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Hierarchical reinforcement learning works on temporally extended actions or skills to facilitate learning. How to automatically
form such abstraction is challenging, and many efforts tackle this issue in the options framework. While various approaches exist to
construct options from different perspectives, few of them concentrate on options’ adaptability during learning. This paper presents
an algorithm to create options and enhance their quality online. Both aspects operate on detected communities of the learning
environment’s state transition graph. We first construct options from initial samples as the basis of online learning. Then a rule-
based community revision algorithm is proposed to update graph partitions, based on which existing options can be continuously
tuned. Experimental results in two problems indicate that options from initial samples may perform poorly in more complex
environments, and our presented strategy can effectively improve options and get better results compared with flat reinforcement

learning.

1. Introduction

Reinforcement learning (RL) is a machine learning branch
where an agent learns to optimize its behavior by trial-
and-error interaction with its environment. Traditional RL
researches suffer the inability of use in complex practical
problems due to the so-called “Curse-of-Dimensionality,”
that is, the exponential growth of memory requirements with
the number of state variables. Hierarchical Reinforcement
Learning (HRL) aims to reduce the dimensionality through
decomposing the RL problem into several subproblems.
As solving small-scale subproblems would be simpler than
solving the entire one, HRL is expected to be more efficient
than flat RL. In the HRL research community, three main
frameworks, HAM [1], options framework [2], and MAX-
Q [3], provide different paradigms of problem hierarchies
and learning methodologies. These all make HRL work on
temporally extended actions or skills. Generally HRL requires
domain knowledge to define such abstraction, which may
function only for specific problems. How to automatically
form useful abstractions, or skill acquisition, is an attractive
issue.

To the best of our knowledge, most studies on this
topic adopt the options framework [4-6]. Then the skill
acquisition falls in automatic option construction. Though
existing approaches solve this from different perspectives,
one thing in common is that they require data sampled
from the environment. In some complex environments this
sampled experience may be deficient in describing the actual
transition dynamics of the environment. These previously
created options may get unadaptable to the environment,
thus even leading to poor performance in HRL. For such
cases there is need to online improve the quality of individual
options.

This paper targets two problems, that is, how to create
options and how to optimize options during learning. Our
approach is to operate on the state transition graph of the
learning environment. In the graph states are individual
nodes and connecting edges denote states transitions. We
first divide the sampled graph as communities, from which
options are constructed. Community is a concept in the
network science field, representing a cluster of strongly
connected states. This paper employs Louvain algorithm [7]
for community detection. The generated option set acts as
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the base for online learning. We present a rule-based com-
munity revision algorithm, adding newly collected states and
transitions to previous communities. Option improvement
is then performed based on these updated communities.
Our approach is evaluated in two environments, that is,
four-room grid world and small-scale Pac-Man world. The
former is a benchmark problem for testing option generation
algorithms, in which the effectiveness of learning options
from Louvain detected communities is tested. The latter is
more complex and uncertain, which is suitable for demon-
strating the performance of the presented incremental-option
improvement algorithm. Comparative results show that, in
the four-room environment, options constructed from com-
munities can accelerate the convergence speed than learning
from primitive actions. In the Pac-Man environment, two
scenarios with different types of the ghost agent are set. One
follows a fixed strategy while the other makes random moves.
Results suggest that options from initial samples perform
poorly in the more complex scenario, while the presented
incremental-option improvement can help adapt the existing
option set and obtain better results compared with flat
RL.

The remainder of this paper is organized as follows: In
Section 2 we describe some basic ideas of RL and the options
framework. Section 3 shows some related works on option
construction. In Section 4 we illustrate the main approach
of creating options from communities. Section 5 gives the
detailed algorithm on incremental community revision and
how to learn from these evolving communities. Section 6
demonstrates experiments and result analysis. Finally we dis-
cuss our implementation and draw conclusions in Section 7.

2. Preliminaries

2.1. Reinforcement Learning. The RL environment is typically
formalized as a Markov Decision Process (MDP) [8] that can
be described as a 5-element tuple (8, &, P, R, y), where & is
a finite set of states of the learning environment; </ is the
available action setin state s; P : X9/ x§ — [0, 1] describes
the state transition dynamics; R : & X &/ — R represents
the reward function for each state transition; and the discount
factor y € [0, 1] is to balance the importance of short-term
and long-term reward. At each step of time £, an agent in state
s, € & selects an available action a, € & ; then at next step
it moves to s,,; with the probability P(s,, a;, s,,,) and obtains
the reward r,,; = R(s;,a,). A policy m : & — o/ defines
which action to choose under a certain state. It is associated
with the action-value function Q,(s,a) = E,[Y 2, Yeroen |
s, = s, a, = a] indicating the expected reward from s after
taking a and thereafter following 7. The aim of RL is to find
an optimal policy 7" that can reach the maximal expected
reward, corresponding to the optimal action-value function
Q" = max,Q,(s,a).

RL algorithms can be divided as two categories, that
is, model-based and model-free, according to whether they
attempt to model the environment. Q-learning [9], one of the
most commonly used RL algorithms, is a model-free type.
In each learning step, the agent experiences the transition
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(S S441>1141)> and then the Q function is updated as
follows:

Q(503) < iy +ymaxQ (s,10) = Q(s0a). (1)

where &« € (0,1] is the learning rate. Q-learning has
been shown to converge to Q" under standard stochastic
approximation assumptions.

2.2. Options Framework. The MDP model assumes that an
action lasts for a single time unit. In large state space
problems, hierarchical abstraction has proven to be able to
increase the RL efficiency. Options [2], built on these one-
step actions, are formed as temporally extended courses of
actions. An option is defined as a triple 0 = (%, 7, 5), where

(i) F € & is the initiation set; that is, o is applicable in s
iff s € .7;
(ii) m, : & — o defines the option policy;
(iii) B : & — [0,1] specifies the termination condition
while executing o.

With this definition, an atom action a can also be viewed as a
primitive option with the initiation set % = {s : a € &}, the
local policy 71,(s) = a, Vs € .7, and the one-step termination
condition f(s) = 1, Vs € &. Thus the option based RL agent
can choose among atom actions as well as higher level skills.

The MDP model with a set of options O is formed as a
Semi-Markov Decision Process (SMDP). When the learning
agent chooses an option to perform, it follows the option
policy for several steps until the termination condition is
satisfied. Q-learning under SMDP, which is also referred
to as Option-to-Option Learning, updates the option value
function after the option has terminated. Specifically, the rule
is as

n-1
@ k n
Q500) <= 3P ies + ¥ maxQs,00)
k=0 € ()

-Q (St’ot) >

where s, is the starting state of the option o,, n is the number
of steps where o, is taken from s, to its ending, and s, is the
state that o, terminates at.

The main drawback of Option-to-Option Learning is
that it needs to execute an option to completion before
learning its value, thus requiring a significant amount of
experience to reach convergence for every option. On the
other hand, intraoption learning [10] can take advantage of
one-step option execution for all related options, which leads
to potentially more efficient learning. In detail, an experience
fragment (s, a,, S;,1, 1) can be utilized for all consistent
options, which would have taken a, in s,, to update the
value estimation. Such one-step intraoption value learning is
expressed as

Q (St’ O) . T + U (SH—I’ 0) -Q (St’ O) > (3)
where

U(s,0)=(1-B(s))Q(s,0) + B(s) ?ggQ(s,o'). (4)
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This update rule takes place after the one-step transition and
is applied by options which are consistent with the policy
n(s,) = a,.

The options framework illustrates how defined options
are utilized by the learning agent. What we concern here
is how to form useful options, having their .%, m,, and f3
automatically generated.

3. Literature Review

Automated option construction has been an active research
area and various approaches have been proposed. These
efforts commonly work on the basis of sampled experience.
With collected states and transitions, a general process is
to identify useful subgoals and then compose options using
them. The term of subgoals defines what states the options
need to achieve. They act as the basis to divide the original
problem. Based on the difference in finding subgoals, most
existing works can be categorized as two main branches:
the sampling trajectory based approach and the graphical
approach.

The sampling trajectory based approach tries to analyze
history experience from a statistical perspective. For instance,
the diverse density algorithm [4] specifies subgoals as regions
where the agent passes more frequently on successful tra-
jectories and not on unsuccessful ones. Here the successful
trajectory is defined where it can start from any state and
finally end at the expected goal state. The relative novelty
[11] assumes that subgoals can lead the agent to access a
new region from highly visited regions. The Local Roots
algorithm [12] considers that subgoals should be junctions of
shortcut paths from each state to the goal state. This approach
online constructs a sequence tree from collected successful
trajectories and takes the one with the local maximum root
factor measure as subgoal. Another method presented in [13]
employs the ant colony optimization to construct options. In
its context subgoals are specified by monitoring the variance
in pheromone values of related transitions.

The graphical approach forms a state transition graph
through the agent’s interaction with the environment. In such
graphs, states act as vertexes and their potential transitions
caused by actions are represented as edges. Some efforts
form subgoals via directly ranking graph centrality measures
of state nodes (e.g., the betweenness centrality [5] and the
connection graph stability centrality [14]). The basic idea is
that potential subgoals would be special on these measures
compared to other vertexes. On the other hand, a more com-
mon way is to partition the transition graph as several vertex
clusters. States within the same cluster are strongly connected
while the intercluster connectivity is minimized. Then border
states connecting adjacent clusters can be naturally regarded
as subgoals, and options are with the implication of moving
from one cluster to another. There are some approaches
following this idea but with different implementations. The
approach in [15] partitions the transition graph by removing
edges with high-value edge betweenness centrality. Mean-
while in [16] the eigenvector centrality is used as a basis
to cluster the graph. The authors also present an online
option pruning algorithm, attaining substantial performance

improvement compared with the betweenness approach and
the edge betweenness approach. Another spectral clustering
algorithm PCCA+ [17] is also used for skill acquisition [18].
Combining neural network training, it shows effectiveness
for complex environments like Atari games. The work pre-
sented in [19] finds subgoals in linear time based on forming
Strongly Connected Component (SCC) of the graph. What
is unique is that this method also exploits historical data to
help improve the performance. Additionally, the reformed
Label Propagation Algorithm (LPA), a community detection
method, is employed to tackle this issue [6]. While LPA
has a near-linear time complexity [20], its stability remains
doubtful as it can generate redundant communities as well as
skills even in simple problems.

One main drawback of the sampling trajectory based
approach is that excessive exploration is needed to accurately
identify those subgoals. Also, if the goal of the environment
changes, previous efforts would be wasted in case that cur-
rently detected subgoals do not lead to the new ultimate goal.
The graphical approach relies on the transition graph, which
would form an understanding on the overall environment.
This helps identify potential subgoals no matter what the
current goal is. These two branches of approaches do not have
a clear border. Actually some approaches can take advantage
of both of them, such as the SCC based approach [19]. The
approach in [13] also operates on the state transition graph
but concentrates more on some metric in the context of the
ant colony optimization. The main difference of those efforts
lies in how they define the standard for states to be subgoals.

For the graphical approach, it is usually difficult to get
a complete transition graph for large state space problems,
and hence continuous sampling is necessary to approximate
the full view. This requires that the graphical processing
can deal with potential increase of new states and new
transitions during the exploration. In this paper we propose
an option construction and option improvement strategy
though incremental community detection. What we concern
more is how initially generated options can be updated
in online learning. In some related works, the PCCA+
based method [18] calls the cluster algorithm iteratively to
get options for large state space problems. Its computation
overhead should be expensive. Also, if the resulting partition
is quite different from the existing one, the currently formed
options can be wasted. The reformed LPA in [6] is extended
with an incremental version, but the stability of generated
communities is not further discussed. We focus on how
detected communities evolve and try to make the option be
improved in a stable and efficient way.

4. Generating Options from Communities

Constructing options from communities belongs to the graph
partition based approach. We first give a brief description of
the concept of communities and the process of the Louvain
community detection algorithm. Then we describe how
options are generated from communities.

4.1. Louvain Method for Community Detection. Define G =
(V,E) as an undirected unweighted graph where V' and



E represent the vertex set and the edge set, respectively.
Community detection aims to partition G into a finite set of
communities P = {C,,C,,...,Cg}, where V. = C, UC, U
-+ U Cg and Cy; N Cy, = 0 for any distinct Cy;,Cy, € P.
A community is thought as a portion of a graph in which
intracommunity edges are dense while intercommunity edges
are sparse [21]. The measure modularity [22] is often used to
evaluate the quality of communities partition:

@ (P) = Z (M_M>, (5)

G\ M 4M?

where m(Cy) is the sum of intracommunity edges of C;., d(C;.)
is the sum of degree of vertexes in Cy, and M denotes the
total number of edges in G. The value range of modularity is
(-1, 1).

Generally higher @ value means better partitioning; thus
the problem of community detection can be solved as seeking
for a solution maximizing the modularity. However, because
the space of possible partitions grows quite fast, achieving the
highest modularity is an NP-hard problem [23]. Algorithms
for modularity-based community detection usually try to
approximate the maximum of this measure. A comprehensive
review on these approaches can be found in [24].

Louvain algorithm [7], which we use in this paper, is a
hierarchical greedy optimization approach. It generates com-
munities though iteratively executing a two-phase process.
The general procedure is as follows:

(1) Initially, each vertex of the graph is assigned to a
different community.

(2) For each node, check the modularity changes if
moving it from its current community to one of
neighbor communities, and make the change yielding
the positive and maximal modularity increase. The
process continues until all nodes are checked, result-
ing in a first-level partition with local maximal @.

(3) Build a new graph based on the first-level partition,
where each node represents a community, and the
connected edges are formed with weights as the sum
of previous weights of corresponding intercommu-
nity connections.

(4) Repeat step (2) and step (3) until no increase in mod-
ularity is possible, resulting in the ultimate partition
solution.

Louvain algorithm is believed to be one of the fastest
modularity-based community detection methods [25].
Assume the graph to be processed has a total of m edges and
n vertexes. The algorithm’s runtime complexity is believed
to be O(m). For sparse graphs it is also with a roughly linear
growth on 7. In addition to high efficiency, it can obtain very
good-quality results in terms of the modularity measure
[25]. The main limitation is its storage demand for large
scale networks. Compared to some existing graphical based
option generation algorithms, employing Louvain algorithm
is of advantage on computation time. For instance, the
betweenness centrality computation following [26] should
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be O(nm) and O(nm + n? log n) for unweighted and weighted
graph, respectively; LPA grows like O(km) where k is the
sum of the algorithm’s internal label propagation iterations;
and the SCC based method [19] is a linear time algorithm
with an O(m + n) complexity.

What should be noted is that, in step (2) of Louvain
algorithm, the visit order of vertexes can vary. As indicated
in [7], the ordering can influence the computation time as
well as the obtained final partition. A default strategy is to
traverse nodes in a random order. In [27] the authors evaluate
several other vertex ordering strategies and suggest that sort
nodes based on descending order of edge degree can bring
marginal improvement on computation time than the default
strategy. Results in [28] also show that partitions generated
by Louvain algorithm following this degree-descending order
can have low variance in modularity value (the number in
most tested networks is at the level of 107°). In this paper, our
implementation uses Louvain algorithm with such ordering
strategy by default.

4.2. Option Generation from Communities. The main idea of
generating options from communities is to form an abstract
MDP model on the basis of communities. These communities
are converted from the state transition graph of the original
problem. State vertexes in the same group can be aggregated
as a macrostate, and transitions between macrostates are
formed as macroactions (i.e., options). Here we only consider
options shifting between two adjacent communities. An
option from Cy, to C;, can be generated by assigning its .7,
74, and . Specifically,

(i) The initiation states ¥ = {s; | 5; € Cp}.

(ii) The termination condition f3 is defined as

1, lf S; € Ck2

B(s;) = (6)

0, otherwise.

The option is expected to stop while the agent reaches
the border states of C;, connecting Cy,. In some cases
there is more than one state connecting these adjacent
clusters, which we can all regard as subgoals.

(iii) The option policy 7, mainly guides the agent mov-
ing to Cy,. It is assumed that enough episodes of
transition experience have been collected before these
communities’ generation. We adopt the experience
replay (ER) mechanism [29] to learn 77, from previous
trajectories. ER reuses past experiences to find an
optimal policy to reach specified subgoals. During
this process, a completion reward in addition to
environmental reward signals will be assigned while 3
is satisfied. For nondeterministic transitions, we also
set a negative reward if the agent executing an option
jumps out of both the source community and the
target community.
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5. Incremental Community Detection for
Online Learning

Though Louvain algorithm is computationally efficient and
can generate high-quality solutions, it is initially designed for
static network analysis. For complex systems sample based
methods need to be employed to asymptotically form a
satisfying state transition graph. Those initial samples may
not be able to reach all states. Thus there is a need to
online develop the state transition graph when experience
accumulates during learning. As a result, the community
detection needs to be performed adapting those dynamic
changes. A direct approach is to iteratively execute Louvain
algorithm while new states are discovered. However, the
algorithm can produce distinct community structures if
running multiple times on the same network. Even if we
have employed a specific ordering strategy to decrease the
variance, partition changes can lead to reconstruction of
options, which may waste previous efforts on learning these
options’ internal policies. Therefore, a trade-oft between the
optimality and the stability should be considered.

5.1. Rule-Based Incremental Community Revision. Here we
propose an approach combining the original Louvain algo-
rithm and later incremental processing. Typically Louvain
algorithm need be called to create a community assignment
from initial samples, and then the incremental processing will
work to handle later changes of the transition graph. What
we concentrate on is the changes that specifically happen
during the learning process, which can be organized as three
categories:

Casel: new vertex addition with edge(s)
Case2: intracommunity edge addition

Case3: intercommunity edge addition.

We set rules of how to respond to those cases: For Casel,
two possible operations can be made, namely, assigning the
new vertex to its connected community (Opl) or creating
a new community for the vertex (Op2). For Case2, intra-
community edge addition actually strengthens the relating
community’s local modularity measure; hence we can just
keep the current community structure unchanged (Op3). For
Case3, there are also two potential operations to tackle the
change, that is, Op3 or merging corresponding communities
into a new one (Op4). Selecting a specific operation for a
certain case should keep the principle that the modularity
of the resulting partition must be the maximal among all
choices.

The modularity changes brought by each operation can
be deduced from (5). Specifically, we have the following.

(1) In Casel. If Opl is applied to the community structure,
the original partition P has a new vertex added to one of its
communities. Denote the community to be changed as C,,
and we have C; € P. The resulting modularity is as

5
Ci#C, 2
casel _ < m(ck) d(ck)
o) - C;P<M+l a1y
7)

+<m(c,->+1 i (d(ci>+z>2>,

M+1 4(M +1)*

where Pg;id represents the resulting partition after applying
Opl on the original partition P in Casel.

The other alternative Op2 creates a new community for
the new vertex. Let the new community be C i then C; and
C; should be adjacent. Similarly, we have

6 (Pcasel) _ Ciq <m (Ck) _

op2
Cep M+1

d(Cy)’* )

4(M +1)*

M+1  4M+1)?

12
o),
4(M+1)

In order to select from Opl and Op2 in Casel, we can
compare their effects on the original partition:

. (m(c,-> _(d(c)+ 1)2> (®)

A@1 _ Q(Pcasel) _ @(Pcasel)

opl op2
9
1 d(C)-1 ©)
T M+1 2M+1)%

(2) In Case2. There is only Op3 as the solution, which just
leaves the current partition P as is. Define the intracommu-
nity edge being within C;; then we have Ad(C;) = 2, Am(C;) =
1, and AM = 1. The modularity for ng;ez is

0 (PcaseZ) _ Ciq <m (Ck) _ d (Ck)2 )

3
op S\ M+1 4M+1)
(10)

M+1 4(M +1)°

+<m<c,»>+1 i <d<c,->+z)2>.

It can be found that @(Pg;gez) has the same form as

@(ngiel), though they result in different partitions. In [30]
it has been proved that adding any intracommunity link
to a community of a graph will not split it into smaller
modules, because this actually increases the community’s
local modularity. Hence it is reasonable to apply Op3 in
response of Case2.



(3) In Case3. We suppose the added edge connects C; and C;.
Then for Op3 the modularity becomes

© (Pcase3) _ qug‘i)q (m (Ck) _ d (Ck)2 >

op3 oo M +1 4 (M + 1)2
m(C,) +m(Cj) "
M+1 (

(d(C)+ 1)+ (d(c;)+1)
4(M + 1)

If Op4 is selected, C; and C; are combined into one, which
we denote as C, here. The resulting modularity should be

computed as

o(ps)
O (mc) _dey
Ep \M+1 4(M+1) (12)
m(c,) (d(C)+d(c)+2)
M+1 4(M +1) ’

where m(C,) > m(C;) + m(CJ-) + 1 for there may have been
already existing intercommunity edges between C; and C;.

In order to obtain the better operator for Case3, we
compare the two as

) (Pcuse3) ) (Pcuse3)

B m(cx) - m(ci) - m(Cj)
a M+1 (13)
B d(c,)+1) (d (Cj) + 1)
2(M +1)? '

After the analysis of each operator’s effect, we present
the incremental processing algorithm to tackle detected state
transition changes. As shown in Algorithm 1, the input is a
list of changes, with each item corresponding to a specific
case. The algorithm is defined to be called after an initial
graph being created. Periodically, new nodes and edges on
the current transition graph detected from several episodes
history will be stored in a list, and then the algorithm will
process each item sequentially. Finally a new community
partition will be generated, which provides basis for option
learning.

The incremental process does not cost too much compu-
tational resource. It just associates each graph change with
a specific operation. What is more important is the stability
it can achieve. We assume that a reasonable portion of the
state space is seen before incremental processing. Then the
proposed method can keep a high level of stability on existing
community partition.
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(1) Function updateCommunities (G, P, listChanges)
(2) graph — G.copy Q)

(3)  partition < P.copy ()

(4) foreachitem  listChanges do

(5) graph.Applychanges (item)

(6) if item is Casel then

(7) if AQ, > 0 then

(8) partition « Op1 (partition, item)
9) else

(10) partition « 0p2 (partition, item)
(11) else if item is Case2 then

(12) partition «— 0p3 (partition, item)
(13) else if item is Case3 then

(14) if A@, > 0 then

(15) partition « 0p3 (partition, item)
(16) else

17) partition «— Op4 (partition, item)

(18) return (graph, partition)

ALGorITHM L Incremental processing algorithm for transition
graph changes.

Our implementation draws experience from some
researches on dynamic community detection, such as
[30, 31]. Their aim is mostly for real-time community track-
ing, considering vertexes’ and edges’ addition as well as their
removal. Compared to these approaches, our implementation
concentrates more on the changes that would happen during
online learning.

5.2. Option Learning with Evolving Communities. The moti-
vation of employing incremental processing is that, in some
complex problems, preliminary sampling may not reach a full
view of the state transition graph. As the learning proceeds,
new states or new state transitions may occur. The graph
keeps evolving, requiring corresponding communities to be
updated. In order to tackle this issue, we design the algorithm
of option learning with evolving communities as shown in
Algorithm 2.

The algorithm contains initial sampling and offline option
construction (lines (3)-(10)). It can also be easily embedded
in the online learning process. After initial options being con-
structed, the agent will continue to sample trajectories and
periodically check whether option improvement is needed
(lines (12)-(21)). The condition of how many samples are
required is defined manually according to specific problems.
Commonly more than half usually visited states of the target
problem should be collected. The incremental processing
occasion should be set to ensure every cycle has enough graph
changes and the interval is not too long.

We analyze how the incremental community detection
will affect current options. For Opl and Op2, new state
vertexes will be incorporated but not change the existing
partition, so previous experiences can still be reused. A
relatively small number of experiences are enough to regain
options internal policies’ convergence. Op3 actually does
not change the current community assignment. Op4 will
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(2) Start option generation;
(3) while true do
(4)  Sampling trajectories;

(12) while not converged do

(1) Initial condition: learning agent with primitive options

(5) if condition for option discovery is met then

(6) Use Louvain algorithm to detect communities;

(7) Construct options from communities, having their .% and 8 specified;
(8) Take ER to form options’ internal policies 7,;

9) Add options to set;

(10) break;

(11) Start learning;

(13)  Perform Intra-Option Learning with the current option sets;
(14)  if reaches incremental processing cycle then

(15) Call Algorithm 1 to update communities;

(16) Reconstruct options from updated communities;

(17) for o,,,, € reconstructed options, o4 € previous options do
(18) if 0g1q - F S 0pey - and oy - B S 0, - 3 then

(19) Onew * o <~ Ooid " 71,

(20) Take ER to improve options’ internal policies 7,;

(21) Add updated options to set.

ALGORITHM 2: Option learning with evolving communities.

merge previous communities, resulting in options with new
applicable sets and subgoals. For this occasion ER is required
to repeat for more times to learn the policies. But, overall, if
enough sampling is performed to construct initial options,
Op4 will be rarely used in later processing.

6. Experiments and Results Analysis

6.1. Four-Room Grid World. We demonstrate the effective-
ness of our presented option construction approach through
the benchmark problem, four-room grid world, as depicted in
Figure 1(a). The four-room environment contains four adja-
cent rooms where the agent needs to move from a start point
to a specified destination. Four actions are available for the
agent, corresponding to moving towards four directions, that
is, “East,” “West,” “North,” and “South.” The environment
terminates when the agent moves to the destination or a total
of 1000 moves are accumulated. The agent receives —1 for
every move and +100 if reaching the destination. There is
also a probability of 0.1 that a chosen action will not result
in moving to its intended direction, but other random ones
instead.

Our experiments compare the performance of five dif-
ferent types of agents, that is, the Q-primitive agent, the
manual-option agent, the Louvain-option agent, the LPA-
option agent, and the betweenness-option agent. The Q-
primitive agent learns with primitive actions following (1).
The latter four agents all operate on options and learn using
intraoption learning as (3) and (4). The main difference is
that the manual-option agent has manually defined options
indicating the shift between adjacent rooms with optimal
paths. Specifically, we set the goal location in the TopRight
room, and four options, including BottomLeft — TopLeft,
TopLeft — TopRight, BottomLeft — BottomRight, and

BottomRight — TopRight, are defined in the manual-option
agent. Meanwhile, the Louvain-option agent and the LPA-
option agent employ options constructed by our presented
algorithm and the LPA community detection algorithm [20],
respectively. Both agents construct the options based on the
presampled 10 episodes of experiences. Also, as previously
mentioned, these generated options take states in a source
community as the initiation set and will get terminated if the
current state falls in the target community. The betweenness-
option agent is implemented following the approach in
[5], where nodes with high-value betweenness centrality
measures will be chosen as subgoals. The implementation
employs the scoring measure presented in [14] to reinforce
local maxima:

BC

2
S,=BC, | ——, 14

! ‘ < maxveN(u)BCv ) ( )
where u is a graph node, BC, is the betweenness centrality
value of u, and N(u) is the neighbor nodes set of u. Here we
set nodes with top 5% S, value as subgoal states. Also, unlike
community based options, the betweenness based options
take the identified subgoals as termination sets and a certain
number of states near subgoals as initiation sets.

The four-room environment has 104 states. It is small and
it is easy to collect all of them, so the incremental processing
need not be triggered. Some other parameters are set in the
same way. In every step, agents choose actions using the e-
greedy selection strategy with e = 0.1. The learning rate
o = 0.1 and the discount factor y = 0.99. Results are
all collected from 50 independent runs. Each run contains
totally 100 episodes in which the goal state is kept fixed in the
TopRight room while the agent’s start position is randomly
chosen.
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FIGURE 1: Four-room grid world.

8
(a) The four-room environment
M

0 4

g —100 A
z
g

£ -200 A
3
&

5 —300
O

—400 A

0 20 40 60 80 100

Episode
—— Q-Primitive
- -~ Manual-Option
--- Louvain-Option

--- LPA-Option
Betweenness-Option

FIGURE 2: The four-room problem results of comparison with
different learning algorithms.

The results are demonstrated in Figure 2. In order to
clearly show the performance differences of each algorithm,
the curve is drawn from average accumulative reward of
every 5 episodes. We can see that the four option learning
agents all have better learning speed than the vanilla Q-
learning at earlier stages. After that they all get converged
within 100 episodes. The manual-option agent has generally
the best performance among all learning algorithms. This

lays a foundation on evaluating the three automatic option
generation approaches. The Louvain-option agent does not
catch up the manual-option initially. That is mainly because
some options generated through Louvain algorithm are
redundant for achieving the goal. Figure 1(b) shows an
example of Louvain detected communities on four-room
problem’s state transition graph. There are 4 clusters, each
corresponding to a macrostate. Then a sum of 8 options
is generated in terms of macrostate transitions. This gives
the agent more available choices during learning, hence
more time to reach convergence. The LPA based approach is
similar. Further, it is outperformed by the Louvain approach
because its generated graph partitions are usually with less
quality. The betweenness-option agent has close performance
as the Louvain-option agent. In our settings it has 6 subgoals
identified during learning, corresponding to 6 options. While
this number in the Louvain based approach is mostly 8 or 10.

In our implementation practice, subgoals found by the
betweenness-option agent and the Louvain-option agent can
both cover the four gate nodes (62, 25, 88, and 51) or at
least their neighbors. The performance difference in the
four-room environment is mostly derived from how they
construct options. Specifically, we found that the initiation
set of betweenness based options should contain enough
states in order to attain good performance. This ensures
that the learning agent has executable options in most
states in addition to primitive actions. From this perspective,
constructing options based on moving from one community
to another may be a more convenient way as there is no need
to tune such parameters and detected communities naturally
contain all state nodes.
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FIGURE 3: A snap shot of the evaluated small-scale Pac-Man
problem. Only one dot and one ghost are set.

6.2. Small-Scale Pac-Man. The game Pac-Man has been
popular for testing AI algorithms. In this environment the
Pac-Man agent needs to collect all dots distributed in the map
before colliding with some ghost. This section concentrates
on a small-scale Pac-Man problem, as shown in Figure 3,
where the map is similar to the four-room grid world. It
contains only one dot and one ghost. However, it is more
complex and uncertain than four-room problem as the ghost
position should be considered and the state transition is
determined not only by the Pac-Man agent but also by the
ghost.

The platform we use for experiments is an open source
implementation (http://ai.berkeley.edu) developed by Uni-
versity of California, Berkeley. In its settings, the Pac-Man
can move “Up,” “Down,” “Left,” and “Right” and “Stop.”
The environment ends if the Pac-Man moves to eat the dot
or is eaten by the ghost. As with rewarding signals, the
agent receives —1 for every elapsed time, +500 for eating the
dot, and —500 if being eaten. The state can be represented
as a three-element tuple {pos_pac, pos_ghost, pos_dots}. The
first and the second element denote the position of Pac-
Man and the ghost, respectively. The last one is the current
distributions of dots. Each element can be described as a
binary matrix, with the size as MapWidth x MapHeight and
the value v, indicating the corresponding item’s existence
(V,n = 1) or absence (v,,,,, = 0) in (m, n) position of the map.
As the map has 34 walkable positions in total, the whole state
space is 34 x 34 x 2 = 2312.

The main aim of this experiment is to show the per-
formance of learning options with evolving communities.
As it is required to consider the position of the ghost, it
is not easy to manually define high-quality options for the
Pac-Man agent. Here we mainly focus on the comparison
of the Louvain-option learning as well as the incremental-
option learning. The Louvain-option learning learns with
options only generated from initially sampled experiences,
while the incremental-option learning includes the option
improvement processing as Algorithm 1.

The Pac-Man problem is special for testing the
incremental-option learning. Firstly, specific procedures
are required to achieve the final goal, which can show the
superiority of HRL compared with flat RL. Secondly, its state
space is not huge, enabling options to be constructed and
improved through the tabular g-function representation.
Also, there are states or state transitions that would be rarely
visited or experienced, and prior sampling cannot form a
complete state transition graph. These are all suitable for the
incremental processing.

Two different types of ghosts are evaluated in the
Pac-Man problem, that is, “DirectionalGhost” and “Ran-
domGhost.” The former rushes to the Pac-Man agent with
a probability of 0.8 and otherwise acts randomly, while the
latter makes purely random moves. We refer to these two sce-
narios as “Pac-Directional” and “Pac-Random,” respectively.
All agents use e-greedy strategy (¢ = 0.05) and learn with
« = 0.2 and y = 0.8. Each learning experiment lasts for a
total of 1000 episodes. For option learning, we first collect
200 episodes of experiences to construct options, which act as
the base for Louvain-option learning and incremental-option
learning. ER during the incremental processing employs the
same set of learning parameters. Results are averaged from
50 independent runs. Figure 4 shows these results, where
average rewards of every 50 episodes are given.

It can be found that in the Pac-Directional scenario the
two option learning approaches have faster learning speed
than Q-primitive. They also achieve higher average scores
while being converged. Comparing the two, incremental-
option performs slightly better than Louvain-option. At an
earlier stage, the two have similar learning speed. While
approaching convergence, incremental-option obtains gen-
erally higher scores, though such superiority is not very
obvious. In the Pac-Random scenario, option learning meth-
ods still perform better than Q-primitive. However, changes
emerge after 400 episodes. Louvain-option starts to slow
the same learning speed and even achieve fewer rewards
than the converged value of Q-primitive. On the contrary,
incremental-option keeps a little faster learning speed than
Q-primitive and finally converges to the same value. Actually,
due to the increased uncertainty of state transitions, the three
algorithms all become slower in terms of learning speed,
though the converged reward is higher than that in the Pac-
Directional scenario. The two option learning approaches
have the same option base; thus they produce similar results
at earlier stages. On the other hand, incremental-option
learning continuously processes new experiences to approx-
imate the true state transition graph. So at later stages it
would have improved options than Louvain-option, thus
obtaining better performance. From these results, we get
that Louvain-option learning can have better performance
than Q-primitive in relatively deterministic environments,
while for more complex and uncertain problems it requires
incremental-option improvement to be effective.

Take a deeper look into incremental-option learning, we
show the sampled state transition graph changes during these
experiments in Table 1. The initial amount of nodes and edges
is from the 200 episodes experience from which the Louv
ain-options are created. Those “final amount” data denote
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FIGURE 4: Small-scale Pac-Man problem results. Comparison of the proposed incremental-option learning method with Q-learning with
primitive actions and Louvain-option learning. Shadow areas denote standard deviation value.

TaBLE 1: Sampled state transition graph changes during learning.

Scenario Pac-Directional Pac-Random
Nodes
Initial amount 561 967
Final amount 839.5 (25.4) 1105.4 (11.1)
Increased amount 278.5 (25.4) 138.4 (11.1)
Edges
Initial amount 1504 3406
Final amount 2368.1 (60.8) 4331.6 (16.5)
Increased amount 864.1 (60.8) 925.6 (16.5)

corresponding numbers at the end of learning. It is obvious
that the initially sampled states and transitions occupy most
of those final amounts. They act as basis for initial option
sets. Nodes and edges in Pac-Random have greatly more
quantities than those in Pac-Directional. The former also has
more increased edges in case that its increased nodes are less
than the latter. These all demonstrate the dynamics of the
Pac-Random scenario. Louvain-option learning shows better
performance in the relatively deterministic scenario, while
it cannot handle the more uncertain one. That is why the
incremental processing is necessary.

We collect the modularity changes of every 50 episodes
during the incremental-option learning process. At each
collection, Louvain algorithm is also called on the cur-
rently sampled state transition graph. A modularity value
is computed from the resulting partition and recorded for
comparison. Figure 5 shows these curves, from which we see
that the incremental community revision results in steady
increase of the modularity value in both scenarios. Compared
to Louvain generated results, our presented approach can

have satisfying performance in terms of the modularity value.
In Pac-Directional it does not show much inferiority and in
Pac-Random it even suppresses calling Louvain alone. What
is more important is that it does not lose the stability of
graph partitioning. As has been mentioned, even for the same
graph, Louvain algorithm would generate different partitions.
Our presented incremental community detection approach
only operates on part of the communities, keeping remaining
unchanged. As incremental-option learning requires options’
internal policy to be updated for every community change,
such stability ensures that most previously learned 7, can be
reused.

7. Discussion and Conclusion

This paper proposes an incremental community detection
based option construction and option improvement algo-
rithm. The main idea is to create and update options from
communities of the sampled state transition graph, which
may be evolving overtime. The initial options are constructed
from communities generated by Louvain algorithm due to its
efficiency and solution quality. The incremental processing
is based on doing modifications on existing communities
to update options. We first evaluate the quality of options
constructed from Louvain detected communities in the four-
room environment. Comparative results show that it can
accelerate the learning speed compared with flat Q-learning.
Also, it has similar performance to the betweenness based
approach and outperforms the LPA based approach. The
performance of incremental-option learning is then tested
in the small-scale Pac-Man problem. It is a more complex
and uncertain environment where the position of the ghost
needs to be considered. We make experiments in two sce-
narios with different types of ghosts. The results show that
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revision method with iteratively calling Louvain algorithm. Shadow areas denote standard deviation value.

learning with Louvain detected options can outperform flat
Q-learning in the relatively deterministic Pac-Directional
scenario. While in the more uncertain Pac-Random, the
Louvain based options fail to gain better results. At this
time the incremental-option learning still maintains such
superiority.

The incremental processing mainly tackles newly
encountered transitions during learning, resulting in the
addition of edges and nodes to the original sampled graph.
The process works by using rule-based revisions to update
existing communities, which proves effective in increasing
the modularity in our experiments. Compared with using
initially generated options alone, the incremental-option
learning would update options with consideration of those
new state nodes and edges. In complex and uncertain
environments, the initially sampled transition graph may
not contain all nodes or edges, which would make the
generated options not adaptable to the real environments.
This can be revealed in the Pac-Random results, where the
Louvain-option agent cannot even reach the Q-primitive
agent at end. On the contrary, the incremental-option agent
has the same option base but can achieve higher scores.
The underlined reason is that it contains processing of
those incremental changes to make the transition graph
more complete, thus continuously improving the quality of
those options. It does not make too many changes on the
originally detected communities but more on small-scale
compensations of them. So the performances gained by
the two option learning approaches do not differ much.
However, these small compensations bring help, showing
that the presented incremental processing is effective and
necessary.

One main limitation of our current approach is that
the sampled graph is unweighted and undirected. This to

some extent simplifies the learning environment. Using
weighted and directed graph should be more suitable, as
state transitions are direct and there exists a probability
for each transition. Continuously approximating the edge
weights relies on exploiting historical information. This is
similar to the SCC based method [19] which takes advantage
of both graphical approach and frequency based approach.
The expected advantage is to help locating subgoals more
accurately. On the other hand, the unweighted undirected
graph used in our experiments can also give a rough descrip-
tion on the corresponding problem. So our approach still
shows superiority to flat Q-learning.

Further, the graph partition based approach constructs
options from the ground state space, which may be less
effective for some complex problems. Some other problem
decomposition techniques can provide insights into this
issue. For instance, the approach in [32] employs the sub-
space genmeralization to increase the learning speed. Here
the subspace is a subdimension of the original multidi-
mensional state space. The main idea is to exploit subspace
policies gained from early experiences and also to avoid
their excessive use. This is particularly effective for problems
where subspaces are more informative. Like in the Pac-Man
environment, some states may be rarely encountered while
their corresponding representation in subspaces (such as the
Pac-Man agent’s position) has been experienced frequently.
Combining skill acquisition with subspace generalization
should bring performance improvement for such problems.
Another kind of technique in [33] forms MDP abstractions
through symbolic descriptions. The authors also present
a framework to combine option discovery and symbolic
representation for creating multilevel abstraction hierarchies.
This provides a novel use of options, which enables fast
high-level planning over ground state representation. As
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their work focuses more on the planning process, more
investigations are required to automatically construct the
presented abstraction hierarchy.

Our current implementation has shown effectiveness
in some simple grid world environments. Some recent
researches on automatic skill acquisition tend to solve more
complex problems. For instance, the work in [34] presents
a skill based transfer learning framework for continuous
domains. The authors map the actual state to the discrete
domain and also employ the graphical approach to generate
options. Additionally, the emergence of deep learning tech-
niques has inspired several efforts to combine the option
framework with deep neutral networks (such as [35, 36]),
which all showed better performance than regular deep
Q-learning. These approaches form options from different
perspectives but to some extent draw experiences from those
graphical methods. Our approach, however, is potential to be
extended in such context. Another aspect is that, as a form
of skill, constructing options is sometimes unnecessary to
consider the whole state space. For example, in [37], to solve
the complex navigation tasks of the Infinite Mario game, the
local movement strategy is represented as options trained
with only the Mario-agent surrounded by partial states. Then
the solution for the whole game is based on planning with
these local skills. As it is often possible to get good-quality
options in small state spaces, combining planning with those
locally effective options can be an effective way to solve
problems with large state spaces.

For future works, we will explore constructing options
from weighted directed graphs, which may better handle
nondeterministic environments. How to perform incremen-
tal processing on this type should be considered. Also, there
is a need to better schedule the experience replay in order
to get more efficient option internal policy convergence.
We would also like to explore combining the presented
incremental-option learning with other techniques to handle
more complex real-world problems.
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