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Abstract Our decisions often balance what we observe and what we desire. A prime candidate

for implementing this complex balancing act is the basal ganglia pathway, but its roles have not yet

been examined experimentally in detail. Here, we show that a major input station of the basal

ganglia, the caudate nucleus, plays a causal role in integrating uncertain visual evidence and reward

context to guide adaptive decision-making. In monkeys making saccadic decisions based on motion

cues and asymmetric reward-choice associations, single caudate neurons encoded both sources of

information. Electrical microstimulation at caudate sites during motion viewing affected the

monkeys’ decisions. These microstimulation effects included coordinated changes in multiple

computational components of the decision process that mimicked the monkeys’ similarly

coordinated voluntary strategies for balancing visual and reward information. These results imply

that the caudate nucleus plays causal roles in coordinating decision processes that balance external

evidence and internal preferences.

Introduction
Effective decision-making often requires deliberation over uncertain evidence for and against differ-

ent alternatives, as well as over the expected outcome associated with those alternatives. The final

choice depends on how these two types of information are combined in the deliberation process.

For example, when we encounter news that “chocolate is healthy,” our reaction (“should I eat more

chocolate?”) can be influenced by both the perceived quality of the evidence (peer-reviewed

research article or tabloid) and our desired version of events (“I hope it is true because I love choco-

late!”). Previous studies have provided many insights into the kinds of computations that humans

and animals use to balance uncertain sensory evidence and reward expectation for adaptive deci-

sions, but it remains unclear where and how these computations are implemented in the brain

(Diederich and Busemeyer, 2006; Fan et al., 2018; Feng et al., 2009; Gao et al., 2011;

Leite, 2012; Liston and Stone, 2008; Maddox and Bohil, 1998; Mulder et al., 2012;

Summerfield and Koechlin, 2010; Teichert and Ferrera, 2010; Voss et al., 2004;

Waiblinger et al., 2019; Whiteley and Sahani, 2008).

A prime candidate for mediating these computations is the basal ganglia pathway, which has

been a focus of many modeling studies (Bogacz and Gurney, 2007; Ding and Gold, 2013;

Hikosaka et al., 2014; Kable and Glimcher, 2009; Lo and Wang, 2006; Rao, 2010; Ratcliff and

Frank, 2012; Redgrave et al., 1999; Summerfield and Tsetsos, 2012; Wei et al., 2015). This path-

way is known to make separate contributions to perceptual decisions that select based on the inter-

pretation of uncertain sensory evidence and value-based decisions that select among outcome

options (Amemori et al., 2018; Cai et al., 2011; Cavanagh et al., 2011; Ding and Gold, 2010;
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Ding and Gold, 2012b; Hikosaka et al., 2014; Kim and Hikosaka, 2013; Kimchi and Laubach,

2009; Lau and Glimcher, 2008; Nakamura and Hikosaka, 2006b; Samejima and Doya, 2007;

Santacruz et al., 2017; Seo et al., 2012; Tachibana and Hikosaka, 2012; Tai et al., 2012;

Wang et al., 2018; Yanike and Ferrera, 2014; Yartsev et al., 2018). However, its role in combining

those different sources of information remains speculative. For example, bilateral lesions of the stria-

tum in rats affected action vigor but not the decision process that combined reward and olfactory

input (Wang et al., 2013), arguing against a casual role of the basal ganglia pathway.

To begin to understand the basal ganglia’s causal roles in combining evidence and outcome

expectation in guiding adaptive decision-making, we targeted the caudate nucleus, an input station

in the oculomotor basal ganglia pathway, in monkeys trained to report their perceived motion direc-

tion of a random-dot kinematogram in an asymmetric-reward task (Figure 1A; Fan et al., 2018).

Across trials, we manipulated visual evidence by presenting motion stimuli with varying strengths in

two directions. Across blocks of trials, we manipulated reward context by assigning a large reward

for one direction and small reward for the other and alternating reward assignments between two

consecutive blocks. As we demonstrated previously, monkeys solved this task by adaptively balanc-

ing the uncertain visual input and reward information (Fan et al., 2018).

Here, we report four lines of evidence supporting a causal involvement of the caudate nucleus in

mediating the monkeys’ adaptive strategy: (1) caudate activity exhibited combined representations

of task-relevant visual and reward information, both at the population level and at the single-neuron

level; (2) electrical microstimulation in the caudate nucleus during motion viewing affected how the

visual and reward information was used to form the decision, often in a reward context-dependent

manner; (3) the reward context-dependent microstimulation effects shared certain features with the

monkeys’ voluntary, adaptive adjustments in response to the asymmetric reward contexts; and (4)

the magnitude of microstimulation effects on these features depended on caudate activity patterns

at the stimulation sites. These results imply that the caudate nucleus plays key roles in coordinating

the decision process that balances external evidence and internal preferences to guide adaptive

behavior.

Results
We trained two monkeys to report their decision by making a saccadic eye movement at a self-

determined time. As we reported previously, the monkeys’ performance depended on both the

strength and direction of the visual-motion evidence and the reward asymmetry on each trial, with

consistent biases toward choices associated with large reward (Figure 1B and C). More details about

these two monkeys’ performance on this task can be found in Fan et al., 2018.

Caudate neurons encode both visual and reward information
We first tested if and how individual caudate neurons encoded task-relevant visual and reward infor-

mation. We predicted that, if the caudate nucleus contributes to integrating these different sources

of information, then the activity of individual neurons would be modulated by properties of both the

visual motion evidence and the reward context. Alternatively, if the caudate nucleus processes

reward and visual information separately, then the activity of individual caudate neurons would be

modulated by either type of information alone but not together.

We found that many caudate neurons are sensitive to both visual and reward information used to

perform the task. Specifically, we recorded single-unit activity from 142 caudate neurons in the two

monkeys (n = 49 for monkey C, 93 for monkey F). These caudate neurons showed diverse patterns

of task-dependent modulations that in many cases included a combination of visual and reward

modulations. For example, the activity of the neuron depicted in Figure 2A showed three types of

modulation: (1) more activity during the blocks when the contralateral choice was paired with small

reward and the ipsilateral choice was paired with large reward (green > purple); (2) more activity for

trials with stronger versus weaker motion evidence (dark shade > light shade; i.e., higher versus

lower coherence levels, respectively), particularly for trials with contralateral choices; and (3) more

activity for trials with contralateral versus ipsilateral choices, both during motion viewing and around

saccade onset (Contra > Ipsi). This neuron’s activity thus reflected a combination of reward context,

motion strength, and eventual choice. The example neuron depicted in Figure 2B showed: (1) more

activity on trials with higher coherence levels (dark shade > light shade); (2) a contralateral choice
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preference, both during motion viewing and around saccade onset (Contra > Ipsi); and (3) more

activity when the choice was associated with large reward (red > blue). This neuron’s activity thus

reflected choice, the strength of motion stimulus leading to the choice, and the reward size

expected for the choice. Additional examples are shown in Figure 2—figure supplement 1.

Across the sampled population, individual caudate neurons were sensitive to choice, reward con-

text, expected reward size, and motion strength. We measured the selectivity of single-unit activity

using multiple linear regression for seven task epochs (Figure 2C; Equation 1; epochs are defined in
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Figure 1. Monkeys biased toward choices associated with large reward. (A) Task design and timeline. Monkeys

reported the perceived motion direction with saccades to one of the two choice targets. The motion stimulus was

turned off upon detection of saccade. Correct trials were rewarded based on the reward context. Error trials were

not rewarded. The color bars in the timeline indicate epoch definitions for the regression analysis of neural firing

rates in Equation 1. (B) Average choice (top) and RT (bottom) behavior of two monkeys (n = 17,493 trials from 38

sessions for monkey C, 29,599 trials from 79 sessions for monkey F). Filled and open circles: data from the two

reward contexts. Lines in top row: logistic fits. (C) Histograms of reward bias (half of the horizontal shift between

the two reward contexts estimated from logistic fits) for the two monkeys. Positive values indicate biases toward

the large-reward choice.
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Figure 1A). Selectivity for reward context persisted throughout the trial (green), whereas selectivity

for choice, reward size, and motion strength emerged during motion viewing (Epochs 4–7). The

selectivity for reward size and motion strength was more prevalent in Epoch 5 (variable duration cov-

ering the whole motion viewing period) than in Epoch 4 (fixed duration covering only the early

motion viewing period), consistent with a developing latent decision variable that accumulates evi-

dence over time, increasing sensitivity of the regression analysis with longer analysis windows, and/

or additional sensitivity to RT closer to the time of saccade. Many neurons also showed joint modula-

tions by both motion strength and either the reward context or expected reward size (“Coh +

Reward”, Figure 2D). A smaller proportion of neurons showed a different form of joint modulation

by visual and reward-related information: their activity was sensitive to the interaction between

motion strength and reward size (“Coh �Reward”, Figure 2E). Overall, 101 out of 142 neurons

B

C

F
ra

c
ti
o
n
 o

f 
n
e
u
ro

n
s
 w

it
h
 s

ig
n
if
ic

a
n
t 
m

o
d
.

Choice

Reward Context 

Reward Size

Coh (Contra)

Coh + Reward

0

0.25

0.5

Task Epoch

Coh × Reward 
or

Coh + Reward

Coh × Reward

(Contra)

(Ipsi) 

A

-0.2 0 0.2 0.4

0

10

20

30

M
e

a
n

 f
ir

in
g

 r
a

te
 (

H
z
)

Choose

Contra

-0.2 0 0.2 0.4

Choose

Ipsi

-0.2 0 0.2 0.4

Choose

Contra

-0.2 0 0.2 0.4

Choose

Ipsi

Joint modulation by reward context and coherence

HighßCohàLow

Contra-LR

Ipsi-LR

Reward Context

-0.2 0 0.2 0.4
0

10

20

30

Time from motion onset (s)

M
e

a
n

 f
ir

in
g

 r
a

te
 (

H
z
) Choose

Contra

-0.2 0 0.2 0.4

Choose
Ipsi

-0.2 0 0.2 0.4

Time from saccade onset (s)

Choose
Contra

-0.2 0 0.2 0.4

Choose
Ipsi

Joint modulation by reward size and coherence

HighßCohàLow

Large

Small

Reward Size

Time from motion onset (s) Time from saccade onset (s)

D

E

F

Before

motion

During

motion

Peri-

sac

Post-

sac

1 2 3 4 5 6 7

0

0.25

0.5

0

0.25

0.5

0

0.25

0.5

0

0.25

0.5

0

0.4

0.8

F
ra

c
ti
o
n
 o

f 
n
e
u
ro

n
s
 w

it
h
 s

ig
n
if
ic

a
n
t 
m

o
d
.

Coh (Ipsi)

chance

Figure 2. Caudate activity reflected motion strength, reward context, choice, and the expected reward size associated with the choice. (A, B) Activity of

two example neurons. Shades: coherence levels. Colors: reward context (A) and reward size (B). Firing rates were computed using a 200 ms running

window (50 ms steps). Only correct trials were included. (C-F) Fractions of neurons showing significant coefficients for task-related regressors in the

seven task epochs defined in Figure 1A (see Equation 1 for the formulation of the regression). Horizontal dashed lines: chance levels, adjusted based

on the number of tests used and a 5% chance level for a single test. Filled circles: fractions that were significantly above chance levels (Chi-square test,

p<0.05/63 (seven epochs and nine comparisons)). Coh: activity with non-zero coefficients for unsigned coherence values. Coh � Reward: activity with

non-zero coefficients for the coherence � reward size interaction. Coh + Reward: activity with non-zero coefficients for coherence on trials with either

choice and non-zero coefficients for either reward context or reward size.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Regression results for Figure 2C–F, using Equation 1.

Figure supplement 1. Example neurons with different kinds of task-relevant modulations.

Figure supplement 2. Modulation patterns of “combination neurons” during motion viewing.
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showed at least one of these forms of joint modulation in at least one epoch. This fraction was signif-

icantly above chance level, even considering the multiple tests done in seven epochs (Figure 2F;

Chi-squared test, p=0.0035). These neurons also showed heterogenous modulation patterns, as illus-

trated for the 44 neurons with joint modulation during motion viewing (Figure 2—figure supple-

ment 2).

Thus, information about both the visual motion evidence and reward expectation were repre-

sented in the caudate nucleus at both the population and single-neuron levels. The combined evi-

dence-reward representations at the single-neuron level in some caudate neurons suggest that the

caudate nucleus may contribute directly to the process of integrating both sources of information

into the decision.

Caudate microstimulation evoked reward context-dependent effects on
behavior
We next tested if and how the caudate nucleus contributes causally to decisions that balance visual

evidence and reward information. We identified caudate sites with task-modulated activity and deliv-

ered electrical microstimulation during motion viewing at these sites in randomly interleaved trials.

We were particularly interested in microstimulation effects that depended on visual and reward infor-

mation interactively, which would imply that the caudate nucleus contributes to the integration of

those sources of information into the decision.

Consistent with the heterogeneity of response properties identified above and our previous find-

ings (Ding and Gold, 2012b), we found examples of microstimulation effects that were either inde-

pendent of or dependent on reward context. Figure 3A shows an example session in which the

microstimulation effects depended on visual evidence but not reward context. At this site, microsti-

mulation induced contralateral biases (a leftward shift in the psychometric function), reduced sensi-

tivity to the visual motion evidence (a reduction in the slope of the psychometric function),

decreased mean RT for the contralateral choice, and increased mean RT for the ipsilateral choice,

with similar magnitudes of changes for the two reward contexts. In contrast, Figure 3B shows an

example session in which the microstimulation effects depended on both visual evidence and reward

context. At this site, microstimulation induced ipsilateral choice biases, slope reduction, and

decreases in RT for ipsilateral saccades. The effects were more prominent when the ipsilateral choice

was paired with large reward (open circles). Thus, microstimulation changed the relationship

between choice/RT and visual evidence in a reward context-dependent fashion. These changes were

consistent with a perturbation of a process that incorporates both visual evidence and reward asym-

metry information into the decision.

Across the 55 sites tested (n = 24 sessions for monkey C, 31 for monkey F), we found many sites

with microstimulation effects that reflected different combinations of effects that were independent

of reward context and others that showed interactive effects on visual and reward processing. To

quantify these diverse microstimulation effects, we fitted logistic (Equation 2) and linear (Equation 3)

functions to the choice and RT data, respectively. We parsed the microstimulation effects into two

types. First, the “estim” type measured the average microstimulation effect, independent of reward

context (Figure 3C). These effects tended to include positive changes in choice bias (biasing toward

contralateral choices), negative changes in the slope of the psychometric function (reductions in sen-

sitivity to the visual evidence), negative changes in the intercept of RT, and positive changes in the

slope of the RT-coherence function (faster RTs that were less sensitive to motion strength). Second,

the “rew � estim” type measured the extent to which the microstimulation effect differed between

the two reward contexts (i.e., the interaction between reward context and microstimulation effects),

which is the focus of the present study and is equivalent to measuring the microstimulation effects

on the monkeys’ behavioral adjustments to the asymmetric reward contexts (Figure 3D). These

effects tended to include positive values for choice bias, negative values for the slope of the psycho-

metric function, negative values for the ipsilateral RT, and positive values for the slope of the RT-

coherence function. Values for individual sessions are plotted in Figure 3—figure supplement 1B,

and summary statistics are in Supplementary file 1a. The median “rew � estim”-type effects tended

to have the same signs as the corresponding median “estim”-type effects (compare the vertical lines

in Figure 3C and D), indicating that the microstimulation effects tended to be larger when the large

reward was paired with choices contralateral to the site of microstimulation. Note that for the direc-

tional choice bias, this tendency may manifest itself as microstimulation inducing either larger
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contralateral biases in “Contra-LR” blocks, or larger ipsilateral bias in “Ipsi-LR” blocks (Figure 3B).

These dependencies on reward context were similarly apparent when considering the two reward

contexts separately (Figure 3—figure supplement 1A).

Overall, microstimulation induced at least one statistically reliable effect on choice or RT at 48 of

55 caudate sites (colored dots in Figure 3—figure supplement 1B; significantly above the chance

level that was adjusted for multiple comparisons, Chi-squared test, p<1e-5). Of these, 27 sites

showed at least one “rew � estim”-type effect on choice and/or RT. Most of these sites included

effects on psychometric bias, psychometric slope, and/or the slope of RT as a function of motion

strength, all of which (unlike the intercept of the RT function) measured the dependence of the mon-

keys’ behavior on motion evidence.

Because we delivered microstimulation throughout motion viewing for an RT task, the difference

in average RT between reward contexts may contribute to “rew � estim”-type microstimulation

effects. We found that the average RT tended to be longer for the “Ipsi-LR” and “Contra-LR” blocks

for the monkeys C and F, respectively (Figure 3—figure supplement 2A). However, the difference
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Figure 3. Caudate microstimulation affected the monkeys’ decision behavior. (A, B) Two example sessions from monkey C showing different patterns

of microstimulation effects. Black: trials without microstimulation; red: trials with microstimulation. Open circles and dashed lines: data and fits for

blocks in which the ipsilateral choice was paired with large reward and the contralateral choice was paired with small reward. Filled circles and solid

lines: data and fits for blocks in which the ipsilateral choice was paired with small reward and the contralateral choice was paired with large reward.

Abscissa: signed coherence (positive: motion was toward the contralateral target; negative: motion was toward the ipsilateral target). Top panels:

probability of making the contralateral choice. Lines are logistic fits to the choice data. Middle and bottom panels: mean reaction time (RT) for the two

reward contexts. Circles and crosses represent correct and error choices, respectively. Lines: linear fits to single-trial RT data. (C, D) Summary of effects

induced by microstimulation for both reward contexts (C, estim terms) and by interactions between microstimulation and reward context (D,
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test, p<0.05.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Figure supplement 1. Effects of caudate microstimulation for all sessions.

Figure 3—source data 1. Fitting results for choice (logistic) and RT (linear) data.

Figure supplement 2. The average RT difference between the two reward contexts alone could not account for the reward context-dependent

microstimulation effects.
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in average RT between reward contexts alone cannot explain the “rew � estim”-type microstimula-

tion effects. For each effect in Figure 3D, we performed a linear regression using the difference in

RT as the independent variable (Figure 3—figure supplement 2B). The percentage of variance

explained was lower than 30% for monkey C and lower than 10% for monkey F. Even for the case

with the largest explained variance, the relationship was opposite to what would be expected,

that is, sessions with larger RT differences tended to show smaller “rew � estim”-type microstimula-

tion effects on choice bias for monkey C. Thus, the dependence of the microstimulation effects on

reward context more likely reflected a causal involvement of the caudate nucleus in balancing visual

evidence and reward asymmetry information.

Microstimulation caused coordinated adjustments to reward-dependent
decision biases that mimicked the monkeys’ voluntary strategy
We next examined more closely how these diverse microstimulation effects on choice and RT were

related to the specific strategies that the monkeys were using to balance visual evidence and reward

asymmetry information. We previously showed that, on the same task without microstimulation, the

monkeys’ choice and RT behaviors can be well described by a drift-diffusion model (DDM), in which

noisy visual evidence is accumulated over time until reaching a pre-defined, time-varying, bound

(Figure 4A; Fan et al., 2018; Ratcliff and Rouder, 1998; Zylberberg et al., 2016). Within this

framework, the balance between visual evidence and reward asymmetry is captured by two reward

context-dependent parameters that induce asymmetries in the drift rates and the relative bound

heights for the two choices, respectively. A change in the drift rate was implemented as additional

momentary evidence (me) that is added to the motion evidence at each accumulating step. A

change in the relative bound heights was implemented as a shift in the starting point (z) of the DDM.

A positive difference in Ddrift or Dbound between reward contexts, that is, positive Ddrift (rew) or

Dbound (rew), leads to more and faster choices to the large-reward option. Either Ddrift (rew) or

Dbound (rew) can have similar effects on the psychometric function but are distinguishable via differ-

ent effects on the chronometric function (see Figure 3—figure supplement 1 in Fan et al., 2018).

Here, we used the DDM to compare the monkeys’ voluntary decision strategies with the effects of

microstimulation on those strategies.

As we reported previously, the reward function (average reward rate) on our task depended on

perceptual sensitivity, reward context, and the relative sizes of large and small rewards in a given

session. The monkeys tended to use positive Ddrift (rew) values that changed in magnitude accord-

ing to session-by-session variations in the reward function (see Figure 6 in Fan et al., 2018), implying

fast adaptation within a session. In addition to these positive, but variable, Ddrift (rew) values, the

monkeys tended to use negative Dbound (rew) values that also changed systematically with changes

in the reward function, such that the values of Ddrift (rew) and Dbound (rew) were negatively corre-

lated with each other across sessions (Figure 5B). These coordinated adjustments produced overall

biases toward the large-reward choice consistently across sessions (see also Figure 1C). We also

showed previously that this negative correlation followed the predicted relationship based on a heu-

ristic decision strategy that used features of the session-specific reward function to achieve near-

maximal, “good-enough” reward rate (Fan et al., 2018).

Based on these findings, we predicted that if the caudate nucleus contributes causally to the

implementation of the monkeys’ decision strategies, then the effects of caudate microstimulation on

Ddrift (rew) and Dbound (rew) would show a similar negative correlation across sessions (caudate

sites). Alternatively, if the caudate nucleus contributes causally only to the implementation of specific

Ddrift (rew) and/or Dbound (rew) values, we predicted that microstimulation would likely induce

uncorrelated changes across sessions (caudate sites). To guide our examination of the experimental

data, we considered several likely scenarios of microstimulation effects (Figure 4C–F; see

Materials and methods for simulation parameters). For all scenarios, we assumed that, in the

absence of microstimulation: 1) the monkeys used negatively correlated Ddrift (rew) and Dbound

(rew) values across sessions (Figure 4B); and 2) Ddrift (rew) and Dbound (rew) were combined with

variable baseline values (drift0 and bound0) to generate the observed choices and RTs for each

reward context (Figure 4C–F, left). In the first scenario, we assumed that the caudate nucleus is not

involved in the coordination and contributes only to the implementation of reward context-indepen-

dent me and z adjustments, that is, microstimulation is expected to affect the baseline drift0 and

bound0 independently (Figure 4C). In the second scenario, we again assumed that the caudate
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nucleus is not involved in the coordination, but in this case contributes to the implementation of

reward context-dependent me and z adjustments; i.e., microstimulation is expected to affect Ddrift

(rew) and Dbound (rew) independently (Figure 4D). In the third and fourth scenarios, the caudate

nucleus contributes to the coordination process. Microstimulation added correlated changes in

Ddrift (rew) and Dbound (rew) (Figure 4E) and further scaled the correlated Ddrift (rew) and Dbound

(rew) values (Figure 4F). Notably, only the coordinated-effect scenarios (Figure 4E and F) predict a

similar relationship for interaction effects between reward and microstimulation. Moreover, only the

coordinated-scaling scenario (Figure 4F) predicts that the “rew � estim” effects should vary system-

atically with “rew” effects without microstimulation across sessions (compare the color progression

in Figure 4B and C–F).

We fitted the monkeys’ single-trial data with different DDM variants (see fits to example sessions

in Figure 5—figure supplement 1 and summary data in Figure 5—figure supplement 2). For the
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Figure 4. Illustration of correlation patterns induced by different hypothesized actions of microstimulation. (A) Drift-diffusion model. Motion evidence

(E) is modeled as samples from a Gaussian distribution (mean = signed coherence, variance = 1). The decision variable is computed as the time integral

of E and compared at each time point to two (possibly time-varying) decision bounds. Crossing of either bound results in the corresponding choice. RT

is modeled as the sum of the time to bound crossing and a non-decision time. Bias can be induced with offsets in evidence (me, biasing the drift rate)

or relative bound heights (z, biasing bounds). (B) For the simulations in (C-F), reward context-dependent modulation of drift and bound on trials without

microstimulation (i.e. Ddrift (rew) and Dbound (rew)) were negatively correlated across sessions. Each colored circle represents a session. (C and D)

Microstimulation induces independent changes in baseline drift0 and bound0 values (C) or independent changes in Ddrift (rew) and Dbound (rew) (D).

Note the absence of negative correlation in the rew � estim effects. (E) Microstimulation additively affected reward context-dependent adjustments in

drift and bound in a coordinated manner. The dashed line represents a significant correlation. (F) Microstimulation additively and multiplicatively

affected reward context-dependent adjustments in drift and bound in a coordinated manner. Note that the rew � estim effects were negatively

correlated between drift and bound (dashed line). The rew � estim effects were negatively correlated with the reward effects without microstimulation

in F (compare the orders of color progression to that in B), but not (C-E). See Materials and methods for simulation parameters.
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remaining analyses, we focused on 39 sessions in which microstimulation affected at least one DDM

component. In these sessions, the full DDM model, in which all parameters were allowed to change

with reward context and microstimulation, considerably outperformed a reduced model (“No

Estim”), in which all parameters were allowed to change with reward context but not microstimula-

tion (Figure 5—figure supplement 2A). In other words, if the AIC value for the full model was less

than that for the “No Estim” model by a difference of at least 7 (to the left of the red arrow in Fig-

ure 5—figure supplement 2A), we assumed that a change in at least one DDM parameter was

required to account for microstimulation effects in that session. The reduced model without microsti-

mulation effects on parameters describing the collapsing bound (“NoCollapse”) outperformed the
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Figure 5. Microstimulation induced correlated changes in the reward modulation of drift and bound. (A)

Scatter plots of changes in drift and bound induced by electrical microstimulation (abscissa and top histograms)

and by interactions between electrical microstimulation and reward condition (ordinate and right histograms).

Solid lines in histograms: mean values across sessions, t-test, p>0.05. Labels (a, b) correspond to the example

sessions in Figure 3A and B, respectively. (B) On trials without microstimulation, the differences in Ddrift and

Dbound between the two reward contexts were negatively correlated. Line and shaded area: linear regression and

95% confidence interval, t-test, p<0.0001. “a” and “b” indicate the data points for the examples in Figure 3A and

B. Data are color-coded by the values of Dbound (rew) no estim. (C) Scatter plots of reward effects on trials

without microstimulation (abscissa) and interaction effects (ordinate) for Ddrift (left) and Dbound (right). Lines

represent results of linear regression (shaded area: 95% confidence interval). (D) The interaction effects (Ddrift (rew

x estim) and Dbound (rew x estim)), equivalent to the difference between “Ddrift/bound (rew) with estim” and

“Ddrift/bound (rew) no estim”, were negatively correlated. Same format as B. t-test, p<0.0001. Red dashed line re-

plots the linear regression results from Figure 5B, using the appropriate range of Ddrift (rew x estim) as x-values.

Data are color-coded by the values of Dbound (rew) no estim. Note that the roughly reversed orders of color

progressions in B and D is most consistent with simulated effects in Figure 4F.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Fitting results for choice and RT data using the DDM for sessions with significant microstimulation

effects.

Figure supplement 1. DDM fits to example sessions in Figure 3.

Figure supplement 2. DDM fitting results.

Figure supplement 3. Biases in drift and bounds together accounted for biases measured in logistic fits.

Figure supplement 4. Both monkeys showed similar correlation patterns between Ddrift and Dbound.
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full model in most sessions, indicating that caudate microstimulation did not affect the time course

of the bound height (Figure 5—figure supplement 2B). In contrast, the full model tended to out-

perform other reduced models, indicating that caudate microstimulation evoked changes in parame-

ters controlling the speed-accuracy tradeoff (a and k), biases in choice and RT (me and z), and non-

decision times (t_contra and t_ipsi; Figure 5—figure supplement 2C). Consistent with the results

from logistic fits, the microstimulation effects on these parameters were often reward context-

dependent (Figure 5—figure supplement 2D; many data points deviated from the unity-slope

lines). Summary statistics of the microstimulation effects, partitioned into “estim” and “rew � estim”

types, are shown in Supplementary file 1b.

We found that the microstimulation effects on Ddrift (rew) and Dbound (rew) were most consistent

with the coordinated-scaling scenario in Figure 4F, based on several observations. First, DDM var-

iants with microstimulation-induced changes in both me and z outperformed variants with no such

changes in me or z (Figure 5—figure supplement 2B and C; the “NoME” and “NoZ” models pro-

vided the best fits for only three sessions), suggesting that caudate microstimulation affected both

drift rates and bounds. Second, despite the variations in the microstimulation effects on me and z

across sessions (Figure 5A), the combined effects produced similar changes in bias to those mea-

sured using logistic fits (Figure 5—figure supplement 3), reminiscent of our previous observation

that the monkeys used both Ddrift (rew) and Dbound (rew) to produce consistent reward biases.

Third, the interaction (“rew � estim”) effects on Ddrift and Dbound maintained a highly consistent

relationship across sessions. As expected for a coordinated bias strategy, the monkeys’ voluntary,

reward-dependent adjustments were negatively correlated on trials without microstimulation

(Figure 5B). Strikingly, and consistent with only the coordinated-effects scenarios in Figure 4E and

F, the interaction effects between reward and microstimulation followed almost the same negative

correlation (Figure 5D, compare red dashed line and black solid lines). The same patterns were

observed in both monkeys (Figure 5—figure supplement 4). Fourth, there were strong negative

correlations between the reward effects on trials without microstimulation and interaction effects for

both Ddrift and Dbound (Figure 5C; also compare the orders of color progressions in B and D). This

result is consistent with the scenario in Figure 4F and thus suggests the presence of a multiplicative

component in the microstimulation effects on coordination. Together, these results show that cau-

date microstimulation recapitulated the coupling between reward context-dependent adjustments

to drift rates and relative bound heights that was evident in the monkeys’ voluntary adjustments.

We considered four alternative explanations and found that the correlated “rew � estim” effects

on drift and bound were not artifact, trivial, or a necessary consequence of reward-dependent

biases. First, our methods of DDM fitting and parsing reward- and microstimulation-related effects

might have introduced artificial correlations. This explanation would predict a similar correlation in

the overall, reward-independent microstimulation effects on drift and bound. We did not observe

such a correlation between Ddrift (estim) and Dbound (estim), despite similar magnitudes of changes

to their reward-dependent counterparts (Figure 6A). To further control for this scenario, we shuffled

all the fitted DDM parameters across sessions and simulated a new data set with matched trial num-

bers for each session (“Shuffle 1”). We fitted the full DDM to these simulated data and did not

observe a negative correlation as in the original data (Figure 6B–D). Fits with the “NoCollapse” vari-

ant did not show negative correlation, either (Figure 6—figure supplement 1).

Second, the coordinated effects of microstimulation on Ddrift and Dbound might have been a triv-

ial consequence of reward-dependent biases, independent of the reward context-dependent coordi-

nation of the two quantities. This possibility is countered by three findings: 1) the presence of

correlated reward-dependent adjustments alone do not necessarily produce correlated

“rew � estim” effects (e.g. Figure 4C and D); 2) removing coordinated, reward-induced effects by

shuffling the best-fitting values of those two parameters independently across sessions (as in

Figure 4D) resulted in substantially less correlated “rew � estim” effects than in the real data

(Figure 6E, “Shuffle 2” and “Shuffle 3”, red and gray solid lines, compare to the data in black). That

is, even with the mean and variance values matched exactly to the experimental data, the model in

Figure 4D cannot capture the correlated pattern we observed in the experimental data; and 3) par-

tial shuffling that disrupted only possible relationships with session-specific properties (e.g. microsti-

mulation sites or voluntary performance), by shuffling the paired Ddrift and Dbound across sessions,

also significantly weakened the correlation between “rew � estim” effects (Figure 6E, “Shuffle 4”).
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Third, it is possible that the shared negative correlations in Figure 5B and D resulted from persis-

tent effects of microstimulation throughout each session, that is, a spill-over of microstimulation

effect. This possibility is inconsistent with three observations: 1) the negative correlations were pres-

ent between Ddrift (rew) and Dbound (rew) in sessions without microstimulation

(data not shown; Fan et al., 2018); 2) As described in Methods, microstimulation sessions began

with trials for unit recording only, before any microstimulation was delivered. During these record-

ing-only trials, negative correlations between Ddrift (rew) and Dbound (rew) were also observed, sim-

ilar to the correlations during later, no-microstimulation trials interleaved with microstimulation

(Figure 6—figure supplement 2), indicating that microstimulation was not necessary for the

observed negative correlations; and 3) the reward effects on trials without microstimulation were
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Figure 6. Control analysis results. (A) The average microstimulation effects on Ddrift and Dbound that were independent of reward context were not

correlated. Same format as Figure 5D. Linear regression, t-test, p=0.60. (B-D) The patterns of correlation in Figure 5B and D were not observed in data

simulated with shuffled DDM parameters (Shuffle 1). Ddrift and Dbound values were obtained by fitting the simulated data with the “Full” DDM model.

Linear regression, t-test, p=0.78, 0.81, 0.26 for the three panels, respectively. (E) The observed relationship between Ddrift (rew � estim) and Dbound

(rew � estim) was different from those observed in shuffled data. Shuffle 2 (red): shuffle Ddrift and Dbound values for trials with and without

microstimulation across sessions independently. Shuffle 3 (gray, solid): shuffle Ddrift and Dbound values for microstimulation trials only and across

sessions independently. Shuffle 4 (gray, dashed): shuffle Ddrift and Dbound values for microstimulation trials only across sessions while maintaining the

coupling between drift and bound. Histograms were obtained from 200 shuffles for each method. Vertical lines indicate the mean slope values.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Ddrift and Dbound values obtained by fitting the simulated data to the “NoCollapse” DDM model did not show the same

correlation patterns as the original data.

Figure supplement 2. Both monkeys showed significant negative correlation between Ddrift (rew) and Dbound (rew) on trials before microstimulation

began.

Figure supplement 3. The correlated Ddrift (rew � estim) and Dbound (rew � estim) effects represented the dominant features of the data.
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negatively correlated with the interaction effects (Figure 5C), instead of a positive dependency as

predicted by a “spill-over” mechanism with linear or exponential decay.

Fourth, given the inter-session variability in microstimulation effects, it is possible that the nega-

tively correlated Ddrift (rew � estim) and Dbound (rew � estim) reflected only a minor consequence

of caudate microstimulation. We examined this possibility by comparing: 1) the first principal compo-

nent (PC) for the eight fitted parameters ([me or z] � [contra-LR or ipsi-LR] � [estim on or off]), with

2) the first PC for the two parameters Ddrift (rew � estim) and Dbound (rew � estim). We projected

the eight-parameter and two-parameter data to these two PCs, respectively. The projections

showed a strong correlation (Figure 6—figure supplement 3; rho = 0.92, p=1.3e-16), indicating

that the coordinated Ddrift (rew � estim) and Dbound (rew � estim) values reflected the dominant

feature of the experimental data; that is, the dominant effect of caudate microstimulation on

reward-related biases.

Taken together, these results suggest that the shared correlation patterns in reward context-

dependent voluntary and evoked adjustments were not trivial, but instead reflected the caudate

nucleus’ causal involvements in mediating the monkeys’ specific strategy to balance visual evidence

and reward asymmetry information.

Coordinated microstimulation effects depended on neural selectivity
patterns and baseline adjustments
The microstimulation effects on Ddrift (rew) and Dbound (rew) tended to be negatively correlated

with each other but also showed substantial variability across sessions (Figure 5D). We examined

three potential sources of these effects: 1) the monkey’s baseline (microstimulation-independent)

adjustments in Ddrift (rew) and Dbound (rew) (Figure 5B), 2) the task-related activity patterns of neu-

rons recorded near the stimulation site, and 3) the anatomical location of the stimulation site. As

detailed below, we found that microstimulation effects on Ddrift (rew) and Dbound (rew) depended

systematically on both the baseline adjustments and neural selectivity at the site of microstimulation,

but not the anatomical location of the site.

We first performed multiple linear regressions, using the baseline adjustments and neural selectiv-

ity at the site of microstimulation as the independent variables and the microstimulation effects as

the dependent variables (Equation 4). We quantified the baseline adjustments in terms of the two

principal components (PCs) of the relationship between Ddrift (rew) and Dbound (rew), which to a

first approximation divides the effects into the average coordinated trajectory (the projection onto

PC1) and the deviation from the average trajectory (the projection onto PC2). We quantified neural

selectivity during motion viewing (Epoch 5in Figure 1A, when the decisions were formed) for each

site using a multiple linear regression that also allowed us to identify neurons with combined modu-

lations by visual evidence and reward context (n = 16 sites total, 9 and 7 for monkeys C and F,

respectively; Equation 1). We quantified the microstimulation effects as the projections of Ddrift

(rew � estim) and Dbound (rew � estim) onto the PCs defined from the baseline adjustments, which

measured the degree to which the “rew � estim” interaction effects conformed to the voluntary

adjustments in response to the asymmetric reward contexts (Figure 7A and B, right panels).

We found that the microstimulation effects along the average coordinated trajectory (i.e. the PC1

projection of rew � estim effects) depended: 1) negatively on the baseline effects along that trajec-

tory (i.e., the PC1 projection of baseline Ddrift (rew) and Dbound (rew)), 2) negatively on neural selec-

tivity for choice at the site of microstimulation, 3) positively on neural selectivity for reward context

at the site of microstimulation, and 4) positively on neural selectivity for motion coherence for trials

with contralateral choices at the site of microstimulation (Figure 7C, colored boxes). The explained

variance of this regression was 89% and significantly higher than that of shuffled data (Figure 7D,

top panel). The microstimulation effects perpendicular to the average coordinated trajectory also

depended positively on neural selectivity for motion coherence for trials with contralateral choices,

but the explained variance was not significantly different from that of shuffled data. In contrast, for

other sites without combined modulations by motion coherence and reward context (n = 23 sites

total, 9 and 14 for monkeys C and F, respectively), the microstimulation effects along the average

coordinated trajectory also depended negatively on the baseline adjustments along that trajectory,

but the microstimulation effects did not otherwise depend on the baseline adjustments or neural

tuning from that session (Figure 7C, bottom panel). For these sites, the explained variance was sub-

stantially lower than for the sites with combined modulations and did not differ from the shuffled
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Figure 7. Microstimulation effects on coordination depended on neural selectivity and baseline adjustments of

drift and bound. (A and B) Principal components (PCs) were estimated for reward context modulation of Ddrift and

Dbound without microstimulation (left panels; mean subtracted) for the two monkeys separately. The values of

Ddrift (rew � estim) and Dbound (rew � estim) were projected onto these two PCs (right panels). (C) Visualization

of the dependence of rew � estim effects on neural selectivity and reward effects without microstimulation for

sites with combined modulations by motion coherence and reward context (top) and for other sites (bottom). Proj1

(2): projection onto PC1(2). Each row shows the results from one multiple linear regression, with the quantity on

the ordinate as the dependent variable and the quantities on the abscissa as the independent variables.

Significance was assessed with bootstrap methods using 1000 shuffles of the independent variables. The number

in each box indicates the number of shuffles with the same or stronger effect as the experimental data (e.g., six

means an estimated p value of 0.006 and 0 means an estimated p value of < 0.001). Colors indicate the signs of

regression coefficients (significance criterion: p<0.0125 = 0.05/4-regressions). (D) Percent explained variance for

the regressions in (C), respectively. A black bar indicates that the experimental value is outside the 95 percentile of

the bootstrapped distribution.

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. Neural selectivity for different task factors at the microstimulation sites.

Figure supplement 1. MRI reconstruction of recording and microstimulation sites.
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data (Figure 7D, bottom panel). These results imply that the microstimulation effects on the mon-

keys’ reward bias strategy reflected both their baseline reward-driven biases and specific contribu-

tions of caudate neurons at the site of microstimulation, particularly those encoding both reward

context and motion coherence, instead of non-specific microstimulation effects from altering overall

caudate activity.

In contrast, the microstimulation effects did not show consistent relationships with the anatomical

locations of microstimulation sites. We reconstructed the locations of single-unit recording and

microstimulation sites on MRI images based on the track coordinates and electrode depth (Fig-

ure 7—figure supplement 1). In monkey C, the recording sites spanned from 5 mm anterior to the

anterior commissure to 3 mm posterior. In monkey F, the recording sites spanned from the anterior

commissure to 7 mm anterior. Neurons with combined modulation by motion and reward-related

quantities during motion viewing were observed at all anterior–posterior (A–P) levels (Figure 7—fig-

ure supplement 1A, red circles; corresponding to neurons identified in Figure 2—figure supple-

ment 2). Microstimulation sites were sampled in a smaller region for both monkeys (Figure 7—

figure supplement 1A, cyan crosses). For our sampled sites, we observed certain tendencies, but

these tendencies were not consistent across monkeys. For example, in monkey F, but not monkey C,

sites with rew � estim effects on the monkeys’ choice and RT, as measured separately using logistic

and linear fits, appeared clustered at more ventral locations (Figure 7—figure supplement 1B and

C). In monkey C, but not monkey F, Ddrift (rew � estim) appeared to be greater at more ventral

locations (Figure 7—figure supplement 1D). Although we sampled a larger region in monkey C

than in monkey F, monkey F showed a larger range of Ddrift (rew � estim) and Dbound

(rew � estim) (Figure 7—figure supplement 1D and E). These results suggest that anatomical orga-

nization patterns are likely variable and confined to small areas in the caudate nucleus. Consistent

with the lack of a large-scale organization pattern, adding location data as independent variables in

the regressions for Figure 7 did not significantly improve the explained variance. These results sug-

gest that the rew � estim effects of caudate microstimulation were more closely linked with neural

selectivity at the sites than the physical locations of the sites.

Discussion
For monkeys making saccade decisions based on noisy visual motion evidence and asymmetric

reward contexts, we observed that the activity of many single neurons in the caudate nucleus was

sensitive to both motion strength and reward context or expected reward size. We further showed

that microstimulation at these caudate sites evoked changes in the monkeys’ choices and RTs that

depended on the reward context and involved adjustments to the drift rates and relative bound

heights of an accumulate-to-bound (DDM) decision process. These reward context-dependent

microstimulation effects mimicked the coordinated adjustments that the monkeys made, in the

absence of microstimulation, to the drift rates and relative bound heights in response to changes in

reward context. These evoked, coordinated adjustments also depended on neural selectivity at the

microstimulation sites. Taken together, these findings support theoretical proposals that the basal

ganglia pathway implements general-purpose computations for action selection, including selection

based on multiple types of inputs (Berns and Sejnowski, 1995; Bogacz and Gurney, 2007;

Mink, 1996; Rao, 2010; Ratcliff and Frank, 2012; Redgrave et al., 1999). Below we consider how

these results inform our understanding of the specific role of the caudate nucleus in forming deci-

sions that integrate sensory and reward information.

The role of the caudate nucleus in coordinating the reward context-dependent modulation of

choice bias-related computations (drift rates and bounds in the DDM) appears to be distinct from its

previously demonstrated roles in mediating sensory evidence-based decisions. For example, we pre-

viously showed that the caudate nucleus contributes causally to adjusting the decision bound (z in

the DDM) for decisions based on visual information alone (Ding and Gold, 2012b). In the present

study, such an effect would be more related to the Dbound (estim) measurement, instead of the

“rew � estim” effects. We did not observe a consistent Dbound (estim) effect in the present study,

possibly because of differences in task context (the previous study used an equal reward decision

task), the targeted neural subpopulation (the previous study targeted sites with choice-selective

activity, whereas the present study targeted sites with additional selectivity for reward-related fac-

tors), and/or anatomical locations of the stimulation sites (Figure 7—figure supplement 1A,
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compare blue and cyan crosses; in the previous study, the sites were more posterior and dorsal in

monkey C and more anterior and dorsal in monkey F).

The differences in anatomical locations likely also contributed to the apparent sign difference in

reward-independent effect on choice bias: microstimulation at sites in our previously published study

induced predominantly ipsilateral biases, whereas microstimulation at other caudate sites induced

predominantly contralateral biases for the same equal-reward task (Doi et al., Society for Neurosi-

cence 2012, 198.10). In the present study, the reward-independent microstimulation effects on bias

were highly variable and showed an average contralateral bias. In comparison, studies of striatal per-

turbation in rodents showed consistent inactivation-induced ipsilateral biases and activation-induced

contralateral biases (Wang et al., 2018; Yartsev et al., 2018). Interestingly, the effects of caudate

microstimulation in monkeys seem more variable than the effects of striatal perturbations in rodents

(Amemori et al., 2018; Wang et al., 2018; Yartsev et al., 2018), possibly reflecting the smaller rel-

ative volume of tissue that were affected and consequently greater dependence on local activity pat-

terns in the monkey caudate. This difference may also contribute to the lack of effects of striatal

lesions on rats’ decisions on a task with manipulations of olfactory evidence and reward context

(Wang et al., 2013), along with other differences between species (e.g. the extent of functional

equivalence between rat dorsomedial striatum and monkey caudate nucleus) and task designs (e.g.

interleaved trials with and without microstimulation minimized any compensatory effects).

The coordinated microstimulation effects reported here also differ from earlier demonstrations of

caudate’s involvement in reward/value-dependent behaviors. We found some caudate neurons that

exhibited coherence and reward size modulations that were consistent with a flexible value signal

that has been observed in the monkey striatum (Kawagoe et al., 1998; Kim and Hikosaka, 2013;

Samejima et al., 2005). However, in our task, the coherence-driven decision variable can also be

used as a surrogate for confidence, which should be examined in more detail to disentangle its

representation from a representation of value in the caudate. One perturbation study showed that

pairing caudate microstimulation consistently with a specific stimulus can alter the subjects’ choice

by increasing the estimated value of that stimulus (Santacruz et al., 2017). In our study, such an

effect on choice bias would have been canceled when microstimulation was delivered randomly but

counterbalanced for the two motion directions. Another study showed that pairing pre-saccade cau-

date microstimulation with a saccade direction can alter RTs on an instructed saccade task with

highly visible stimuli (Nakamura and Hikosaka, 2006a). Similar effects likely contributed to our

observed changes in non-decision times but do not account for our effects on choice. Finally, cau-

date microstimulation can prolong saccade RTs on an instructed saccade task by reducing the rate

of rise in the LATER model (Watanabe and Munoz, 2010), which assumes a linear rise to a fixed

bound (Carpenter and Williams, 1995; Reddi et al., 2003). Similar effects likely contributed to our

observed changes in parameter k in the DDM but not the effects on reward-dependent biases that

we found. Thus, the coordinated “rew � estim” effects on drift rates and relative bound heights that

we observed here reflect a computational role for the caudate nucleus in reward-biased decisions

that is distinct from the roles that have been identified previously.

The caudate nucleus’ likely role in coordinating a cognitive process, within the realm of a volun-

tary decision strategy, is reminiscent of the demonstration that microstimulation in the premotor

areas can evoke coordinated body movements, within the realm of natural defensive maneuvers

(Graziano et al., 2002). Together, these results suggest a general principle of brain organization,

such that motor or cognitive primitives are aggregated into behaviorally relevant combinations. Such

a hierarchical organization might facilitate learning and flexible adaptation of both motor and cogni-

tive behaviors (Brooks, 1986). Within the hierarchy, the coordinated “rew � estim” effects on drift

rates and relative bound heights, which measured changes in the reward-dependent biasing compo-

nents of the decision process, might reflect the contributions of a subset of caudate neurons to the

coordination of cognitive primitives. In contrast, the uncorrelated “estim” effects on drift rates and

relative bound heights, which measured changes in reward-independent biases in the decision pro-

cess, may reflect another subset of caudate neurons’ contributions to the implementation of those

primitives. These results thus suggest that the caudate nucleus may serve multiple decision-related

functions, consistent with the heterogeneous neural modulation patterns across the population

(Nakamura and Ding, 2017).

Our interpretation of the caudate nucleus’ roles was based on an algorithmic description of the

decision process using the DDM framework. Given current uncertainty in the field about the neural
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implementation of DDM-like decision processes (Lo and Wang, 2006; Rao, 2010; Schall, 2019;

Wei et al., 2015), more work is needed to understand how the caudate nucleus interacts with the

rest of the cortico-basal ganglia circuitry to implement these algorithms for sensory evidence- and

reward-dependent decisions. Here, we propose some possibilities for implementing the negatively

correlated Ddrift (rew) and Dbound (rew) that we observed, as follows.

First, Ddrift (rew) and Dbound (rew) could be implemented separately in the brain but then con-

verge in the caudate to be coordinated. Ddrift (rew) might reflect reward modulation of the sensory

representation in the middle temporal (MT) visual area, where microstimulation can induce choice

biases that depend on the average reward expectation for the two choices (Cicmil et al., 2015).

Such modulation might also be relayed from frontal or parietal regions to the caudate nucleus,

although existing data, obtained using a similar task with a fixed motion-viewing duration, argue

against the direct involvement by lateral intraparietal area (LIP) neurons in implementing reward-

dependent drift rate biases (Rorie et al., 2010). In contrast, Dbound (rew) might reflect reward con-

text-dependent activity in the caudate nucleus and elsewhere (including in the LIP), which can

emerge before stimulus onset (Coe et al., 2002; Ding and Gold, 2010; Ding and Hikosaka, 2006;

Ikeda and Hikosaka, 2003; Kobayashi et al., 2007; Lauwereyns et al., 2002a; Lauwereyns et al.,

2002b; Roesch and Olson, 2003; Rorie et al., 2010; Sato and Hikosaka, 2002).

Second, Ddrift (rew) and Dbound (rew) could be implemented as a reward context-dependent,

time-varying dynamic bias in the decision variable. The idea of a dynamic bias has been proposed to

account for the effects of prior information on perceptual decisions (Hanks et al., 2011). In our case,

the caudate nucleus may control the magnitude and time course of such a bias according to reward

context. A similar involvement of the caudate nucleus in the incorporation of prior information may

contribute to deficits observed in Parkinsonian patients (Perugini et al., 2016).

Third, coordinated Ddrift (rew) and Dbound (rew) might be equivalent to reward context- and

time-dependent asymmetric modulations of the two choice bounds. Although caudate activity does

not appear to reflect the final bound height at the time of decision (Ding and Gold, 2012b), the cau-

date nucleus may contribute to modulation of the bounds in the earlier phase of decision formation

to bias decisions toward the large-reward options. Future experiments with shorter-duration pertur-

bation delivered at different time points during motion viewing may provide further insights into the

caudate nucleus’ roles (Yartsev et al., 2018).

Fourth, Ddrift (rew) and Dbound (rew) might be implemented as reward modulation of network

connectivity in a recurrent cortico-basal ganglia network (Lo and Wang, 2006; Wei et al., 2015). It

would be interesting to test if and how perturbations of other components of this network (e.g. the

frontal and parietal cortical areas, superior colliculus) affect performance on our task.

Collectively, our results suggest that caudate neurons contribute causally to decisions that com-

bine asymmetric rewards and visual information. These contributions are diverse and complex, possi-

bly operating on different levels in hierarchical cognitive processes. Such diversity of functions might

partially explain the complicated nature of decision-making impairments with striatal dysfunction.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Software and
Algorithms

Python 3.5 Python
Software Foundation

https://www.python.org/

Software and
Algorithms

MATLAB Mathworks https://www.mathworks.com

Software and
Algorithms

Psychophysics
Toolbox

Kleiner et al., 2007 http://psychtoolbox.org/

Software and
Algorithms

Pandas v0.19.2 Python Data
Analysis Library

https://pandas.pydata.org/

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Software and
Algorithms

Scikit-learn
v0.18.1

Pedregosa et al., 2011 https://scikit-learn.org/stable/

Software and
Algorithms

Scipy v0.18.1 SciPy.org https://docs.scipy.org/doc/
scipy/reference/stats.html

Experimental model and subject details
We used two adult male rhesus macaques (Macaca mulatta) for this study. They were first trained

extensively on an equal-reward reaction-time random-dot motion discrimination task (Ding and

Gold, 2010; Ding and Gold, 2012a; Ding and Gold, 2012b) and then trained with the asymmetric-

reward contexts (Fan et al., 2018). All training and experimental procedures were in accordance

with the National Institutes of Health Guide for the Care and Use of Laboratory Animals and were

approved by the University of Pennsylvania Institutional Animal Care and Use Committee (protocol

#804726).

Method details
Behavioral task
Task details are reported elsewhere (Fan et al., 2018). Briefly, a trial began with a central fixation

point presentation (Figure 1A). Upon acquiring and maintaining fixation, two choice targets were

presented to inform the monkeys the two possible motion directions. After a random delay picked

from a truncated exponential distribution (mean = 0.7 s, range: 0.4–2.5 s), the fixation point was

dimmed and a random-dot kinematogram was shown at the center of the screen (“motion onset”).

For each trial, the kinematogram had a constant speed of 6˚/s, aperture size of 5˚, and randomly

interleaved motion direction and strength (five levels of coherence: 3.2, 6.4, 12.8, 25.6, 51.2%). The

monkey reported the perceived motion direction by making a self-timed saccade to the correspond-

ing choice target. A minimum 50 ms latency was imposed, although the monkeys rarely made fast-

guess responses during this study. Once the monkey’s gaze exited the fixation window (4˚ square

window), the kinematogram was extinguished. Once the monkey’s gaze reached the choice target

window (4˚ square window), a 400 ms minimum fixation time was imposed to register the monkey’s

choice. Correct choices were rewarded with juice. Error choices were not rewarded and penalized

with a timeout before the next trial (3 s for monkey F, 0.5–2 s for monkey C).

Two asymmetric reward contexts were alternated in a block design. In Contra-LR blocks, the

choice contralateral to the recording/stimulation site was paired with large reward (LR). In Ipsi-LR

blocks, the choice ipsilateral to the recording/stimulation site was paired with large reward. The

other choice was paired with small reward. At the start of each block, the choice targets were pre-

sented with different colors to signal the current reward context to the monkeys, followed by two

additional high-coherence trials to allow the monkeys to experience the current reward context.

These trials were excluded from analysis. For recording sessions, each block consisted of ~49 trials

for monkey C (IQR: 43–55) and 40 trials for monkey F (IQR: 36–55). For microstimulation sessions,

each block consisted of ~100 trials (IQR: 98–118) for monkey C and ~61 trials (IQR: 60–61) for mon-

key F. The large:small reward ratio was ~2:1 (2.02 ± 0.19) for monkey C for both recording and

microstimulation sessions. For monkey F, the large:small reward ratio was 3:2 (1.48 ± 0.13) for

recording sessions and 5:3 (1.65 ± 0.03) for microstimulation sessions. For monkey C, the average

small reward was 0.1 and 0.07 mL and the average large reward was 0.2 and 0.12 mL during record-

ing and microstimulation sessions, respectively. For monkey F, the average small reward was 0.2 and

0.12 mL and the average large reward was 0.29 and 0.25 mL during recording and microstimulation

sessions, respectively.
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Data acquisition
Eye position was monitored using a video-based system (ASL) sampled at 240 Hz. Single-unit record-

ings focused on putative projection neurons (Ding and Gold, 2010). We searched for task-relevant

neurons while the monkeys performed the equal-reward motion discrimination task with horizontal

dots motions and determined the presence of task-related modulation of neural activity by visual

and audio inspection of ~10–20 trials. For analyses of neural response properties in recording ses-

sions, only well-isolated single units were included. For analyses of microstimulation effects, sites

with either single- or multi-unit task-related modulations were used. Neural signals were amplified,

filtered and stored using a MAP acquisition system (Plexon, Inc), along with time-stamped event

codes, analog eye position signals and trial parameter values. Single-unit activity was identified by

offline spike sorting (Offline Sorter, Plexon, Inc). Multi-unit activity was measured using waveforms

that passed an offline amplitude threshold. For the microstimulation experiments, we first identified

a caudate site with task-related activity and then interleaved trials with and without microstimulation

pseudo-randomly at a 1:1 ratio. Electrical microstimulation was delivered during motion stimulus

presentation (negative-leading bipolar current pulses, 300 Hz, 50 mA, 250 ms pulse duration; from

motion onset until a saccade was detected). Caudate microstimulation with these parameters did

not evoke saccades (Ding and Gold, 2012b; Nakamura and Hikosaka, 2006a; Watanabe and

Munoz, 2010).

Quantification and statistical analysis
Neural data analysis
For each single/multi-unit dataset, we computed the average firing rates in seven task epochs

(Figure 1A): three epochs before motion stimulus onset (Epoch 1: 400 ms window beginning at tar-

get onset, Epoch 2: a variable window from target onset to motion onset, and Epoch 3: a 400 ms

window ending at motion onset), two epochs during motion viewing (Epoch 4: a fixed window from

100 ms after motion onset to 100 ms before median RT, and Epoch 5: a variable window from 100

ms after motion onset to 100 ms before saccade onset), a peri-saccade 300 ms window beginning at

100 ms before saccade onset (Epoch 6), and a post-saccade 400 ms window beginning at saccade

onset (Epoch 7; before feedback and reward delivery). For each unit, a multiple linear regression

was performed on the firing rates in correct trials, for each task epoch separately.

FR ¼ b0 þbChoice� IChoice þbRewCont � IRewContþbRewSize � IRewSize

þ bCoh�Contra� ICoh�Contraþ bCoh�Ipsi� ICoh�Ipsi

þ bRewCoh�Contra � ICoh�Contra� IRewSize þ bRewCoh�Ipsi � ICoh�Ipsi� IRewSize;

(1)

where

IChoice ¼
1 for contralateral choice

�1 for ipsilateral choice

�

;

IRewCont ¼
1 for contralateral� large reward blocks

�1 for ipsilateral� large reward blocks

�

;

IRewSize ¼
1 if a large reward is expected for the choice

�1 if a small reward is expected for the choice

�

;

ICoh�Contra ¼
absolute coherence for contralateral choice centered at mean valueð Þ
0 for ipsilateral choice

�

;

and

ICoh�Ipsi ¼
0 for contralateral choice

absolute coherence for ipsilateral choice centered at mean valueð Þ

�

:

Significance of non-zero coefficients was assessed using t-test (criterion: p=0.05).
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Behavioral analysis
Measuring microstimulation effects on choice using a logistic function
For each microstimulation session, a logistic function was fitted to the choice data for all trials:

Pcontra choice ¼
1

1þ e�Slope� CohþBiasð Þ
; (2)

where Coh is the signed motion coherence,

Slope ¼ slope0 þ sloperew �RewContþ slopeestim �Estim þ sloperew�estim �RewCont�Estim;

Bias ¼ bias0 þ biasrew�RewContþbiasestim�Estim þbiasrew�estim�RewCont�Estim ;

RewCont¼
1 for contralateral� large reward blocks

�1 for ipsilateral� large reward blocks

�

;

and

Estim¼
1 for microstimulation trials

0 for control trials

n

:

Significance of non-zero coefficients was tested using bootstrap methods by shuffling Estim values

across trials for each session 200 times (criterion: the experimental value is outside the 95% confi-

dence intervals for shuffled data).

Measuring microstimulation effects on RT using a linear function
RT was measured as the time from motion onset to saccade onset, the latter identified offline with

respect to velocity (>40˚/s) and acceleration (>8000˚/s2). A linear function was fitted to RT data for

correct trials:

RT ¼ rt0 þ Interceptrew�RewContþSloperew�RewCont�Cohabs

þInterceptestim�EstimþSlopeestim�Estim�Cohabs

þInterceptrew�estim�RewCont�Estim þSloperew�estim�RewCont�Estim�Cohabs;

(3)

where Cohabs is the absolute value of motion coherence. Significance of non-zero coefficients was

tested using t-test (criterion: p = 0.05).

Measuring microstimulation effects on both choice and RT using the drift-
diffusion model (DDM)
We also fitted the choice and RT data for all trials simultaneously to different variants of the drift-dif-

fusion model (DDM; Figure 4A). The basic DDM assumed that the decision variable (DV) is the time

integral of evidence (E), which was modeled as a Gaussian distributed random variable,

E~N k � coherence; 1ð ÞandDV¼

Z

E dt

The scale parameter k controlled the drift rate. At each time point, the DV was compared with

two collapsing choice bounds (Zylberberg et al., 2016). The time course of the choice bounds was

specified as a= 1þ eb alpha t�b dð Þ
� �

, where b alpha and b d controlled the rate and onset of decay,

respectively. Note that the effects of collapsing bounds can be equivalently implemented by adding

a choice-independent urgency signal (Drugowitsch et al., 2012; Churchland et al., 2008). If DV

crossed the upper bound first, a contralateral choice was made; if DV crossed the lower bound first,

an ipsilateral choice was made. RT was modeled as the sum of the time till first bound crossing and

saccade-specific non-decision times that accounted for evidence-independent sensory/motor delays

(t_contra and t_ipsi). Two types of biases were used to account for reward asymmetry-induced

biases, a bias in drift rate (me) and a bias in the relative bound heights (z) (Fan et al., 2018).

DDM model fitting was performed, separately for each session, using the maximum a posteriori

estimate method (python v3.5.1, pymc 2.3.6) and prior distributions suitable for human and monkey
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subjects (Wiecki et al., 2013). We performed at least five runs for each variant and used the run

with the highest likelihood for further analyses.

We used eight variants of the DDM model: in the “Full” model, all parameters were allowed to

vary by reward context and microstimulation status; in the “NoEstim” model, all parameters were

allowed to vary by reward context, but not microstimulation status (Figure 5—figure supplement

2A); in the “NoCollapse” model, b alpha and b d were fixed across microstimulation status; in the

“NoA”, “NoK”, “NoME”, and “NoZ” models, a, k, me, and z were fixed across microstimulation sta-

tus, respectively; and in the “NoT0” model, saccade-specific non-decision times (t_contra and t_ipsi)

were fixed across microstimulation status (Figure 5—figure supplement 2B and C). We used the

Akaike information criterion (AIC) for model comparisons, with lower values indicating more parsi-

monious model variants.

For a given DDM parameter (Para), we parsed the different effects as follows (LR: large reward):

DPara baseð Þ ¼ Paracontra�LR; no estimþParaipsi�LR; no estim

� �

=2

DPara rewð Þ ¼ Paracontra�LR; no estim � Paraipsi�LR; no estim

� �

=2

DPara estimð Þ ¼ Paracontra�LR;estimþParaipsi�LR;estim �Paracontra�LR;no estim�Paraipsi�LR; no estim

� �

=2

DPara rew� estimð Þ ¼ Paracontra�LR;estim�Paraipsi�LR;estim�Paracontra�LR;no estimþParaipsi�LR;no estim

� �

=2

Generating predictions for hypothesized reward context-microstimulation
interaction effects on drift rate and bound height
We simulated four types of microstimulation effects (Figure 4). For all simulations, we assumed that,

Dbound rewð Þ ¼ g�Ddrift rewð Þ þ d;

�drift ¼mean Ddrift rew� estimð Þð Þ; sdrift ¼ std Ddrift rew� estimð Þð Þ;

�bound ¼meanð Dboundðrew� estimÞ Þ; sbound ¼ stdð Dboundðrew� estimÞ Þ;

where g and d are the slope and intercept measured from linear regression of Ddrift (rew) and

Dbound (rew) in the experimental data (Figure 5B). Dbound (rew) for different sessions (colors in

Figure 4B) were set as equally spaced values within the range for the experimental data.

For the simulations in Figure 4C,

Ddrift rew� estimð Þ ~Normal 0; sdrift

� �

;

Dbound rew� estimð Þ ~Normal 0; sboundð Þ;

For the simulation in Figure 4D,

Ddrift rew� estimð Þ ~Normal �drift ; sdrift

� �

;

Dbound rew� estimð Þ ~Normal �bound; sboundð Þ;

For the simulation in Figure 4E,

Ddrift rew� estimð Þ ~Normal �drift ; sdrift

� �

;

Dbound rew� estimð Þ ~g�Ddrift rew� estimð ÞþNormal 0; sbound �g� sdrift

� �

;

For the simulation in Figure 4F,

Ddrift rew� estimð Þ ~k�Ddrift rewð Þ þ m þNormal 0; sdrift=2
� �

;
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Dbound rew� estimð Þ ~g�Ddrift rew� estimð ÞþNormal 0; sbound=2ð Þ;

where k and m are slope and intercept, respectively, measured from linear regression of

Ddrift rew� estimð Þ and Ddrift rewð Þ in the experimental data. The noise terms are reduced to account

for variations in Ddrift rewð Þ.

Ddrift (rew � estim) and Dbound (rew � estim)
We performed three shuffling-based control analyses (Figure 6). For data shown in Figure 6B–D, we

pooled the fitted DDM values across reward-microstimulation conditions and sessions for each

parameter, resampled from these values with replacement for each session and reward-microstimu-

lation condition, simulated sessions with matched numbers of trials for each condition using the

resampled parameter values, and re-fitted these simulated data with the Full and NoCollapse DDM

models (“Shuffle 1”). For data shown in Figure 6E, we performed 200 iterations of shuffling for three

types of schemes. For “Shuffle 2”, we shuffled the fitted me and z values for trials with and without

microstimulation across sessions. For “Shuffle 3”, we kept the me and z values for trials without

microstimulation and shuffled me and z values independently for trials with microstimulation. For

“Shuffle 4”, we kept the me and z values for trials without microstimulation and shuffled the session

identity for paired me and z values for trials with microstimulation. The fitted values from the simu-

lated/shuffled data were parsed in the same way as those from the experimental data. We consid-

ered the experimental result to be significantly different from shuffled results if the former was

outside the 95% confidence intervals of the latter.

Relating microstimulation effects to neural selectivity and the monkeys’
voluntary strategy
For the microstimulation experiments, we recorded single- or multi-unit activity before microstimula-

tion and performed the multiple linear regression in Equation 1 for each unit separately. The regres-

sion coefficients were normalized by b0 in the regression, which measured the average firing rates.

These b values indexed the neural selectivity for different task-related regressors. If more than one

unit was recorded at a site, for each regressor, we used the b value associated with the lowest p

value (i.e. most reliable modulation).

We derived two principal components (PCs) from Ddrift (rew, no estim) and Dbound (rew, no

estim) values (Figure 7A and B, left). The projections of Ddrift (rew, no estim) and Dbound (rew, no

estim) values onto the two PCs indexed the effects of reward context on the monkeys’ voluntary

strategy in each session, relative to their average tendencies across sessions.

We projected Ddrift (rew � estim) and Dbound (rew � estim) values onto the same two PCs

(Figure 7A and B, right). These projections indexed the microstimulation effects in each session, rel-

ative to the monkeys’ average tendencies in their reward context-dependent voluntary strategy

across sessions. We then performed the following multiple linear regression:

Projection of rew � estimð Þ values ¼ a0þbChoice�aChoiceþbRewCont �aRewCont þbRewSize �aRewSize

þ bCoh�Contra�aCoh�Contraþ bCoh�Ipsi�aCoh�Ipsi

þ bCohRew�Contra�aCohRew�Contraþ bCohRew�Ipsi �aCohRew�Ipsi

þProjection of rew; no estimð Þ values �aprojection

(4)

The a values (except for a0) measured the dependence of microstimulation effects on neural

selectivity and the monkeys’ daily variations in their voluntary strategy. Significance of a values was

assessed by comparing the experimental value with their corresponding null distributions. The null

distributions were estimated using 1000 iterations of regression based on shuffled independent vari-

ables. The number of iterations with values exceeding the experimental values was used to estimate

p values for regression coefficients (Figure 7C) and explained variance (Figure 7D). A criterion of

p<0.0125 was used to correct for multiple regressions (0.05/4 regressions).
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