown in Table 6, CMC detected more colocalization loci than the

conditional method with Bonferroni correction. The results of testing loci and testing lead

SNPs were relatively consistent.

Table 5. Numbers of SNPs and loci with colocalization. LDL and HDL only. For the methods that test each locus, α = 0.05/#loci. For the marginal method that tests

each SNP separately, the numbers are the numbers of significant SNPs, and α = 0.05/(#SNPs in "Marginal"). The numbers in parentheses were obtained using the cut-off

α = 5E-8. For coloc, the numbers of loci with colocalization are the ones that were not rejected for its null hypothesis under α.

Chr Marginal Regional

# SNPs # Significant SNPs # Loci # SNPs # Loci with Colocalization # Significant Lead SNPs�

CB CMC MA Coloc

1 181458 19 (17) 26 134 0 (0) 9 (4) 9 (4) 16 (21) 6/9

2 209518 77 (55) 33 230 0 (0) 16 (3) 16 (3) 13 (22) 5/13

11 124669 129 (114) 26 239 0 (0) 23 (19) 24 (19) 8 (21) 20/23

12 116372 10 (7) 2 17 0 (0) 1 (0) 1 (0) 0 (2) 0/1

16 67080 32 (29) 5 40 0 (0) 3 (0) 3 (0) 3 (5) 1/3

19 33311 21 (18) 21 81 0 (0) 7 (4) 7 (4) 10 (13) 2/7

20 58830 1 (1) 6 45 0 (0) 1 (0) 1 (0) 1 (2) 1/1

� Testing lead SNPs with α = 0.05/(#SNPs in marginal). Lead SNPs were defined as the ones with the smallest p-values for LDL / smallest p-value sums for LDL + HDL.

These p-values were obtained from the conditional models.

https://doi.org/10.1371/journal.pcbi.1007778.t005
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In addition, we tested colocalization of all four traits, LDL, HDL, TG and TC with the new

methods. This time we used the same gap length and window size to obtain large non-overlap-

ping windows, and then applied the new methods to each window. We also applied the mar-

ginal analysis looking at one SNP at a time to see whether a SNP was associated with all the

traits (all p-values < α). Note that the reference data (1000G) only have 503 subjects while the

window size is as large as 100. The joint models we build may be quite inaccurate. Hence, we

applied the Sum-MI method in [40], which uses the reference panel and marginal summary

statistics to build joint models more effectively. Then we used the summary statistics (joint

effects and their covariance matrix) from these joint models for the conditional method.

As Table 7 shows, in the presence of four traits, the conditional methods were able to detect

multiple significant loci with summary statistics. MA had the most significant results.

IGAP and ADNI Data: colocalization of AD and gene expression

We applied the methods to the largest AD GWAS data by IGAP (International Genomics of

Alzheimer’s Project) [31], along with the ADNI (Alzheimer’s Disease Neuroimaging Initiative)

data [32] to detect colocalization of AD and gene expressions. CMC and MA’s results were

more significant than CB’s. JLIM and the conditional methods had different results, mostly

because JLIM looked at the marginal effects while the conditional methods looked at the joint

effects. Fig 3 is a LocusZoom plot [41] that shows the difference between JLIM and the condi-

tional method. For this locus, JLIM did not detect colocalization (its p-value was almost 1),

while the conditional method did with a looser threshold (p-value = 8e-7). Note that JLIM

only looked at the marginal effects while the conditional method examined the conditional

Table 6. Numbers of loci with colocalization. LDL, HDL and TG. For the methods testing each locus, α = 0.05/#loci. For the marginal method that tests each SNP sepa-

rately, the numbers are the numbers of significant SNPs, and α = 0.05/(#SNPs in "Marginal"). For testing lead SNPs, α = 0.05/(#SNPs in "Regional").

Chr Marginal Regional

# SNPs # Significant SNPs # Loci # SNPs # Loci with Colocalization # Significant Lead SNPs�

CB CMC MA

1 181434 6 26 134 6 6 7 4/4

2 209518 70 33 230 11 11 12 5/9

11 124669 125 26 239 22 23 23 20/21

12 116372 0 2 17 1 1 1 0/1

16 67080 28 5 40 1 1 1 0/0

19 33311 16 21 81 5 5 6 5/3

20 58830 0 6 45 1 1 1 0/1

� Lead SNPs were defined as the ones with the smallest p-values for LDL / smallest p-value sums for LDL + HDL + TG. These p-values were obtained from the

conditional models.

https://doi.org/10.1371/journal.pcbi.1007778.t006

Table 7. Numbers of significant SNPs and windows. Window size = 100. Test colocalization of LDL, HDL, TG and TC. For MA, u = 10 and s = 5.

Chr Marginal Regional

# SNPs # Significant SNPs (α = 0.05/#SNPs) # Windows # Significant windows (α = 0.05/#windows)

CB CMC MA

2 209518 48 2095 1 4 6

12 116372 0 1163 0 0 3

16 67080 27 670 0 0 1

19 33311 16 333 1 1 3

https://doi.org/10.1371/journal.pcbi.1007778.t007
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ones. None of the SNPs were marginally significant enough for both traits, so JLIM did not

conclude colocalization. However, in the conditional analysis, the p-values of some SNPs for

trait 1 became much smaller. As a result, the conditional method gave a much smaller p-value.

More details and other examples are provided in S1 Text.

Discussion

We have presented a new method to test colocalization with conditional analysis, which plays

a central role in fine mapping to distinguish causal SNPs from marginally associated ones due

to the latter’s LD with the former. The proposed conditional method offers some distinct

advantages over other existing methods in many scenarios. First of all, unlike coloc and

HEIDI, the conditional method’s null hypothesis is that there is no colocalization, which

seems more natural and desirable for the purpose of detecting colocalization. Besides, com-

pared to methods like JLIM, the conditional method does not put any restriction on the

Fig 3. One locus associated with schizophrenia on chromosome 6. JLIM did not detect colocalization but the conditional method’s result was more significant. Top:

LocusZoom plots of 15 SNPs’ p-values in marginal analysis. Bottom: LocusZoom plots of the same SNPs’ p-values in conditional analysis. Smaller p-values are

truncated at 1e-15.

https://doi.org/10.1371/journal.pcbi.1007778.g003
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number of causal SNPs in a locus. It also considers conditional effects of SNPs in a locus,

rather than marginal effects, which could be quite different. As shown in the simulation study

and discussed in the literature [17,18], when multiple SNPs are in LD, the marginally most sig-

nificant SNP may not be one of the causal ones, in which case JLIM may draw a wrong conclu-

sion due to its relying on the marginally most significant SNP. JLIM may also ignore a SNP’s

causal effect when another SNP’s effect is stronger. However, the conditional method can han-

dle these cases with ease. The difference between marginal and conditional analyses is also

shown in our real data examples. In addition, some methods require individual level data for

at least one trait, while the conditional method can be easily applied to GWAS summary statis-

tics with a reference panel. Finally, among the methods we have compared, the conditional

method is the only one that is currently available for dealing with more than two traits from

either independent or overlapping samples.

We have developed two new methods called CMC and MA-CMC (or simply MA), which

are less conservative than the Bonferroni correction, in conditional analysis of multiple SNPs

in a candidate locus. The performances of CMC and MA have been shown to improve over

many existing methods both in simulations and real data applications. A technical challenge in

colocalization testing with conditional analysis is the nature of the composite null hypothesis:

the null distribution of the test statistic (under H0) is unknown (with some unknown nuisance

parameters); specifically, under H0, although we have the asymptotic distribution of (Zjk) as a

matrix normal variate, but for any given j and k, the mean of Zjk is unknown that may not

equal to 0. In CMC, we have proposed a simple method to estimate these non-zero means/

components; it can be made more conservative with the choice of a larger tuning parameter

value (closer to 1) to estimate an upper bound of the true p-value, yielding a type I error rate

under the nominal significance level with possible loss of power; we proposed a default value

that seems to be working well across a wide range of simulations. However, CMC may also suf-

fer from power loss when the estimation of non-zero components is too difficult to be good.

To deal with this problem, we proposed to use MA, which looks at multiple estimates/choices

of non-zero components and takes the weighted average of different results. As long as one of

those choices is close to the truth, it can benefit MA’s power, making it even less conservative

than CMC. One limitation of MA is that it not only requires a cut off value as CMC does, but

also needs a pre-specified number of effects to be added each time as well as the total number

of models. Furthermore, MA requires more computing time. In addition, we tried the har-

monic mean p-value (HMP) by [42] for the conditional method to replace the Bonferroni cor-

rection, but the improvement was very limited (so we did not include the results). In the

future, it will be worthwhile to further explore other options to yield less conservative (and

thus more powerful) colocalization tests in conditional analysis. One possible way to make the

new method more efficient is to apply a sequential Monte Carlo method [43]. Finally, we

would like to mention that, as for any challenging problem in practice, it might be more infor-

mative to apply multiple approaches, instead of a single one, to reach a more robust conclu-

sion. Our proposed methods as hypothesis testing can be applied first to examine if there is

any colocalization. If so, a Bayesian approach may be used to identify the SNPs that are likely

to be causal for multiple traits. The first step focuses on the global question of the presence/

absence of colocalization, while the second step aims at identifying specific causal SNPs, which

is more challenging and may require larger samples.

Supporting information
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