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ABSTRACT
Background. The hypoxia-inducible factor-1 (HIF-1) signaling pathway is an impor-
tant topic in high-altitude medicine. Network analysis is a novel method for integrating
information on different aspects and levels of biological networks. However, this
method has not been used in research on the HIF-1 signaling pathway network. To
introduce this method into HIF-1-related research fields and verify its feasibility and
effectiveness, we used a network analytical method to explore the structural attributes
of the HIF-1 signaling pathway network.
Methods. First, we analyzed the overall network of the HIF-1 signaling pathway using
information retrieved from the Kyoto Encyclopedia of Genes and Genomes (KEGG).
We performed topology analysis, centrality analysis, and subgroup analysis of the
network. Then, we analyzed the core network based on the overall network analysis.
We analyzed the properties of the topology, the bow-tie structure, and the structural
complexity of the core network.
Results. We obtained topological structure diagrams and quantitative indicators of
the overall and core networks of the HIF-1 signaling pathway. For the structure
diagrams, we generated topology diagrams of the network and the bow-tie structure
of the core network. As quantitative indicators, we identified topology, centrality,
subgroups, the bow-tie structure, and structural complexity. The topology indicators
were the number of nodes, the number of lines, the network diameter, and the
network density. The centrality indicators were the degree, closeness, and betweenness.
The cohesive subgroup indicator was the components of the network. The bow-tie
structure indicators included the core, input, and tendril-like structures. The structural
complexity indicators included a power-law fitting model and its scale parameter.
Conclusions. The core network could be extracted based on the subgroup analysis
of the overall network of the HIF-1 signaling pathway. The critical elements of the
network could be identified in the centrality analysis. The results of the study show
the feasibility and effectiveness of the network analytical method used to explore the
network properties of the HIF-1 signaling pathway and provide support for further
research.
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BACKGROUND
Hypoxia affects the work abilities and health of soldiers at high altitudes (Truesdell &
Wilson, 2006; Qiang et al., 2014). Research on the hypoxia response network (HRN) is a
necessary field of high-altitude medicine that aims to promote the health and work abilities
of soldiers at high altitudes. The hypoxia-inducible factor-1 (HIF-1) signaling pathway is
one of the crucial components of the HRN (Harris, 2002; Hockel & Vaupel, 2001). Most
studies on the HRN have been carried out based on classical biomedical methods, and these
studies have made remarkable achievements. With the development of systems biology,
researchers have tried to explore the HRN from a systematic view to compensate for the
shortcomings of traditional research methods. Kohn et al. (2004) proposed a theoretical
HRNmodel based on ordinary differential equation behavior. They analyzed the structural
composition of HRN in detail with the aim of identifying the core subsystem responsible
for HRN conversion. The network has been decomposed into multiple primary paths
using the extreme path analysis method (Palsson, 2006). It can be well matched with the
consensus of existing research, showing that the path switching or branching effect may
be the cause of the intense response to the oxygen concentration. Heiner & Sriram (2010)
subsequently constructed the general Petri net structural model of the HRN and analyzed
the relative modules and properties of the network algorithmically. Additionally, network
analysis methods and tools have been used to analyze biological networks, providing a novel
perspective for studying traditional biological problems (Barabasi & Oltvai, 2004). Ding
et al. (2009) studied the structural and functional properties of the giant strong component
of the B. thuringiensis metabolic network. Zhang & Zhang (2019) performed a protein-
protein interaction network analysis of insecticide resistance molecular mechanisms. Ma
& Zeng (2003) studied the connectivity of the metabolic networks of 65 biological species,
which did not include the core network of HIF-1 signaling pathways. They found that these
biological metabolic networks are similar to the Internet in their macrostructure, which
also presents a bow-tie structure (Ma & Zeng, 2003). Network analysis methods focus on
the properties of the connections of things and investigate these connections as a whole
(Boccaletti et al., 2006). However, this method has not been used to analyze the HRN.

This study describes an analytical method for the hypoxia network involving the analysis
of the quantitative network indicators of the HIF-1 signaling pathway from the perspective
of complex networks. It aims to explore the structural properties of this network and verify
the feasibility of the network analytical method. We analyzed the structural attributes of
this network after constructing it from the corresponding biomedical database and then
checked the complex properties of the network.

METHODS
Datasets
This study focused on the structure of the hypoxia-inducible factor-1 (HIF-1) (Semenza,
1999; Pugh & Ratcliffe, 2003) signaling pathway of the HRN and retrieved related
information from the entries in the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database (Kanehisa & Goto, 2000). KEGG provides data resources related to the high-level
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functions and operations of cells, organs, ecosystems, and other life systems based on
molecular-level information, especially information used for parsing molecular datasets
generated by gene sequencing and other high-throughput experimental techniques
(Kanehisa et al., 2017). There are two essential elements ofKEGGdiscussed in this paper: the
KEGG PATHWAY and KEGG ORTHOLOGY databases. The KEGG PATHWAY database
is a collection of knowledge-based hand-drawn maps of pathways based on molecular
interaction networks covering metabolic, genetic information processing, environmental
information processing, cellular processes, biological systems, human diseases, and drug
discovery. KEGG PATHWAY provides a concrete explanation of the meaning of the
markers of the HIF-1 signaling pathway. The KEGG ORTHOLOGY (KO) database is a
set of ortholog assemblages manually defined to denote the nodes (boxes) in the KEGG
PATHWAY maps. The distinctive identifier that determines each KO entry is referred to
as the K number (‘K’ followed by a five-digit number).

We analyzed the data in the KEGG Markup Language (KGML) file. These data contain
information that corresponds to the HIF-1 signaling pathway in KEGG PATHWAY.
The KGML, which enables the automated mapping of KEGG pathways, is an extensible
markup language (XML) representation of the KEGG pathway. It is conducive to the
computer-aided analysis and model building of gene/protein and chemical networks.
There are two types of graphic elements in the KGML-based metabolic pathways. One is a
rectangle, which represents an enzyme, connected by a ‘‘relationship.’’ The other is a circle,
which represents a compound, connected by a ‘‘reaction.’’ In non-metabolic pathways,
there are only rectangular elements, which indicates that there are only proteins joined by
‘‘relationships’’ in these pathways. The HIF-1 signaling pathway addressed in this study
belongs to the metabolic pathways.

Overall analytical methods
The methods of this study are based on network analysis. The network of the HIF-1
signaling pathway is a metabolic network. It is a directed unprivileged network; i.e., the
direction of a line between two nodes needs to be considered rather than the weight in the
network. The corresponding analytical methods applied in this study are as follows: Process
the text in the KGML file of the HIF-1 signaling pathway. Refine the network topology
information and transform it into a network file that is identifiable for network analysis.
Analyze the network indicators and draw the network topology maps. Analyze and test the
structural complexity of the network. The generation of the network file is based on regular
expression using the text-editing software Notepad++ and functions using the spreadsheet
software Excel. The process of network analysis is based on network analysis models using
Pajek. These methods and tools are comprehensively utilized to realize the qualitative and
quantitative integration analysis of the network structural properties of the HIF-1 signaling
pathway.

Biological network analysis tools are used to identify, analyze, visualize, or simulate nodes
(reactants) and edges (reactions) from various input data types, including mathematical
models of biological networks. There are four commonly used tools, namely Gephi,
Networkx, IGraph, and Pajek. All of them are free for use, and they can handle large
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graph size. Gephi and Pajek are GUI based network analysis tools, whereas Networkx and
IGraph are used in a programming language. We have chosen Pajek as the analysis tool
based on the following reasons: First, Pajek supports a multi-relational network graph.
There are different reactants in the HIF-1 signaling pathway, such as orthologous enzymes,
compounds, and groups. And the kind of their relationships is diverse, including activation
reactions, expression reactions, and inhibition reactions. Therefore, the network of the
HIF-1 signaling pathway is a multi-relational network which can be analyzed by Pajek.
Second, Pajek support partition feature enables the identification and extraction of the
HIF-1 signaling pathway core network. Third, Pajek supports more network graph layout
algorithms, and its algorithms for analyzing the corresponding network features are better.
Forth, Pajek is a standalone software that is easy to learn and easy to use (Akhtar, 2014).

Topology
The network topology indicators include the node number, the line number, the line
value, the network density, and the network diameter. The node is an entity that forms the
network. The lines between the nodes represent the connections between network entities.
The line value is the weight of a line, which indicates the strength of the relationship
between network entities. The diameter of the network is the longest path of the shortest
distance between pairs of nodes in the network, which is the number of maximum steps
required to connect any pair of nodes in the network. The network density is equal to the
numeric ratio of the actual connections to the possible connections. It indicates the degree
of closeness of the relationships between the nodes in the network.

Centrality
Centrality is an essential concept of network analysis. A highly centralized network supports
the convenient transmission of information. The central node has a critical influence on
the transmission of information in the network. The metrics for centrality used in this
paper include the centrality of the degree, the closeness, and the betweenness.

Degree centrality
The degree centrality of a node is defined as the number of connections of a node. It
provides the most intuitive conceptual form of centrality indicator. It can be classified
as the overall, input, or output degree centrality. These values correspond to the total
number of connections, the number of input connections, and the number of output
connections of the node, respectively. The regular formula of the degree centrality is as
follows (Wasserman & Faust, 1994):

DCi=Dini+Douti (1)

where DCi represents the overall degree, Dini represents the input degree, and Douti
represents the output degree.

Closeness centrality
A node’s closeness centrality is the value obtained by dividing the number of all other
nodes by the sum of the geodesic distance between the node and all other nodes. The

Li et al. (2021), PeerJ, DOI 10.7717/peerj.10985 4/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.10985


geodesic distance is the number of connections included in the shortest path between the
two nodes. The farther away a node is from other nodes, the lower the closeness centrality
of the node is, and vice versa. Similar to the degree centrality, the closeness centrality of
the nodes involves the overall closeness centrality, the input closeness centrality, and the
output closeness centrality. The closeness centrality of a node reflects the nearness of a
node to other nodes. The closer a node is to other nodes, the easier it is for information
to reach the node, and the higher its closeness centrality is. The regular formula of the
closeness centrality is as follows (Wasserman & Faust, 1994):

CCi=
N −1∑N
j=1dij

(2)

where i 6= j, N is the number of nodes, and dij is the shortest pathway between nodes i and
j.

Betweenness centrality
A node’s betweenness centrality is the ratio of the shortest pathways passing through this
node to all of the shortest pathways between any two nodes in the network. The degree
centrality and closeness centrality are based on the reachability of a node in the network.
In view of betweenness centrality, if this indicator of a node is high, its importance as an
intermediary node in the network is higher, and its bridging ability is active.

The normal formula for the betweenness centrality is as follows (Wasserman & Faust,
1994):

BCi=
2×

∑
j≤k gjk(i)/gjk

(N −1)(N −2)
(3)

where i 6= j 6= k, gjk represents the number of the shortest pathways between nodes j and k;
gjk(i) represents the number of the shortest pathways containing i, and N represents the
number of nodes.

Cohesive subgroups
Some entities in the network relate to each other so tightly that they form a small local
group known as a cohesive subgroup. The number of cohesive subgroups in the network
as well as the local and global associations between subgroups are analyzed via cohesive
subgroup analysis. This analysis includes component analysis, K-core analysis, and island
analysis based on different analytical indicators and perspectives (De Nooy, Mrvar &
Batagelj, 2018). The component analysis is mainly applied in this study. The component
is an essential indicator of the cohesive subgroup analysis, which refers to the largest
connected subnetwork in the network; i.e., there is a way to reach other nodes between any
nodes in the subnetwork. Biometabolism networks often contain components that are not
connected, and the most significant component is often the one that needs attention.

Bow-tie structure
The bow-tie property is an essential component of these properties. Broder et al. (2000)
revealed that there is a bow-tie structure in the topology structure of the Internet at the
macro level.
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Figure 1 The bow-tie structure of the network. This structure is composed of the input section, the core
section of strong connection, the output section, the tendril section, the pipeline section, and the compo-
nent with no connection.

Full-size DOI: 10.7717/peerj.10985/fig-1

Figure 1 shows the bow-tie structure. The nodes of the input section can reach the
nodes of the core section of a strong connection, while the reverse is not true. The nodes
of the core section of the strong connection can reach each other nodes. The nodes of the
core section of the strong connection can reach the nodes of the output section, while the
reverse is not true. The nodes of the pipe section can reach the nodes of the output section
via the input section. The tendril section connects with the input section and the output
section. The nodes of the input section can reach the nodes in the same section or the nodes
of the output section. There are no connections between the nodes of the non-connected
component and other sections.

Ma & Zeng (2003) divided the macrostructure of the biological metabolic network into
four parts: the giant strong component (GSC), substrate subset (S), product subset (P), and
isolated subset (IS). These components correspond to the strongly connected core, input,
output, and disconnected components of the Internet bow-tie structure, respectively,
while the exact opposite situation is not observed. Any two metabolites within GSC can be
generated from each other by a series of reactions. Any metabolite in S can be converted
into the corresponding metabolite in GSC, but not vice versa. Any metabolite in P can be
transformed via a series of the corresponding metabolites in GSC, while the exact opposite
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situation is not observed. The metabolites in IS cannot be converted from those in GSC,
nor can they be converted into the corresponding metabolites in GSC.

Structural complexity
Qian et al. provided a strict definition of complex networks (Xuesen, Jingyuan & Ruwei,
1993). A network with some or all of the following characteristics is known as a complex
network. These characteristics are self-organization, self-similarity, attractor, small world,
and scale-free. We start with a scale-free perspective to verify the sophisticated attributes of
the network. The scale-free property refers to the invariance of the network’s scale, meaning
that the degree of the network nodes obeys the law of a power exponential distribution
(i.e., the power-law distribution). It is also known as the Pareto distribution rate or the
Zipf rate. This distribution law describes the distribution characteristics of the degree of
network nodes. A small number of nodes in the network tend to present a large number
of connections, but the number of connections of most nodes is very limited. This paper
uses the Pareto distribution rate:

Pr [X ≥ x] ∼ x−a (4)

where x is the probability corresponding to the actual measurement scale of the network,
and a is the scale parameter of the power rate distribution.

The law of the degree distribution of the network nodes needs to be fitted to the power
exponential distribution law to verify this characteristic of the core network of the HIF-1
signaling pathway. That is, the fitting value, â, of the scale parameter, a, is obtained. Then,
the characteristic is judged by the fitting effect.

The power-law fitting of the degree distribution
The general method of power-law fitting is to use the least-squares linear fitting based
on double-logarithmic coordinates and to use the R2 test to measure the fitting effect.
However, Goldstein et al. believe that the scale result obtained by this method shows a
significant error in relation to the corresponding value of the actual measurement network
scale (Goldstein, Morris & Yen, 2004). Therefore, Clauset and Barabási et al. proposed a
maximum likelihood estimation method for power rate fitting and tested the fitting results
using KS statistics (Barabási, Albert & Jeong, 1999; Clauset, Shalizi & Newman, 2009). At
present, no research shows that all the data corresponding to the actual measurement scale
of the studied network obey the power-law distribution, but there is a critical value. The
data corresponding to these scales obey the power-law distribution only when the value
corresponding to the actual measurement scale, x , is higher than xmin. This study used
Clause’s universal method, applicable to both discrete and continuous data, to estimate
xmin. For actual network-scale data, the following formula is used to estimate the scale
parameter, â, of the power-law distribution:

â' 1+n

[ n∑
i=1

ln
xi

xmin−0.5

]−1
(5)
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where xmin can be accurately obtained by calculating the maximum difference, L, between
the actual measurement-scale data and the corresponding data of the fitted model:

L= max
x≥min
|S(x)−P(x)| (6)

where S(x) is the corresponding data of the actual measurement, P(x) is the corresponding
data of the fitted power-law distributionmodel, and xmin, whichminimizes L, is the optimal
value.

Similarity test
This study used the K-S (Kolmogorov-Smirnov) method to test the ‘‘distance’’ L between
the actual measurement data and the fitted power-law distribution model. The model
constructed from actual measurement data is denoted asM . This model produces n sets of
data. There is a set of data whose ‘‘distance’’, L, from the corresponding fitted model,M , is
greater than the ‘‘distance’’, L, between the actual measured data and the fitted model, M .
The number of such datasets is m. m

n is represented as p and is known as the p value. If the
p value is large (close to 1), it can be considered that the statistical fluctuations alone cause
the difference between the actual measurement data and the fitted model. If the p value is
small, there is room for adjustment in the rationality of the fitted model. If p≤ 0.1, it can
be considered that the actual measured data do not obey the power-law distribution (Ping,
2014).

RESULTS
Topology analysis
Figure 2 shows the overall topology of the HIF-1 signaling pathway network based on
the KGML file from KEGG. Quantitative analysis of the network indicators is performed,
and the results are as follows: The numbers of nodes and lines are 85 and 61, respectively.
The network has a ring and ringless density of 0.00844291 and 0.00854342, respectively.
The average node degree (i.e., the average number of connections) is 1.43529412. The
network diameter is 7, and the average distance between the nodes is 2.26761. There are
59 orthologous enzymes, 16 compounds, eight pathways, and two unknown groups in this
metabolic network that have no references in KEGG. The numbers of activation reactions,
expression reactions, and inhibition reactions are 29, 26, and 6, respectively.

The core network of the HIF-1 signaling pathway is identified based on cohesive
subgroup analysis. The network is extracted for the convenience of further study, as shown
in Fig. 3. The quantitative indicators of the network are as follows: the number of nodes
is 34, and the number of lines is 34. The network has a ring density of 0.02941176 and a
ringless density of 0.03030303. The average node degree is 2. The network diameter is 7, and
the average distance between the nodes is 2.57018. There are 24 orthologous enzymes and
10 compounds in this metabolic network. The number of unknown groups that have no
references in KEGG is 1; the number of activation reactions is 27; the number of expression
reactions is 2; and the number of inhibition reactions is 5.
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Figure 2 The subnet distributionmap of the overall network of the HIF-1 signaling pathway. The
numbers beside a node identifies the node. The color of the node and the number in square brackets iden-
tify the subnet to which the node belongs. The square nodes, round nodes, and elliptical nodes represent
the orthologous enzymes, compounds, and pathways involved in metabolism, respectively. An arrow rep-
resents a metabolic association relationship. The shaft of the arrow connects the metabolic reactant, and
the arrowhead connects the metabolites. The solid black line indicates the ‘‘activated’’ metabolic behavior,
while the solid blue line indicates the ‘‘expression’’ metabolic behavior. Moreover, the red dashed line in-
dicates ‘‘suppressive’’ metabolic behavior.

Full-size DOI: 10.7717/peerj.10985/fig-2

Centrality analysis
Degree centrality
The degree centrality of the overall network of the HIF-1 signaling pathway is analyzed
and includes the overall centrality, the input centrality, and the output centrality. The top
10 nodes are listed in Table 1.

Four nodes appeared in the top 10 list in terms of the three-degree centrality indicators,
numbered 20, 60, 61 and 78. They were serine/threonine-protein kinase mTOR(node 20),
toll-like receptor 4(node 60), transcription factor p65, nuclear factor NF-kappa-B p105
subunit(node 61), and mitogen-activated protein kinase 1/3(node 78), respectively.

Closeness centrality
The analysis of the closeness centrality of the overall network of theHIF-1 signaling pathway
is performed to calculate the total closeness centrality, the input closeness centrality, and
the output closeness centrality. Table 2 lists the top 10 nodes in terms of the closeness
centrality. There are two nodes with both the overall and the input closeness centrality
ranked in the top 10, numbered 29 and 82. They are pyruvate dehydrogenase kinase
isoform 1 and apoptosis regulator Bcl-2, respectively. The number of the node with the
overall and output closeness centrality in the top 10 is 85, which is an undefined complex of
gene products in KEGG. The node with the input closeness centrality and output closeness
centrality ranked in the top 10 is numbered 20, which is serine/threonine-protein kinase
mTOR.
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Figure 3 The core network bow-tie structure of the HIF-1 signaling pathway. According to the analy-
sis results, the bow-tie structure of the core network of the HIF-1 signaling pathway includes three types of
components. The first is a strongly connected core, corresponding to the yellow node, ko: K08268, in the
figure, and the corresponding reactant in the KEGG database is HIF-1 α. The second is the input compo-
nents, including 20 green nodes, such as ko: K09592, corresponding to 20 reactants, such as PHD (EGLN,
HPH), in the KEGG database. The third is a tendril-like structure including 13 pink nodes, such as ko:
K04526, ko: K04357, and ko: K05459, which correspond to 13 reactants, such as GF (INS, EGF, IGF1), in
the KEGG database.

Full-size DOI: 10.7717/peerj.10985/fig-3

Table 1 Top 10 nodes of the overall network degree centrality of the HIF-1 signaling pathway.

Rank Overall degree centrality Input degree centrality Output degree centrality

Node
number

Value Node
number

Value Node
number

Value

1 85 24 6 6 85 24
2 6 7 10 4 24 2
3 10 4 61 2 23 2
4 20 4 20 2 20 2
5 61 3 74 2 78 2
6 24 3 60 1 17 2
7 23 3 80 1 63 1
8 78 3 29 1 62 1
9 17 3 78 1 61 1
10 60 2 58 1 60 1

Betweenness centrality
Table 3 shows the betweenness analysis results of the overall network of the HIF-1 signaling
pathway.

Two nodes appeared in the top 10 list in terms of the betweenness centrality and degree
centrality, numbered 20 and 78, which are serine/threonine-protein kinase mTOR and
mitogen-activated protein kinase 1/3, respectively.
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Table 2 Top 10 nodes of the overall network closeness degree centrality of the HIF-1 signaling path-
way.

Rank Overall closeness centrality Input closeness centrality Output closeness centrality

Node
number

Value Node
number

Value Node
number

Value

1 85 0.2941 10 0.1008 85 0.2941
2 29 0.1502 6 0.0647 17 0.0462
3 58 0.1502 74 0.051 24 0.0449
4 57 0.1502 20 0.0424 12 0.0398
5 82 0.1502 61 0.0392 23 0.0392
6 56 0.1502 76 0.037 25 0.0366
7 55 0.1502 77 0.0338 20 0.0353
8 54 0.1502 82 0.0235 78 0.0353
9 53 0.1502 60 0.0235 27 0.035
10 52 0.1502 29 0.0235 22 0.0324

Table 3 Top 10 nodes of the overall network betweenness degree centrality of the HIF-1 signaling
pathway.

Rank Node
number

Value

1 20 0.0036
2 24 0.0034
3 25 0.003
4 23 0.0026
5 27 0.0014
6 6 0.0014
7 19 0.0014
8 76 0.0014
9 17 0.0014
10 78 0.0013

Cohesive subgroup analysis
First, the distribution of the subset of the overall network is determined. Then, the core
network based on the distribution is determined. The minimum component size is 1; i.e.,
the smallest subnet can be an isolated node without connections. Table 4 shows the analysis
results.

The data in the table show that the overall network of the HIF-1 signaling pathway
includes 25 subnets. The minimum size of the subnet is 1; i.e., there is only one node in
the subnet. The maximum size is 34; i.e., 34 nodes are in the subnet.

We colored different subnets differently for the convenience of analysis in this paper.
The number of the subnet to which the node belongs is identified. The subnet distribution
map of the overall network of the HIF-1 signaling pathway is obtained based on Pajek,
as shown in Fig. 2. Figure 2 depicts the subnet distribution of the overall network of the

Li et al. (2021), PeerJ, DOI 10.7717/peerj.10985 11/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.10985


Table 4 The maximum connected subnet distribution of the overall network of the HIF-1 signaling
pathway.

Subnet number Number of nodes
included

Cumulative number
of nodes

Representative
network node
number

n % n %

1 1 1.1765 1 1.1765 1
2 1 1.1765 2 2.3529 2
3 1 1.1765 3 3.5294 3
4 1 1.1765 4 4.7059 4
5 25 29.4118 29 34.1176 5
6 34 40 63 74.1176 6
7 1 1.1765 64 75.2941 7
8 1 1.1765 65 76.4706 8
9 3 3.5294 68 80 9
10 1 1.1765 69 81.1765 13
11 1 1.1765 70 82.3529 14
12 1 1.1765 71 83.5294 15
13 1 1.1765 72 84.7059 16
14 1 1.1765 73 85.8824 21
15 1 1.1765 74 87.0588 11
16 1 1.1765 75 88.2353 30
17 1 1.1765 76 89.4118 31
18 1 1.1765 77 90.5882 32
19 1 1.1765 78 91.7647 33
20 1 1.1765 79 92.9412 34
21 2 2.3529 81 95.2941 35
22 1 1.1765 82 96.4706 37
23 1 1.1765 83 97.6471 59
24 1 1.1765 84 98.8235 65
25 1 1.1765 85 100 81

HIF-1 signaling pathway graphically. For example, ‘‘[6.00] 20’’ means that node 20 belongs
to the number 6 subnet.

Table 4 and Fig. 2 show that the number 6 subnet contains most nodes of all the subnets
and has meaningful reaction relationships. Therefore, subnet 6 is the core network of the
HIF-1 signaling pathway.

Bow-tie structure analysis
The Bow-tie analysis module of Pajek software was used to analyze the macrostructure of
the core network of the HIF-1 signaling pathway. Table 5 shows the distribution of the
structure.

We colored the different structures in the core network topology of the HIF-1 signaling
pathway, as shown in Fig. 3.
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Table 5 The quantity distribution of the nodes in the core network of the HIF-1 signaling pathway.

Structure category Frequency of
occurrence

Cumulative
frequency

Representative reactants

n % n %

The core section of strong
connection

1 2.9412 1 2.9412 hypoxia-inducible factor 1 alpha

The input section 20 58.8235 21 61.7647 hypoxia-inducible factor prolyl
hydroxylase

The tendril-like section 13 38.2353 34 100 Insulin, epidermal growth factor,
insulin-like growth factor 1

The specification of the vertices of the core component of the HIF-1 signaling pathway
is shown in Table 6.

Structural complexity analysis
We analyzed the distribution of network node degrees. That is, the scale of the core network
of the HIF-1 signaling pathway is measured. The degree distribution of the core network
of the HIF-1 signaling pathway is shown in Table 7.

Based on the above methods, the power-law fitting results of the core network scale of
the HIF-1 signaling pathway in this study are shown in Fig. 4.

Based on Clauset’s method, the power-law fitting model for the core network of the
HIF-1 signaling pathway can be calculated as follows:

Pr [X ≥ x] ∼ x−3.28 (7)

The scale parameter of the power-law distribution of the core network of the HIF-1
signaling pathway is 3.28, and xmin= 2. That is, the nodes with a degree of 2 or more in
the network obey the Pareto distribution rate. The similarity detection index of this fitted
model is much larger than 0.1 and closer to 1. This indicates that the fitting effect is good.

DISCUSSION
The overall network centrality analysis of the HIF-1 signaling pathway suggests that K07203
appears in the top 10 list in terms of the betweenness centrality, input closeness centrality,
and output closeness centrality. It corresponds to the mTOR enzyme, which is known as
an essential element in the field of HRN research. These results suggest that the mTOR
enzyme has a crucial influence on HIF-1 signaling, which conforms to the known findings,
indicating the effectiveness of the network analytical method.

With regard to the component analysis of the overall network of the HIF-1 signaling
pathway, the largest connected subnet of the overall network of theHIF-1 signaling pathway
is the number 6 subnet; i.e., the number 6 subnet is the core network of the HIF-1 signaling
pathway, which is consistent with the findings of current biomedical research.

With respect to the bow-tie structure analysis, the work scope of Ma et al. does not
involve the macrostructure analysis of the core network of the HIF-1 signaling pathway
(Ma & Zeng, 2003). Therefore, this study can be regarded as a supplement to their work
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Table 6 The biological meanings of the vertices in the core network of the HIF-1 signaling pathway.

Vertices Entry Name Definition(ko) or Comment(cpd) Classificationh of
Bow-tie structure

1 ko:K09592 EGLN, HPH hypoxia-inducible factor prolyl
hydroxylase [EC:1.14.11.29]

IN

2 ko:K08268 HIF1A hypoxia-inducible factor 1 alpha LSSC: Largest Strongly
Connected Compo-
nent

3 ko:K04526 INS insulin TENDRILS
3 ko:K04357 EGF epidermal growth factor TENDRILS
3 ko:K05459 IGF1 insulin-like growth factor 1 TENDRILS
4 ko:K04527 INSR, CD220 insulin receptor [EC:2.7.10.1] TENDRILS
4 ko:K04361 EGFR, ERBB1 epidermal growth factor receptor

[EC:2.7.10.1]
TENDRILS

4 ko:K05087 IGF1R, CD221 insulin-like growth factor 1 recep-
tor [EC:2.7.10.1]

TENDRILS

4 ko:K05083 ERBB2, HER2, CD340 receptor tyrosine-protein kinase
erbB-2 [EC:2.7.10.1]

TENDRILS

5 ko:K02649 PIK3R1_2_3 phosphoinositide-3-kinase regula-
tory subunit alpha/beta/delta

TENDRILS

5 ko:K00922 PIK3CA_B_D phosphatidylinositol-4,5-
bisphosphate 3-kinase catalytic
subunit alpha/beta/delta
[EC:2.7.1.153]

TENDRILS

6 ko:K04456 AKT RAC serine/threonine-protein ki-
nase [EC:2.7.11.1]

TENDRILS

7 ko:K07203 MTOR, FRAP, TOR serine/threonine-protein kinase
mTOR [EC:2.7.11.1]

TENDRILS

8 ko:K08008 NOX1, MOX1 NADPH oxidase 1 IN
9 ko:K01116 PLCG1 phosphatidylinositol phospholi-

pase C, gamma-1 [EC:3.1.4.11]
IN

9 ko:K05859 PLCG2 phosphatidylinositol phospholi-
pase C, gamma-2 [EC:3.1.4.11]

IN

10 ko:K02677 PRKCA classical protein kinase C alpha
type [EC:2.7.11.13]

IN

10 ko:K19662 PRKCB classical protein kinase C beta type
[EC:2.7.11.13]

IN

10 ko:K19663 PRKCG classical protein kinase C gamma
type [EC:2.7.11.13]

IN

11 cpd:C00165 Diacylglycerol;Diglyceride Generic compound in reaction hi-
erarchyIncluding 1,2-Diacyl-sn-
glycerol [CPD:C00641] and 2,3-
Diacyl-sn-glycerol

IN

12 cpd:C01245 D-myo-Inositol 1,4,5-
trisphosphate;1D-myo-Inositol
1,4,5-trisphosphate;Inositol
1,4,5-trisphosphate;Ins(1,4,5)P3

TENDRILS

(continued on next page)
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Table 6 (continued)

Vertices Entry Name Definition(ko) or Comment(cpd) Classificationh of
Bow-tie structure

13 cpd:C00704 Superoxide;O2.-;Superoxide
anion;O2-

IN

14 ko:K10160 TLR4, CD284 toll-like receptor 4 IN
15 ko:K04735 RELA transcription factor p65 IN
15 ko:K02580 NFKB1 nuclear factor NF-kappa-B p105

subunit
IN

16 cpd:C00338 Lipopolysaccharide;LPS IN
17 ko:K04687 IFNG interferon gamma IN
18 ko:K05132 IFNGR1, CD119 interferon gamma receptor 1 IN
18 ko:K05133 IFNGR2 interferon gamma receptor 2 IN
19 ko:K05405 IL6 interleukin 6 IN
20 ko:K05055 IL6R, CD126 interleukin 6 receptor IN
21 ko:K04692 STAT3 signal transducer and activator of

transcription 3
IN

22 cpd:C00533 Nitric oxide;NO;Nitrogen monox-
ide

IN

23 cpd:C00007 Oxygen;O2 IN
24 cpd:C14818 Fe2+;Fe(II);Ferrous ion;Iron(2+) IN
25 cpd:C00072 Ascorbate;Ascorbic acid;L-

Ascorbate;L-Ascorbic
acid;Vitamin C

IN

26 cpd:C00026 2-Oxoglutarate;Oxoglutaric
acid;2-Ketoglutaric acid;alpha-
Ketoglutaric acid

IN

27 ko:K07205 EIF4EBP1 eukaryotic translation initiation
factor 4E binding protein 1

TENDRILS

28 ko:K03259 EIF4E translation initiation factor 4E TENDRILS
29 ko:K04688 RPS6KB ribosomal protein S6 kinase beta

[EC:2.7.11.1]
TENDRILS

30 ko:K02991 RP-S6e, RPS6 small subunit ribosomal protein
S6e

TENDRILS

31 ko:K04371 ERK, MAPK1_3 mitogen-activated protein kinase
1/3 [EC:2.7.11.24]

TENDRILS

32 ko:K04368 MAP2K1, MEK1 mitogen-activated protein kinase
kinase 1 [EC:2.7.12.2]

TENDRILS

32 ko:K04369 MAP2K2, MEK2 mitogen-activated protein kinase
kinase 2 [EC:2.7.12.2]

TENDRILS

33 ko:K04372 MKNK, MNK MAP kinase interacting
serine/threonine kinase
[EC:2.7.11.1]

TENDRILS

34 undefined IN
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Table 7 The degree distribution of the core network of the HIF-1 signaling pathway.

Degree Frequency of
occurrence

Cumulative
frequency

Representative reactants

n % n %

1 14 41.1765 14 41.1765 Insulin, epidermal growth factor,
insulin-like growth factor 1

2 12 35.2941 26 76.4706 phosphatidylinositol-4,5-
bisphosphate 3-kinase catalytic
subunit alpha/beta/delta,
phosphoinositide-3-
kinase regulatory subunit
alpha/beta/delta

3 5 14.7059 31 91.1765 insulin receptor, epidermal
growth factor receptor, insulin-
like growth factor 1 receptor,
receptor tyrosine-protein kinase
erbB-2

4 2 5.8824 33 97.0588 hypoxia-inducible factor 1 alpha
7 1 2.9412 34 100 hypoxia-inducible factor prolyl

hydroxylase

Figure 4 Power-law fitting of the core network scale of the HIF-1 signaling pathway. The abscissa cor-
responds to the network scale. The ordinate is the distribution rate of the network scale. The black square
points are the actual measured power-law distribution points. The dotted line is the slope of the fitted
straight line.

Full-size DOI: 10.7717/peerj.10985/fig-4

and as a verification of their conclusions. The core network of the HIF-1 signaling pathway
has a bow-tie structure. It includes macrostructures such as a strongly connected core, an
input, and a tendril-like structure. It is worth noting that there are no output components
in the structure; that is, HIF-1α has no metabolites. The reason is that the corresponding
orthologous enzymes are not listed in the KGML file of KEGG. In KEGG’s hand-painted
HIF-1 signaling pathway diagram, HIF-1α has two output pathways: aerobic degradation
and hypoxic DNA expression. However, there are no orthologous enzyme products.
Therefore, the diagram is consistent with the analysis results obtained by this study.
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According to the analysis, HIF-1α is the strongly connected core of the bow-tie structure in
the core network of the signaling pathway. The bow-tie structure of the core network of the
HIF-1 signaling pathway has no formal output components. However, the actual judgment
based on a priori knowledge of the degradation pathway of HIF-1α under normoxic
conditions suggests that the bow-tie structure of the network contains a potential output
structure. Moreover, this structure is HIF-1α itself. In this sense, the bow-tie structure
of the core network of the HIF-1 signaling pathway is relatively complete. Additionally,
this study showed that the core network of the HIF-1 signaling pathway has a tendril-like
structure. This finding further verifies the similarity of the biological metabolic network
and the Internet in terms of macroscopic structure, based on the work of Ma et al.

The results of the structural complexity analysis show that the core network of the HIF-1
signaling pathway has scale-free characteristics. Therefore, the HIF-1 signaling pathway
network is a relatively typical complex network. It can be studied using complexity-based
research methods.

We plan to analyze the HIF-1 signaling pathway network from a network perspective
since the network analytical method is systematic and holistic. It is efficient in analyzing
complex biological networks, and the HIF-1 signaling pathway is an essential component
of the HRNs. However, the present study has a few limitations. For example, to verify the
network analytical method’s effectiveness, we only analyzed the structural information of
the network of the HIF-1 signaling pathway, which is insufficient to explore the unknown
critical elements and the relationships of the elements of the pathway. Therefore, further
studies need to be carried out to investigate the complex interactions of the elements of the
HRNs at different levels using a network analytical method so that new relationships and
critical elements of the networks can be identified. Meanwhile, as hypoxia is a dynamic
process, the hypoxia response network’s evolution involves the time element as an essential
feature. Our work focused on the hypoxia network’s topological features at a certain point
in time. We can analyze the network’s evolution from the following aspects: The first is
the statistical analysis of the network’s structural data. We can treat these data at a specific
time as a snapshot. Then snapshots of the same network from different time intervals can
be taken, observed, and analyzed as time evolves. The second is utilizing simulation to
address network dynamics issues. We can use Petri net-based modeling and other forms
of simulations to explore how networks evolve and adapt and the impact of interventions
on those networks (Li et al., 2016). Finally, we analyzed the HIF-1 signaling pathway using
information retrieved from the Kyoto Encyclopedia of Genes and Genomes (KEGG) based
on this study’s network analytical method. A similar analysis can also be performed to
analyze other biological networks such as the recent genome-wide regulatory network for
hypoxia adaption to identify the network elements’ interaction from a holistic view and
get some interesting findings (Xin et al., 2020).

CONCLUSIONS
In this study, we investigated the HRN from the perspective of complex networks. In
the analysis of the overall network, we identified the topological properties of the overall
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network of the HIF-1 signaling pathway and the biomedical meaning of the network
indicators based on the construction of the network using the data retrieved from the
KEGG database. The centrality indicators of the overall network, the remarkable nodes,
and the biomedical meaning of these nodes could be identified through centrality analysis.
Based on component analysis, the cohesive subgroups of the overall network were obtained;
the different subnets were indicated; and the core HRN was identified. In the analysis of
the core network, we refined the core network of the HIF-1 signaling pathway via topology
analysis of the network information based on the overall network analysis. We obtained
a topological structure diagram and the quantitative indicators of this network. Then,
we determined the bow-tie structure existing in this network through the analysis of the
bow-tie structure. This structure is composed of three types of components: the core
structure, the input structure, and the tendril-like structure. We can verify and further
add to the existing research conclusions by analyzing each part’s node distribution.
Additionally, a power-law fitting model of this network was constructed through the
verification of its complex attributes. The results showed that the power-law fitting model
of the core network of the HIF-1 signaling pathway presented a good fitting effect. This
proved that the core network of the HIF-1 signaling pathway has scale-free characteristics
and is a relatively typical complex network. We are aware that our research may have
two limitations. The first is some reactants in the network undefined in KEGG, which
prevent in-depth recognition of HRN. The second is the network analysis performed in
this research confined to the HIF-signaling pathway, while other essential pathways of
HRN are not analyzed. These limitations highlight the direction for follow-up in-depth
research. Although this network analysis is preliminary work, it enriches and improves
upon the existing research conclusions. It provides a basis for in-depth research onHRNs at
different levels using network analytical methods. In particular, these results can be applied
in parallel with traditional studies of the HRN, which will promote and complement each
other.
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