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Abstract

Introduction

Muscle weakness can lead to reduced physical function and quality of life. Computed

tomography (CT) can be used to assess muscle health through measures of muscle cross-

sectional area and density loss associated with fat infiltration. However, there are limited

opportunities to measure muscle density in clinically acquired CT scans because a density

calibration phantom, allowing for the conversion of CT Hounsfield units into density, is typi-

cally not included within the field-of-view. For bone density analysis, internal density calibra-

tion methods use regions of interest within the scan field-of-view to derive the relationship

between Hounsfield units and bone density, but these methods have yet to be adapted for

muscle density analysis. The objective of this study was to design and validate a CT internal

calibration method for muscle density analysis.

Methodology

We CT scanned 10 bovine muscle samples using two scan protocols and five scan positions

within the scanner bore. The scans were calibrated using internal calibration and a reference

phantom. We tested combinations of internal calibration regions of interest (e.g., air, blood,

bone, muscle, adipose).

Results

We found that the internal calibration method using two regions of interest, air and adipose

or blood, yielded accurate muscle density values (< 1% error) when compared with the refer-

ence phantom. The muscle density values derived from the internal and reference phantom

calibration methods were highly correlated (R2 > 0.99). The coefficient of variation for mus-

cle density across two scan protocols and five scan positions was significantly lower for

internal calibration (mean = 0.33%) than for Hounsfield units (mean = 6.52%). There was no
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difference between coefficient of variation for the internal calibration and reference phantom

methods.

Conclusions

We have developed an internal calibration method to produce accurate and reliable muscle

density measures from opportunistic computed tomography images without the need for

calibration phantoms.

Introduction

Muscle weakness is associated with physical impairment, reduced quality of life, and mortality

[1,2]. Computed tomography (CT) is a widely used clinical imaging modality that can be uti-

lized to evaluate muscle degeneration through quantitative measures of muscle cross-sectional

area and density. Muscle cross-sectional area is an indicator of muscle health that is correlated

with measures of muscle function (e.g., handgrip strength, knee extension strength, short

physical performance battery scores) and can be used to predict health outcomes (e.g., frailty,

length of hospital stay) [3–6]. However, structural alterations, such as fat infiltration, may

result in muscle cross-sectional area values underestimating changes in muscle function and

muscle strength. Fat content within muscle structures can be evaluated through measurements

of muscle density since fat infiltration leads to lower density muscle [7–11]. Lower muscle den-

sity in the lumbar region and the lower limbs is correlated with reduced muscle strength

[3,12,13], and can be combined with measures of muscle cross-sectional area for a more com-

prehensive assessment of muscle health.

Muscle cross-sectional area and density can be assessed through CT imaging. Chest and

abdominal CT images are frequently acquired in hospital settings for clinical diagnoses and

these clinically acquired CT scans have been repurposed to investigate muscle cross-sectional

area, and muscle attenuation as a surrogate for density, at the level of the lumbar vertebrae

without exposure to additional ionizing radiation [14–17]. While density can be inferred from

the X-ray attenuation or grey-scale value in the CT images, natively represented in Hounsfield

units (HU), these values are dependent on the X-ray energy, photon flux, object position

within the scanner bore, spatial resolution, beam hardening, and other artifacts [11,18–23].

This makes it challenging to reliably compare HU as a proxy for muscle density between differ-

ent scanners and scan protocols. A standard solution for bone mineral density (BMD) assess-

ment is to calibrate HU to bone analogous material density values using phantoms made with

materials of known dipotassium phosphate or calcium hydroxyapatite (HA) densities [24,25].

Previous research has used BMD phantoms to successfully quantify muscle and lipid composi-

tion with a semi-automatic segmentation method based on histograms and anatomical loca-

tion [23,26]. However, the use of BMD phantoms yield mineral density values in mg of

dipotassium phosphate or calcium hydroxyapatite per cm3 [27], whereas muscle is largely

composed of water. Muscle density values in g/cm3 of water could be more intuitively inter-

preted. However, water-based reference phantoms are not widely available due to challenges

in mimicking soft tissues with shelf-s\ materials and absence of consensus of appropriate mate-

rials [28].

As an alternative to phantoms, internal density calibration techniques have been developed

to convert HU to BMD values [29–32]. These methods have been developed for opportunistic

BMD analysis because phantoms are not typically included in clinical CT scans or used for
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clinical diagnoses. Internal density calibration involves selecting regions of interest (ROIs) of

tissues (e.g., bone, blood, muscle, adipose, air) as reference materials. Some methods calibrate

HU values of these ROIs to previously determined tissue-equivalent reference values [29–31].

However, a potentially more robust method involves estimating the effective scan energy using

mass attenuation values of materials within the scan and then deriving the relationship

between HU and material density [32]. Unfortunately, it is unknown whether BMD internal

calibration methods are applicable to muscle density analysis since muscle attenuates X-rays to

a lesser extent than bone. To date, there has yet to be an internal calibration method developed

or validated for quantitative muscle density analysis.

The objective of this study was to design and validate an internal density calibration tech-

nique to directly measure muscle density from CT images. The basis of this internal calibration

method relies upon a previously validated method for BMD [32]. Using bovine tissue samples,

we sought to test the optimal combination of ROIs for muscle density analysis using the inter-

nal calibration method, as well as to compare the internal calibration method with the refer-

ence phantom calibration method. We hypothesized that our internal calibration method

would be comparable to the reference phantom calibration method and would be a more

robust measure of muscle density than native HU.

Methodology

Imaging

We used a standardized scan setup composed of muscle, cortical bone, adipose, blood, and a

reference phantom, as shown in Fig 1. We scanned 10 bovine muscle samples which were

acquired, stored, and scanned under the same conditions. The sample size was selected to

Fig 1. Computed tomography (CT) image showing the reconstructed field of view (36 cm diameter). Internal calibration regions of

interest (ROIs) (air, muscle, adipose, bone, blood) were selected in the axial plane. The scan included various tissue samples, a custom

sucrose water phantom, and two traditional bone phantoms (Bone Density Calibration Phantom BDC-6, QRM GmbH; Model 3 CT

Calibration Phantom, Mindways Inc.). The (hydroxyapatite) HA bone phantom was used to validate the sucrose water phantom (S1 Fig).

A) Axial slice including cortical bone, blood, one of the ten muscle samples, and the sucrose water phantom. B) Axial slice including

adipose, air, and two of the ten muscle samples. Note that the ten muscle samples were all included in the scan, although they are not all

visible in the slices shown.

https://doi.org/10.1371/journal.pone.0273203.g001
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provide a range of fat infiltration. Bovine bone, bovine adipose, and swine blood were included

in these scans and used as ROIs for the internal calibration method. Swine blood was used

instead of bovine blood as it is more readily available as a fresh sample. As muscle density

phantoms are not widely available, we included a custom sucrose water phantom consisting of

five vials of sucrose water concentrations with densities of 1.00g/ml, 1.01g/ml, 1.04g/ml, 1.06g/

ml, and 1.11g/ml. We scanned the muscle samples, ROI samples, and phantoms (sucrose

water phantom; HA Bone Density Calibration Phantom BDC-6, QRM GmbH; Dipotassium

Phosphate Model 3 CT Calibration Phantom, Mindways Inc.) using a clinical CT scanner (GE

Revolution HD GSI, GE Healthcare, Chicago, USA). The HA bone phantom was used for

comparison with BMD calibration [23]. We used two different scan protocols (abdominal kid-

ney, urine, bladder (KUB) thins protocol and chest mediastinum protocol) and five different

object positions (right, left, top, bottom, centre, as shown in Fig 2) to test the reliability of the

internal calibration method across different scan conditions. These scan protocols were

selected because they are commonly used in the clinical setting [33,34]. The KUB thins proto-

col was performed with 120 kVp, 99 mAs, 1.250 mm slice thickness, 1.37 mm spiral pitch fac-

tor, and was reconstructed with a standard convolution kernel. The chest mediastinum

protocol was performed with 120 kVp, 90 mAs, 0.625 mm slice thickness, and 0.98 mm spiral

pitch factor, and was reconstructed with a standard convolution kernel. All scans were

acquired on the same day to reduce the effect of CT scanner fluctuation over time. The CT

scanner undergoes quality control daily. Ethics approval was not required for this study as

only commercial meat products were used and there was no contact with live animals.

Fig 2. Muscle sample positioning. The muscle samples were scanned at five different positions within the scanner

bore (70 cm diameter): left, right, top, bottom, and centre. The position of the samples was altered by adjusting the

table positioning. Note that the scan setup was approximately 19 cm in height and could therefore be moved into

different positions by adjusting table positioning.

https://doi.org/10.1371/journal.pone.0273203.g002
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Calibration

We used the internal calibration approach previously described [32] (https://github.com/

Bonelab/Ogo) as a basis and developed an approach specific for muscle. This approach relates

the mass attenuation coefficients attained from the National Institute of Standards and Tech-

nology (www.nist.gov) and the measured HU of internal ROIs (blood, bone, air, fat, and mus-

cle) to estimate the effective scan energy [32]. The relationship between HU and water

equivalent density is then computed through an optimization process that estimates the effec-

tive scan energy by iteratively relating the mass attenuation coefficients and HU values for

each selected ROI [32]. We optimized the internal calibration method for muscle density anal-

ysis by determining the effects of different combinations of material ROI selection on the out-

put muscle density values compared with those derived from the reference sucrose water

phantom calibration method. We selected ROIs for air, blood, muscle, adipose and cortical

bone regions throughout the scan in the axial plane (Fig 1). We compared internal calibration

based on 1) all material ROIs (air, adipose, blood, muscle, bone) as per the method described

in Michalski et al. [32]; 2) air, adipose, blood, muscle; 3) air, adipose, blood; 4) air, blood; and

5) air, adipose. We added the output of a water-equivalent density image for muscle density

analysis, as the original image processing pipeline only included a dipotassium phosphate-

equivalent density image output. The 10 scans (2 protocols, 5 positions) were each individually

calibrated using the internal calibration method based on the material ROI combinations

described above, the reference sucrose water phantom, and the HA bone phantom. For the ref-

erence sucrose water phantom calibration method, observed HU values were rescaled with the

linear equation derived from the calculated densities of the sucrose vials, based on the known

concentration of sucrose. For the HA bone phantom calibration method, the linear equation

was derived from the density of the HA rods. All calibration methods involved manually seg-

menting the bovine muscle samples in ITK-SNAP V3.8.0 [22], a medical image visualization

and analysis software, and converting the observed HU into muscle density values (g/cm3 or

mgHA/cm3). To accurately assess the reliability of the calibration methods across scan condi-

tions, we used image registration (aligned the images over top of one another) to ensure that

muscle density was measured at the same ROI location for all 10 scans. Image registration was

performed using an initial alignment of images through landmark based rigid 3D transforma-

tion, followed by a final alignment based on optimizing mutual information between images

[35]. All image analysis was conducted using ITK-SNAP V3.8.0 [22] and Python 3.6.10 and

3.8.5 with numpy 1.20.3 [36], VTK 9.0.1 [37], and SimpleITK 2.0.2 [38] libraries.

Statistical analysis

Statistical analyses were performed using R (version 4.1.0) and RStudio (Version 1.4.1106).

Linear regression was performed to compare muscle density values derived from the internal

calibration method with those derived from the reference sucrose water phantom and the HA

bone phantom method. Bland-Altman analysis was conducted to estimate the mean bias asso-

ciated with the internal calibration method when compared with the reference sucrose water

phantom method and to assess the performance of the internal calibration method when dif-

ferent ROI combinations were used. Linear regression was performed to assess any association

between bias and the magnitude of density. Lastly, the coefficient of variance (CV) values for

muscle density of each sample across the 10 scan conditions was calculated. The mean CV for

the internal calibration method, the reference sucrose water phantom calibration method, and

native HU were compared using within-subjects ANOVA and post-hoc analysis with Bonfer-

roni. Statistical significance was set to p< 0.05.

PLOS ONE Internal calibration muscle density analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0273203 October 17, 2022 5 / 13

https://github.com/Bonelab/Ogo
https://github.com/Bonelab/Ogo
http://www.nist.gov/
https://doi.org/10.1371/journal.pone.0273203


Results

The mean muscle density and standard deviation for the 10 samples was 1.0636 (±0.0086) g/

cm3 as derived from the internal calibration method (air and adipose ROIs) and 1.0694

(±0.0086) g/cm3 as derived from the reference sucrose phantom calibration method, acquired

from the chest scan positioned in the centre of the scanner bore. The mean HU and standard

deviation for the 10 samples was 57.1077 (±8.5507), acquired from the chest scan positioned in

the centre of the scanner bore. We found that the exclusion of bone as a material ROI in the

internal calibration process dramatically reduced the error of the derived muscle density values

when compared to the reference sucrose water phantom calibration derived muscle density

values (bone included: mean error = -0.055, 95% Limits of Agreement (95%LOA) = 0.0020;

bone excluded: mean error = -0.004, 95%LOA = 0.0001) (Fig 3). After excluding bone, the

exclusion of muscle (mean error = -0.004, 95% LOA: 0.0001), and then blood (mean error =

-0.006, 95% LOA: 0.0001) or adipose (mean error -0.004, 95% LOA: 0.0001) ROIs had a lim-

ited effect on the derived muscle density values. We completed the remainder of the analysis

using two ROIs, adipose and air, which were easily identifiable and produced accurate muscle

density values with the internal calibration method as described above.

We found that the muscle density values derived from the internal and reference sucrose

water phantom calibration methods were highly correlated (R2 > 0.99) (Fig 4). The internal

muscle density calibration method slightly underestimated muscle density, but the error was

low when compared to the reference sucrose water phantom method (< 0.006 g/cm3) with

only a 0.54% difference between the muscle density values derived from the two methods (Fig

3). We found that with increasing muscle density, the error associated with the internal cali-

bration method diminished linearly (y-intercept = -0.01, slope = 0.006).

The mean CV for density of muscle samples across different scan protocols and positioning

was significantly different across the internal calibration method, sucrose water phantom

method, and native HU (p< 0.001) (Fig 5). The mean CV for density of the muscle samples

was significantly greater the native HU (mean CV = 6.52%) when 1) compared to the internal

muscle density calibration method (mean CV = 0.33%) (p< 0.001) and 2) compared to the

Fig 3. Bland-Altman plots comparing calibration methods. Bland-Altman plots comparing the differences between

internal derived muscle density values and reference sucrose water phantom derived muscle density values (n = 10

muscle samples). Different combinations of regions of interest (ROIs) for the internal calibration method are

represented in different colours. The mean differences are shown as solid lines and 95% limits of agreement are shown

as dashed lines. A) Bland-Altman plot with all tested internal calibration ROI combinations. B) Bland-Altman plot

with two internal calibration ROI combinations (air, adipose; air, blood).

https://doi.org/10.1371/journal.pone.0273203.g003
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reference sucrose water phantom calibration method (mean CV = 0.52%) (p< 0.001). There

was no difference between the mean CV for density of the muscle samples derived from the

internal calibration method and the reference sucrose water phantom calibration method

(p = 1).

The HA bone phantom derived muscle density values were highly correlated with those

derived from the reference sucrose water phantom calibration method (R2 > 0.99) and the

internal calibration method (R2 > 0.99) (S1 Fig). However, the absolute values differed because

the reference sucrose water phantom and internal calibration methods derive muscle density

in g/cm3, whereas the HA bone phantom derives muscle density values in mgHA/cm3

(S2 Fig).

Discussion

We implemented and validated a previously established CT internal calibration method that

estimates scan effective energy for muscle density analysis [32]. The results support our

hypothesis that the internal muscle density calibration method is comparable to the reference

sucrose water phantom calibration method. We also found that, as hypothesized, the internal

Fig 4. Regression plot comparing calibration methods. Regression plot comparing the muscle density values (n = 10

muscle samples) derived from the internal calibration method and the reference sucrose water phantom method. Solid

line indicates regression line, dashed line indicates the line of unity.

https://doi.org/10.1371/journal.pone.0273203.g004
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calibration derived muscle density values were more robust than HU as demonstrated across 5

scan positions and 2 scan protocols.

We demonstrated that using air and adipose ROIs for the internal calibration method were

sufficient to yield accurate muscle density values when compared with the reference sucrose

water phantom calibration method. When bone was excluded as an ROI, there was a large

reduction in error associated with the internal calibration method. This error may have been

associated with tissue inhomogeneity within the bone ROI, paired with the high density of

bone relative to muscle. Inhomogeneity in cortical bone could affect the calculated slope of the

linear equation and result in drastic differences in perceived muscle values. Besides bone, we

excluded muscle as an internal calibration ROI to avoid bias in the output muscle density val-

ues. Blood was excluded as an ROI to simplify the methods and because the vessels are rela-

tively small, which makes it challenging to select regions composed only of blood. However,

blood could be used to substitute the adipose ROI if necessary. Our tests revealed that the

removal of muscle and blood ROIs did not greatly impact our measured muscle density values.

While optimal ROI selection may differ for BMD internal calibration, Lee et al. similarly

Fig 5. Boxplot comparing coefficient of variation (CV) values. Coefficient of variation (CV) for muscle density

(n = 10 muscle samples) values across different two scan protocols and five scan positions. The left boxplot represents

native Hounsfield units (HU). Muscle density values were derived from the reference sucrose water phantom

calibration method (middle boxplot) and the internal calibration method (right boxplot). Each box extends from the

25th percentile to the 75th percentile of the distribution of the respective values. The horizontal lines within each

box denote median values and the vertical lines outside the box denote the minimum and maximum values.

https://doi.org/10.1371/journal.pone.0273203.g005
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found that air and adipose (or blood) internal calibration ROIs produced precise BMD values

[31]. This differs from other evaluations which used air, adipose, blood, skeletal muscle [39],

and bone [32]. However, Bartenschlager et al. recently quantified accuracy error associated

with different ROIs and ultimately suggested the use of air and subcutaneous adipose tissue or

blood [40].

Consistent with BMD internal calibration studies, we found our internal muscle density

calibration method resulted in muscle density values that were highly correlated with those

produced by the phantom calibration method (in our study, the sucrose water phantom and

the HA bone phantom) [31,32,41]. While our internal muscle density calibration method

underestimated sucrose water phantom derived muscle density, the error was small (< 1%)

compared to clinical studies that have observed 10–40% differences in muscle attenuation

between healthy controls and patients with hip osteoarthritis, fractures, or aortic disease

[3,42,43]. We found that our internal calibration method was more accurate, when compared

to the sucrose water phantom, with increasing density values. Hence, this method may be

more accurate when applied to denser muscle. Nonetheless, our internal calibration method

was significantly less sensitive to scan protocol and object positioning within the scanner bore

when compared to native HU, which is how CT derived muscle density values are usually

reported in the literature [7–9,14–17,44,45]. Similarly, other studies have noted inconsistencies

in absolute HU values across scan protocols and positioning [11,18–23]. Therefore, rather

than reporting native HU, we recommend an internal calibration procedure to convert to g/

cm3.

There are important limitations associated with our study. Notably, ex vivo bovine and

swine tissue samples were scanned instead of human participants, which may have different

tissue densities that influenced the internal calibration derived muscle density values. These

samples do not account for differences in patient anatomy (i.e., patient size) which have been

noted to impact resulting HU values [46–48]. However, the internal calibration approach uti-

lized here should be less dependent on patient characteristics as reference values are taken

from the patient themselves, which should account for patient-specific alterations in x-ray

attenuation. Further, we utilized a sucrose water phantom due to the lack of standard phan-

toms for muscle density analysis. While we did not test stability of the phantom, the primary

purpose of the phantom was for comparison with internal calibration rather than continued

use of a phantom. For this study, we examined muscle density values for the same muscle sam-

ple across different scan positions and protocols. However, we did not examine derived muscle

density values across different scanners or scan manufacturers, limiting the generalizability of

our findings on internal calibration reliability.

Conclusions

We developed a new internal calibration method to measure muscle density from CT images

that does not require calibration phantoms and is robust across scan protocols and positioning

within the scanner bore. This internal calibration method will enable the secondary analysis of

clinically acquired CT images to assess muscle density, a quantitative assessment of muscle

quality, using an inexpensive method without exposure to additional ionizing radiation.
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S1 Fig. Regression plot comparing calibration methods. Regression plots comparing the
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values are represented in mgHA/cm3.
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