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a b s t r a c t 

Strong infectivity enables coronavirus disease 2019 (COVID-19) to rage throughout the 

world. Moreover, the lack of drugs with definite therapeutic effects further aggravates 

the spread of the pandemic. Remdesivir is one of the most promising anti-severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2) drugs. However, the limited clinical effects 

make its therapeutic effect controversial, which may result from the poor accumulation 

and activation of remdesivir in the lung. Therefore, we developed lyophilized remdesivir 

liposomes (Rdv-lips) which can be reconstituted as liposomal aerosol for pulmonary 

delivery to improve the in vivo behavior of existing remdesivir cyclodextrin conclusion 

compound (Rdv-cyc) injections. Liposome encapsulation endowed remdesivir with much 

higher solubility and better biocompatibility. The in vitro liposomal aerosol characterization 

demonstrated that Rdv-lips possessed a mass median aerodynamic diameter of 4.118 μm 

and fine particle fraction ( < 5 μm) higher than 50%, indicating good pulmonary delivery 

properties. Compared to the Rdv-cyc intravenous injection group, the Rdv-lips inhalation 

group displayed a nearly 100-fold increase in the remdesivir-active metabolite nucleotide 

triphosphate (NTP) concentration and better NTP accumulation in the lung than the Rdv-cyc 

inhalation group. A faster transition from remdesivir to NTP of Rdv-lips (inhalation) could 

also be observed due to better cell uptake. Compared to other preparations, the superiority of 

Rdv-lips was further evidenced by the results of an in vivo safety study, with little possibility 

of inducing inflammation. In conclusion, Rdv-lips for pulmonary delivery will be a potent 

formulation to improve the in vivo behavior of remdesivir and exert better therapeutic effects 

in COVID-19 treatment. 
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1. Introduction 

First appearing in late 2019, the status of the pandemic
of coronavirus disease 2019 (COVID-19) is still serious and
affecting more than 200 countries and regions [1 ,2] . The
pandemic is caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) with high infectiousness [3–5] ,
leading to various symptoms from asymptomatic disease
to pneumonia and life-threatening complications, including
acute respiratory distress syndrome, multisystem organ
failure, and ultimately death [6–9] . As of August 13, 2021, more
than 206 million coronavirus cases and 4.3 million deaths
were reported [2] . The rapid mutation of the virus made the
pandemic situation more severe, and threw out a challenge
to vaccine development, which led to a more urgent need for
other ways to control the COVID-19. Unfortunately, although
extensive clinical trials for COVID-19 have been carried out,
few antiviral drugs have been proven to be effective in a
strict randomized, double-blind, placebo-controlled study [10] .
Therefore, it is an immediate problem to develop drugs with
definite therapeutic effects on COVID-19. 

Remdesivir (Veklury®) was the first drug approved by the
U.S. Food and Drug Administration (FDA) for the treatment of
COVID-19 [11] . However, it was originally a nucleotide prodrug
developed by Gilead Sciences, Inc. against Ebola virus (EBOV)
[12] . Through intracellular metabolic activation, remdesivir
converts to active nucleoside triphosphate (NTP), which can
incorporate into nascent viral RNA chains and interfere
with RNA-dependent RNA polymerase (RdRp), leading to the
premature termination of viral RNA transcription and finally
the inhibition of virus replication [6 ,13–16 ]. Further studies
demonstrated that remdesivir was a broad-spectrum antiviral
agent with satisfactory activity against a wide array of
RNA viruses, including coronaviridae (such as SARS-CoV and
MERS-CoV), paramyxoviridae (such as Nipah virus, respiratory
syncytial virus, and Hendra virus), and filoviridae (such as
Ebola virus) [14 ,15 ,17–19 ]. SARS-CoV-2 is highly homologous
to SARS-CoV [20] in terms of both genome (79.6%) and amino
acid sequences of seven conserved nonstructural proteins
(94.4%) [21] . Thus, remdesivir was tested as a candidate
drug for COVID-19. The in vitro antiviral experiments and
compassionate use in COVID-19 patients gave encouraging
results for remdesivir [15 ,22] , and it was approved for the
treatment of COVID-19 requiring hospitalization on October
22, 2020 [11] . 

Unlike EBOV, the leading cause of death among SARS-
CoV-2-infected people is acute respiratory distress syndrome
(ARDS) [23] instead of severe systemic disease [24 ,25] ,
indicating that the treatment for COVID-19 should focus
on the respiratory system, especially the lung. However,
remdesivir was not able to exert fully a therapeutic effect
in the lung because of poor accumulation after intravenous
injection and low expression of the enzymes necessary
for activation [26 ,27] . In fact, a growing body of evidence
suggests that remdesivir also does not achieve optimal
results in COVID-19 patients [28] . On the other hand,
the dose regimen for remdesivir is 200 mg administered
intravenously on the first day, followed by 100 mg daily for 4–9
consecutive days [6] . The low water solubility ( < 0.03 mg/ml)
[29] of remdesivir, which cannot be satisfied with the
relatively large administration dosage, will raise difficulties
for the preparation process. Gilead Sciences, Inc. used the
cyclodextrin inclusion technique to increase the solubility of
remdesivir. A 30-fold of sulfobutyl ether- β-cyclodextrin (SBE-
β-CD) was used to ensure the complete inclusion of remdesivir
[30] . The direct entry of a large amount of SBE- β-CD into the
bloodstream limited the use of remdesivir in patients with
renal insufficiency [30–32] . In addition, the intravenous route
is not commonly used for self-administration of medicine,
which would limit its application under the shortage of
medical resource. Therefore, an improved delivery method
for remdesivir with increased solubility, optimized in vivo
behavior and convenient administration route is urgently
needed. 

Pulmonary delivery of remdesivir through inhalation
administration is an appropriate strategy that can bypass the
serious liver first-pass effect for remdesivir and considerably
increase the drug concentration in the lung [33–35] . More
drugs accumulating in the lung also lead to a reduction in
dosage and a decrease in systemic side effects [36–38] . Other
benefits of pulmonary delivery include a large absorption area,
rapid onset of pharmacological action and good compliance
[39 ,40] . Liposome is an emerging carrier for pulmonary drug
delivery [41–43] . It has outstanding biocompatibility with
alveolar surfactants, whose main components are also lipids
(90%) [44 ,45] . Through liposome encapsulation and pulmonary
administration, the preparation of remdesivir combined the
advantages of both liposomes and inhalant. The solubility and
stability of remdesivir can be enhanced through incorporation
into the lipid bilayer of liposomes. At the same time, liposomes
also help to reduce the stimulation of remdesivir in the
respiratory tract and lung. Direct delivery of remdesivir into
the lung by liposomal aerosols ensures a higher accumulation
and longer retention time of the drug in disease lesions,
which will be beneficial for the enhanced therapeutic effect
of remdesivir against SARS-CoV-2. 

In this study, we developed remdesivir liposome (Rdv-lips)
aerosols, which can be supplied in the form of lyophilized
liposome powder and reconstituted to liposomal suspension
for pulmonary delivery. The Rdv-lips exhibited not only good
drug-loading capacity and aerodynamic properties, but also
improved in vivo behavior with a much higher concentration
of NTP in the lung as illustrated in Scheme 1 . All these
results provide promising prospects for Rdv-lips aerosols to
be applied in COVID-19 treatment with enhanced therapeutic
effects. 

2. Materials and methods 

2.1. Materials 

Remdesivir with more than 97% purity was furnished
from Nanjing Kang Chuan Ji Pharmaceutical Co., Ltd.
(Nanjing, China). Sulfobutyl ether- β-cyclodextrin (SBE-
β-CD) was purchased from Qianhui Biotechnology Co.,
Ltd. (Shandong, China). Both 1,2-dipalmitoyl-sn-glycero-
3-phosphocholine (DPPC) and 1,2-distearoyl-sn-glycero-
3-phosphoethanolamine-N-[methoxy(polyethylene glycol)
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Scheme 1 – Schematic illustration of the Rdv-lips aerosol 
inhaled into lung. The Rdv-lips suspension is atomized and 

then inhaled into lung to increase the drug accumulation. 
After depositing at alveoli, the Rdv-lips are taken by the 
alveolar epithelial cells rapidly due to the better 
cytocompatibility and high loading rate of Rdv-lips. All 
these above lead to a sustained higher concentration of 
active metabolite NTP in lung. 
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2000] (DSPE-PEG2000) were purchased from Shanghai AVT 

harmaceutical Technology Co., Ltd. (Shanghai, China).
holesterol and trehalose were purchased from Sigma- 
ldrich Co., Ltd. (Jiangsu, China). 1,1 ′ -dioctadecyl-3,3,3 ′ ,3 ′ - 

etramethylindotricarbocyanine iodide (DiR) was purchased 

rom Thermo Fisher Scientific Inc. (Shanghai, China). A 

emdesivir triphosphate standard (NTP, GS-443902) was 
urchased from Shanghai Biochempartner Co., Ltd. (Shanghai,
hina). Sofosbuvir triphosphate internal standard (PSI-7409) 
as purchased from MedChemExpress LLC. (Shanghai,
hina), and interleukin-6 (IL-6), interleukin-10 (IL-10) and 

umor necrosis factor- α (TNF- α) ELISA kits were purchased 

rom MULTI Science Biotech Co., Ltd. (Hangzhou, China). A 

igh mobility group box 1 protein (HMGB-1) ELISA kit was 
urchased from Elabscience Biotechnology Co., Ltd. (Wuhan,
hina). A549 cells and fetal bovine serum were purchased 

rom Nanjing KeyGEN Biotech Co., Ltd. (Nanjing, China).
PMI-1640, trypsin and penicillin-streptomycin solution were 
urchased from Nanjing FcmacsBiotech Co., Ltd. (Nanjing,
hina). 

.2. Preparation of Rdv-lips and Rdv-cyc 

dv-lips were prepared by a film hydration method. Lipids 
DPPC: cholesterol: DSPE-PEG2000 = 7:2:1) and remdesivir 
ere dissolved in chloroform solutions with different 

emdesivir concentrations and then dried at 45 °C by a 
otary evaporator (Nanjing Keer Instrument Equipment Co.,
td., Nanjing, China) for 2 h to form a thin film, followed by 
he addition of pH 6.5 PBS to hydrate the film for 40 min.
he film solution was treated with a micro ultrasonic probe 

Scientz Biotechnology Co., Ltd., Ningbo, China) at 200 W for 
0 min. The unencapsulated drugs were removed through 

ltrafiltration (MWCO = 3500 Da) by centrifuging at 8000 rpm 

or 10 min. The prepared Rdv-lips were freeze-dried by an 

GJ-18C lyophilizer (Sihuan Scientific Instrument Co. Ltd.,
eijing) with the addition of trehalose (5%, w/w) to obtain 

hite solid powder for long-term storage. 
Rdv-cyc was prepared by the following steps. SBE- β-CD 

as weighed and dissolved in water, and then the solution 

as acidified by the addition of HCl (1 mol/l). Remdesivir 
as added and stirred until it completely dissolved, and 

he pH was adjusted to 4 by sodium hydroxide (1 mol/l). A 

ertain procedure was followed to freeze and freeze-dry the 
emdesivir solution to obtain a white solid powder [29] . All the 
dv-lips samples and Rdv-cyc samples used in experiments 
ere reconstituted from lyophilized powder unless otherwise 

ndicated. 
The DiR-cyc and DiR-lips were prepared using the same 

ethod with Rdv-cyc and Rdv-lips, respectively, by replacing 
emdesivir with DiR. 

.3. Characterization 

he average particle size, polydispersity index (PDI), and ζ - 
otential of liposomes were measured with a dynamic laser 
catter instrument (Brookhaven Instruments, Holtsville, NY) 
t room temperature based on the operating guidelines of 
ynamic light scattering (DLS). 

Morphological observation of the samples was performed 

y JEM-1230 TEM (Tokyo, Japan) with an accelerating voltage 
f 200 kV. The Rdv-lips used in TEM examination were fresh 

repared liposome suspension to remove the influences of 
ryoprotectant. Before the TEM examination, a drop of the 
ample was deposited on the carbon network and stained 

ith 2% (v/v) phosphortungstic acid for 3 min. The excess 
amples and liquid were removed with filter paper and then 

ried at 25 °C. 
The encapsulation efficiency (EE) and drug loading 

fficiency (DL) of Rdv-lips were determined by ultraviolet 
UV) spectrophotometry (Shimadzu, Suzhou, China) at a 
avelength of 245 nm. Before measurement, the liposomes 
ere diluted with methyl alcohol to the appropriate 

oncentration. EE and DL were calculated using the following 
quations: 

E (%) = 

W e 

W t 
× 100% 

L (%) = 

W e 

W e + W 1 
× 100% , 

here W t , W e , and W l are the weight of the drug fed to the
iposomes, the detected weight of the drug encapsulated in 

he liposomes, and the weight of the lipid added to the system,
espectively. 

.4. Drug release 

rug release was performed by a dialysis method using 
n RC806D dissolution tester (TDTF, Tianjin, China). An 

ppropriate amount of different Rdv-lips suspension (Freshly 
repared Rdv-lips: Rdv-lips suspension prepared before the 
issolution test without lyophilization; Lyophilized Rdv- 

ips: Rdv-lips freeze-dried powder reconstituted by saline; 
yophilized Rdv-lips after atomization: Rdv-lips suspension 

ollected after atomization of reconstituted Rdv-lips freeze- 
ried powder.) equivalent to 0.45 mg remdesivir was added 

nto a dialysis tube (MWCO 3500 Da) and incubated with 
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200 ml simulated lung fluid (SLF) at 37 °C with a stirring speed
of 50 RPM. SLF was prepared according to previous reports
[46 ,47] . Aliquots were drawn at predetermined time points
(5, 10, 15, 30, 60, 120, 240 and 360 min), and the medium
was immediately replenished with fresh SLF. The release of
remdesivir at different time points was measured by high-
performance liquid chromatography (HPLC) which details
were provided in the supplementary information. 

2.5. Stability 

The stability of Rdv-cyc solution under different temperature
was measured by HPLC. Rdv-cyc solution was kept at 10 °C,
25 °C and 40 °C separately and aliquots were drawn at
predetermined time points (0, 2, 6 and 24 h). The HPLC
analysis method was the same as that described in “2.4.
Drug Release”. The total impurities content was calculated
by area normalization method. The stability of Rdv-lips
evaluation lasted for 10 d. The freeze-dried powder of Rdv-
lips was reconstituted with RO water, saline, and pH 6.5 PBS,
respectively, and stored at 4 °C and 25 °C. At predetermined
time points (0, 6, 12, 24, 36, 48, 72, 96 and 240 h), the samples
were withdrawn and determined size and PDI as described
above. 

The long-term stability of lyophilized Rdv-lips lasted for 6
months. The freeze-dried powder of Rdv-lips was stored at
4 °C and was reconstituted at predetermined time point to
measure the size, PDI, EE and DL as described above. 

2.6. In vitro aerosol characterization 

The size distribution of aerodynamic particles was measured
by Next Generation Impactor (NGI)-120 (Copley Scientific
Ltd., UK). The NGI was operated at a flow rate of 15 l/min
using a high capacity pump precooled to 5 °C for 90 min.
Four milliliters of Rdv-lips suspension or Rdv-cyc solution
was nebulized into the NGI. After 10 min of atomization, the
sample plates of stages 0–7 and the filter paper of the micro-
orifice collector (MOC) were washed with methyl alcohol to
collect the sample. All the samples were centrifuged at 8000
RPM for 5 min, and the supernatant was collected for HPLC
determination. The mass median aerodynamic diameter
(MMAD), fine particle fraction (FPF) and geometric standard
deviation (GSD) were calculated by Copley Inhaler Testing
Data Analysis Software (Version 3.10). 

The BPS1100 breath simulator (Copley Scientific Ltd., UK)
and filter device were installed according to the guidelines.
Two milliliters of Rdv-lips suspension or Rdv-cyc solution was
added to the atomization cup. The breath simulator was set
to adult mode (breathing rate: 15 cycles/min, tidal volume:
500 ml and ratio of inhalation to exhalation time 1:1). The
samples of the first stage (the first minute) and the second
stage (the remaining time) were collected by washing the
filter paper with methyl alcohol. Then, the samples were
centrifuged at 8000 RPM for 5 min to collect supernatant for
HPLC determination. 

2.7. Cell culture 

A549 cells were cultured in RPMI 1640 medium containing
a combination of 10% fetal bovine serum and 1% penicillin
streptomycin at 37 °C with 5% CO 2 . Trypsin was used for cells
harvested. 

2.8. Laboratory animal care 

All experimental animals were purchased from the Sino-
British SIPPR/BK Lab. Animal Ltd. (Shanghai, China) and
were cared for in accordance with the Principles of
Experimental Animal Care and Guide for the Care and
Use of Laboratory Animals. All animal experiments were
carried out in accordance with the plan approved by the
China Pharmaceutical University Institutional Animal Care
and Use Committee. 

2.9. In vivo pharmacokinetics and tissue distribution 

Normal BALB/c mice (male, 18–22 g) were treated with
Rdv-cyc (intravenous injection), Rdv-cyc (transtracheal
injection), or Rdv-lips (transtracheal injection) at a remdesivir
dosage of 20 mg/kg per mouse. For the determination of
NTP pharmacokinetics in the lung, the mice ( n = 3) were
ordinally sacrificed to isolate the lung tissue at predetermined
time points (1, 2, 4, 8, 12 and 24 h). Precold extraction buffer
containing 0.1% potassium hydroxide and 67 mM EDTA in 70%
methanol [14] and 0.2 μM sofosbuvir triphosphate (internal
standard) was added and homogenized. The homogenate was
centrifuged at 20 000 g for 20 min, and then the supernatants
were collected and dried in a centrifugal vacuum concentrator
(Labconco Corporation, USA). The dried samples were
reconstituted with 100 μl mobile phase and then centrifuged
at 20 000 g for 20 min. The NTP concentration in supernatants
was determined by LC/MS/MS experiments, which details
were provided in the supplementary information. For the
determination of NTP tissue distribution, the mice ( n = 6)
were ordinally sacrificed to isolate the tissue (the heart, liver,
spleen, lung, kidney, brain, and testis) at predetermined time
points (4 h and 24 h). The sample treatment method and
LC/MS/MS method were the same as above. 

2.10. In vitro cell uptake 

The cell uptake experiment was performed on A549 cells, a
cell line derived from a human adenocarcinoma of the lung,
which resemble type II alveolar epithelial cell [48] and are
widely used in the study of the drug delivery and metabolic at
the pulmonary epithelium [49–51] . A549 cells were inoculated
in 12-well plates at a density of 1 × 10 5 cells per well and
cultured for 24 h. The DiR-cyc and DiR-lips were added into 12-
well plates at a fixed concentration of 0.1 μg/ml DiR. After 1 h,
2 h and 4 h co-cultured, the cells were washed with cold PBS
for 3 times and resuspended in 500 μl of PBS for flow cytometry
analysis (Accuri C6, BD, America). 

2.11. In vivo safety study 

To evaluate the in vivo safety of different preparations, thirty
normal BALB/c mice (male, 18–22 g) were randomly divided
into five groups ( n = 6) and received control (saline, inh.,
once a day), blank lips (blank liposomes 100 mg/kg, inh.,
once a day), Rdv-cyc (remdesivir 20 mg/kg, i.v., once a day),



776 Asian Journal of Pharmaceutical Sciences 16 (2021) 772–783 

Table 1 – Characterization of liposomes with different drug/lipid ratios. 

Drug/Lipid ratio 1:5 1:10 1:15 1:20 1:30 

Diameter (nm) 116.5 ± 1.1 113.6 ± 1.2 123.2 ± 1.9 127.5 ± 1.3 126.9 ± 0.8 
PDI 0.234 ± 0.041 0.157 ± 0.035 0.122 ± 0.040 0.130 ± 0.070 0.202 ± 0.029 
EE (%) 62.41 69.62 67.15 89.10 83.93 
DL (%) 11.10 6.51 4.28 4.27 2.72 
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dv-cyc (remdesivir 20 mg/kg, inh., once a day) and Rdv-lips 
remdesivir 20 mg/kg, inh., once a day) treatments. The Rdv- 
ips and Rdv-cyc were prepared as described above, and the 
wo inhalation groups were administrated by intratracheal 
nstillation [52 ,53] . The body weight was measured every 2 d 

uring the treatment period. Ten days after administration,
he mice were sacrificed to isolate the major tissues for 
ematoxylin-eosin staining (H&E) analysis. Serum, lung tissue 
omogenate and bronchoalveolar lavage fluid (BALF) were 
ollected for enzyme-linked immunosorbent assay (ELISA). 

.12. H&E stain 

he histomorphology of different tissues was detected using 
&E (Cat: C0105S; Beyotime) kits and performed according 

o the standard instructions. The isolated tissues were fixed 

n 4% paraformaldehyde and paraffin-embedded to prepare 
 μm sections. The sections were observed under an optical 
icroscope (Ts2R, Nikon, Japan) to provide a final report in 5 

epresentative fields. 

.13. ELISA 

L-6, IL-10, TNF- α and HMGB-1 levels in serum, BALF 
ere measured using mouse ELISA Kits according to the 
anufacturer’s instructions. The levels of these cytokines 
ere measured by Varioskan Flash (POLARstar, Omega,
ermany). 

.14. Statistical analysis 

ata are presented as the mean ± standard deviation (SD).
tatistical analysis was conducted by one-way analysis of 
ariance (ANOVA), and a P value less than 0.05 was considered 

ignificant. 

. Results and discussion 

.1. Preparation and characterization 

n this study, Rdv-lips aerosol was developed to improve the 
n vivo behavior of the existing Rdv-cyc injection. Liposomes,

hich exhibit excellent biocompatibility, biodegradability 
nd drug loading ability [54] , were chosen as solubilizer 
f remdesivir to replace SBE- β-CD. Half of the lipid that 
omprises 90% of pulmonary surfactant is DPPC [44 ,45] .
herefore, DPPC was employed as the main liposome material 

or better biocompatibility. 
Rdv-lips were prepared by film hydration followed by 

he probe supersonic method. A series of Rdv-lips with 
ifferent drug/lipid ratios were prepared to study the effect 
f remdesivir on liposomes ( Table 1 ). The encapsulation of 
emdesivir modestly increased the size of liposomes from 

05.4 ± 1.7 nm (blank liposomes) to approximately 120 nm 

nd showed a negligible influence on zeta potential (from - 
.46 ± 1.42 mV (blank liposomes) to approximately -7 mV).
he nanoscale of the liposomes could help it to evade 

he clearance of macrophages [55 ,56] . Through liposome 
ncapsulation, the solubility of remdesivir could be increased 

ramatically with DL up to 11.10% ( Table 1 ). This enabled the
eduction of excipients compared to Rdv-cyc which needed as 
igh as 30-fold cyclodextrin to ensure the complete inclusion 

ccording to the product description of Gilead Sciences, Inc 
30] . The spherical morphology and uniform size of Rdv-lips 
ere confirmed by TEM, and a smaller size of approximately 

0 nm of Rdv-lips was observed in Fig. 1 B, which might be the
esult of losing the hydrated layer during sample preparation.

.2. In vitro stability and drug release 

he stability of Rdv-cyc solution was investigated by HPLC 

ethod. The total impurities increased quickly over time 
ven at a lower temperature (Table S1), indicating a poor 
tability of remdesivir in solution consistent with the previous 
eport [57 ,58] . To maintain the stability of liposomes during 
ong-term storage, the Rdv-lips could be lyophilized in the 
resence of cryoprotectants, such as trehalose and lactose.
yophilization also helped to concentrate the liposomes 
o meet the requirement of administration dosage. After 
yophilization, the size of Rdv-lips increased to 238.1 ± 3.2 nm 

ith a slight decrease in EE and DL (Table S2). Reconstitution 

ith an appropriate solvent would help to ensure the 
tability and uniformity of the preparation during ultrasonic 
tomization and storage. The size and PDI of the liposomes 
econstituted with different solvents and stored at room 

emperature (25 °C) or low temperature (4 °C) were measured 

t predetermined time points ( Fig. 1 D and Fig. 1 E). While
n increase in size was observed in the reconstituted 

reparation, the liposomes displayed excellent stability in all 
hree kinds of solvents (water, saline and pH 6.5 PBS) with 

light variations ( < 5%) in size and small PDI values, which 

rovided a basis to avoid aggregation and sedimentation 

uring ultrasonic atomization. On the other hand, the long- 
erm stability of lyophilized Rdv-lips was further evidenced by 
he stable size, PDI and negligible leakage of remdesivir from 

iposomes measured after a 6-month storage (Table S3). The 
ood stability of Rdv-lips provides prospects for large-scale 
ndustrial production. 

The release profile was further investigated in SLF [46 ,47] 
ased on HPLC assay. Remdesivir was released from freshly 
repared liposomes at a moderate speed, and more than 85% 
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Fig. 1 – Characterization. (A) Size distributions of freshly prepared Rdv-lips. (B) TEM images of freshly prepared Rdv-lips 
under different scales. (C) In vitro release profile of different Rdv-lips in SLF at 37 °C (mean ± SD, n = 3). Freshly prepared 

Rdv-lips is Rdv-lips suspension prepared before the dissolution test without lyophilization; Lyophilized Rdv-lips is Rdv-lips 
freeze-dried powder reconstituted by saline; Lyophilized Rdv-lips after atomization is Rdv-lips suspension collected after 
atomization of reconstituted Rdv-lips freeze-dried powder. In vitro stability of lyophilized Rdv-Lips reconstituted by reverse 
osmosis water, saline and pH 6.5 PBS at (D) 25 °C or (E) 4 °C (mean ± SD, n = 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 – Drug deposition rate of the Rdv-lips suspension 

aerosol and Rdv-cyc solution aerosol at different stages. 
Data are expressed as the mean ± SD ( n = 3). 

Table 2 – Particle size distribution of Rdv-lips suspension 

aerosol and Rdv-cyc solution aerosol. Data are expressed 

as the mean ± SD ( n = 3). 

Aerosols Rdv-lips Rdv-cyc 

MMAD (μm) 4.118 ± 0.104 3.590 ± 0.142 
FPF (%) 56.893 ± 0.443 64.271 ± 2.284 
GSD 2.124 ± 0.030 2.155 ± 0.085 

 

 

 

of the drugs were released in 6 h ( Fig. 1 C). Lyophilization was
reported to change the size, morphology and bilayer structure
of liposomes, and finally affected the release profile [59] .
Lyophilized Rdv-lips showed a slower release rate at the early
periods and a slightly higher total release amount ( > 90%). The
changes of release profile maybe caused by the interaction
between cryoprotectants and the lipid bilayer [60 ,61] . 

3.3. In vitro aerosol characterization 

The aerodynamic diameter of an airborne particle is the key
property that directly affects drug deposition and clinical
efficacy. Particles with a mass median aerodynamic diameter
between 1 μm and 5 μm can easily reach the lower respiratory
tract and deposit on the surface of the trachea, bronchi and
alveoli. Out of this range, larger particles tend to deposit in the
oropharynx and upper respiratory tracts, and smaller particles
will be eliminated from the lung during exhalation [45 ,62] . 

To determine the in vitro aerodynamic behavior of the
drug particles, the Rdv-lips suspension was nebulized into
NGI. Previous studies reported that solutions of cyclodextrin
inclusion compound could undergo aerosolization and
produce droplets with appropriate size for pulmonary
delivery [63] . Therefore, Rdv-cyc solution was chosen as the
control group to observe the effect of liposomal vehicles on
aerodynamic parameters better. According to Fig. 2 , compared
to Rdv-cyc, the size distribution of Rdv-lips shifted slightly to
the left, which meant that liposomes lead to an increase in
the aerodynamic diameter of airborne particles [64] . FPF of
Rdv-lips exhibited that more than 50% of the aerosol particles
were below 5 μm. The MMAD of Rdv-lips was 4.118 ± 0.104 μm.
GSD was ∼2, which indicated a narrow distribution for Rdv-
lips [64] . Although these two formulations were different in
MMAD, FPF, and GSD, they both possessed good characteristics
for pulmonary delivery ( Table 2 ). 
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Table 3 – Delivery rate and total delivery amount of 
the Rdv-lips suspension aerosol and Rdv-cyc solution 

aerosol. 

Aerosols Rdv-lips Rdv-cyc 

Delivery rate (mg/min) 0.360 0.272 
Total delivery amount (mg) 3.905 2.206 
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The study of delivery rate and total delivery amount was 
onducted by a respiratory simulator and filtration system to 
urther investigate the delivery properties of liposomes. Rdv- 
ips showed a faster delivery rate and higher total delivery 
mount than Rdv-cyc, indicating better pulmonary delivery 
roperties for Rdv-lips with less loss of drug during ultrasonic 
tomization ( Table 3 ). 

.4. Atomization stability 

he suspension of Rdv-lips after nebulization was collected to 
etermine the influence of ultrasonic atomization (Table S4).
ignificant decrease in size and PDI of Rdv-lips was observed 

fter atomization, which could attribute to the shearing 
rovided by the nebulizer [65] . The force may lead to the 
ragmentation of the liposomes and the leakage of the drug.
owever, there was a little decrease in EE and DL of Rdv-lips 
fter atomization. According to previous studies, hydrophobic 
rugs kept better physical stability during atomization than 

ydrophilic drugs, which explained the little leakage of Rdv- 
ips. Notably, the significant change in size after atomization 

id not affect the release profile of Rdv-lips ( Fig. 1 C), which 

eant that the size of liposomes was not the key factor for 
he release of remdesivir. 

.5. Pharmacokinetics of NTP in the lung 

 previous report indicated that plasma exposure to 
emdesivir and even NTP could not reflect the clinical 
fficacy well [26] . Remdesivir was designed as a prodrug 
f nucleoside monophosphate (Nuc-MP) to improve its cell 
embrane permeability. It was extremely unstable in the 

resence of plasma esterase ( T 1/2 < 5 min). After entering 
he blood stream, remdesivir distributed into the peripheral 
lood mononuclear cells (PBMCs) rapidly and converted to 
TP [14 ,17] . However, due to the negative charge and the 
olarity, NTP and the intermediate metabolites would be 
ig. 3 – Pharmacokinetics and tissue distribution of NTP in vivo . (
easured by LC/MS/MS after different treatments in mice at a re

A). The concentration of NTP measured by LC/MS/MS in major o
dministration ( n = 6). Data are expressed as the mean ± SD. ∗P <
rapped inside the cell. Hence, both remdesivir and NTP 
ere hard to be determined in plasma. The entrapment of 
TP inside PBMCs also limited its tissue permeation and 

istribution, making it hard to correlate the plasma exposure 
ith tissue concentration [26] . When in the tissue, remdesivir 

onverted to NTP rapidly and became the predominant 
ntracellular metabolite with a much longer half-life [14 ,17] .
herefore, the concentration of pharmacological active NTP 

n tissue, especially in lung which primarily affected by virus,
ould be a better indicator for the comparison of different 
reparations of remdesivir. 

To evaluate the improvements of Rdv-lips for pulmonary 
elivery, we determined the pharmacokinetics of NTP in the 

ung of different preparations, which had a direct link with the 
n vivo efficacy. Rdv-cyc solution given by intravenous injection 

as chose as a control group to show the enhancement of 
dv-lips inhalation group (Rdv-lips inh.) compared to the 
ommercial product of Gilead Sciences, Inc. Additionally,
yclodextrins including SBE- β-CD have been widely studied as 
olubilizer for pulmonary delivery [66–68] . Therefore, Rdv-cyc 
olution was also used for inhalation as a positive control to 
eliver the insoluble remdesivir to lung. 

In line with our expectations, two aerosols exhibited 

emarkable pulmonary accumulation because of the direct 
elivery of remdesivir to the lung ( Fig. 3 A and 3 B). Compared to
hat of the Rdv-cyc intravenous injection group (Rdv-cyc i.v.), a 
early 100-fold increase in peak NTP concentration in the Rdv- 

ips inh. and a 77-fold increase in the Rdv-cyc inhalation group 

Rdv-cyc inh.) were detected, indicating the incomparable 
uperiority of the pury delivery system. In the two inhalation 

roups, differences in dosage form caused differences in their 
harmacokinetic profiles ( Fig. 3 A and 3 B). Liposomes group 

isplayed much quicker transition from remdesivir to NTP as 
ts peak concentration appeared at the first time point (1 h 

fter administration) compared to cyclodextrin group, whose 
 max was at 4 h after the administration. This result could be 
xplained by the high drug loading rate and cell membrane 
iocompatibility of liposomes, leading to quicker and higher 
ell uptake of remdesivir. The cell uptake ability of Rdv-lips 
as reinforced by the results in A549 cells (Fig. S1). DiR was 
sed as a substitute of remdesivir due to its hydrophobicity.
ompared to DiR-cyc, DiR-lips displayed a much better cell 
ptake in both rate and amount, which was consistent with 

he rapid intracellular NTP conversion of Rdv-lips in vivo .
t was unexpected that direct pulmonary delivery did not 
hange the T max in lung of Rdv-cyc compared to intravenous 
njection ( Fig. 3 B), which meant that the administration site of 
A) Concentration-time curves of NTP in lung homogenate 
mdesivir dose of 20 mg/kg ( n = 3). (B) The larger version of 
rgans collected from the mice at 4 h (C) and 24 h (D) after 
 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001. 
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Fig. 4 – Inflammation-linked cytokines. Quantitative analysis of IL-6, TNF- α, IL-10 and HMGB-1 in (A) lung homogenate 
( n = 3), (B) BALF ( n = 3) and (C) serum ( n = 6). Serum, lung tissue homogenate and BALF were collected 11 d after 
administration. Cytokines were measured by ELISA (mean ± SD, ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001). 

Fig. 5 – H&E-stained organ slices from normal BALB/c mice treated with saline (control, inh.), Blank-lips (inh.), Rdv-cyc (i.v.), 
Rdv-cyc inh. and Rdv-lips inh. ( n = 3). The scale bar is 100 μm. 

 

 

 

 

 

 

 

 

 

 

 

 

Rdv-cyc was not the determinant of the NTP conversion speed
in lung. 

3.6. Tissue distribution of NTP 

The tissue distribution of NTP was further investigated to
provide an overall description of the behavior of NTP in
vivo ( Fig. 3 C and Fig. 3 D). 4 h later after administration,
Rdv-lips inh. displayed a much higher NTP content in the
lung than that of Rdv-cyc i.v., with a 35-fold increase in
NTP concentration. This ratio remained 13-fold even at 24 h
after administration. Rdv-cyc inh. showed a relatively high
NTP content resembling Rdv-lips inh. However, Rdv-lips inh.
always displayed a significantly higher NTP concentration
than Rdv-cyc inh. at 4 h or 24 h after administration, indicating
better pulmonary accumulation of Rdv-lips. This could be
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Fig. 6 – Body weight changes of treated mice ( n = 6, mean ±
SD). 
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xplained by the retention capability and rapid cell uptake of 
iposomes, leading to the entrapment of more remdesivir in 

he lung and their conversion to NTP. 
However, liver possessed a much higher NTP concentration 

han lung in all the groups. Because the enzymes involving 
n the bioactivation of remdesivir, such as carboxylesterases 
CES1), cathepsin A (CTSA) and phosphoramidases (histidine 
riad nucleotide binding proteins, HINTs), all had high 

xpression in the liver [27 ,69–71 ]. Thus, a larger quantity 
f remdesivir could be quicker conversed to NTP in liver,
educing the amount of remdesivir activated in lung,
specially in intravenous group. The high NTP concentration 

n kidney was in line with the fact that kidney is the 
ain excretory organ of remdesivir [30] , and higher NTP 

oncentration indicating a quicker clearance of the drug. For 
ther organ like heart, spleen, brain and testis, Rdv-lips inh.
lways exhibited a significant decrease in NTP accumulation 

ompared to the other two groups, implying less possibility 
or Rdv-lips to cause systemic toxicity. This phenomenon 

ould be explained by the excellent characteristic of liposomes 
o accumulate at the administration site. According to the 
revious report, a high concentration of remdesivir was 
etected in testis and epididymis at 4 h after administration 

17] . And in brain, although the remdesivir concentration was 
ot as higher as other tissue, it remained detectable above 

he drug plasma levels 168 h after injection [17] . Nevertheless,
ur results of NTP tissue distribution did not show the 
ame tendency. In the one hand, even though the high fat 
ontent made lipophilic remdesivir tend to distribute in these 
issues [72] , the enzymes for the bioactivation of remdesivir 
ere low expressed in these tissues. In the other hand, the 
dministration route of inhalation and the preparation form 

f liposome also reduced the drug accumulation in these 
issues. 

.7. In vivo safety evaluation 

ne of the advantages of aerosols is the lower possibility 
f inducing systemic side effects because a large amount 
f drugs are directly delivered to the lesion and exert 
fficacy there [73] . For Rdv-lips, it also has the better 
iocompatibility and less excipients dosage to improve 

ts safety compared to Rdv-cyc. IL-6, TNF- α, and HMGB- 
 were measured as proinflammatory cytokine indicators,
nd IL-10 was measured as an anti-inflammatory cytokine 
ndicator to evaluate inflammation after treatment ( Fig. 4 ) 
74–76] . Interestingly, in lung-associated samples, such as 
ung homogenate and BALF, only Rdv-cyc inh. showed an 

ncrease in proinflammatory cytokines and a decrease in anti- 
nflammatory cytokines, indicating slight lung inflammation 

hat was induced by the successive administration of Rdv-cyc 
n the lung ( Fig. 4 A and Fig. 4 B). In regard to plasma samples
hat reflected systemic inflammation, Rdv-cyc i.v. exhibited 

 tendency toward inflammation with the upregulation of 
L-6 and HMGB-1 and the downregulation of IL-10 ( Fig. 4 C).
n contrast, both the blank-lips (inh.) and Rdv-lips inh. had 

ood safety performance with no difference between them 

nd the control group in ELISA results ( Fig. 4 A–Fig. 4 C).
&E analysis in the main organs did not show any change 

n histology or morphology ( Fig. 5 ). The body weights of 
ice during administration were not significantly different 
etween groups. These results showed that none of the 
reparations had obvious organ toxicity or systemic toxicity 
 Fig. 6 ). 

Many studies have implied that intravenous injection 

ight not be the proper mode for the administration of 
emdesivir due to the following reasons: (1) remdesivir had 

oor stability in plasma, leading to a concentration lower 
han EC 50 when it reached lung; (2) the quick distribution in 

BMCs of remdesivir limited its tissue penetration, because 
emdesivir efficiently converted to NTP with low membrane 
ermeability in cells; (3) the abundant enzymes necessary 
or the bioactivation of remdesivir were highly expressed in 

iver and kidney, which further reduced the amount of drug 
eaching lung. 

Pulmonary delivery of remdesivir can solve these problems 
y direct administration to lung [77 ,78] . There have been some 
tudies on the other preparations for pulmonary delivery of 
emdesivir, including dry powder inhalant and even liposomal 
erosols [57 ,79] . These preparations also possessed high drug 
ontent and good lung deposition efficiency. However, Rdv-lips 
nh. still have some special advantages. Compared to other 
reparations for pulmonary delivery, the biocompatibility and 

ize of liposomes endowed Rdv-lips with faster cell uptake 
nd the ability to evade macrophage clearance [55 ,56] , leading 
o efficient NTP conversion in the targeted cells (alveolar 
pithelial cells). Rdv-lips inh. are more convenient for self- 
dministration using ultrasonic nebulizer. The easy operation 

akes it have better compliance in some special populations 
ike severe patients, old man and children [80 ,81] . Compared to 
ther liposomal aerosols, Rdv-lips were provided as the form 

f lyophilized powder to improve the stability of remdesivir 
nd prolong the shelf-life. DPPC, the main material of Rdv-lips,
s one of the few carrier materials for inhalation approved by 
he FDA, which makes it easier for industrial production. 

In this study, the great increase of NTP concentration and 

ccumulation in lung validated that Rdv-lips inh. is a potent 
trategy to improve the in vivo behavior of remdesivir to 
xert better therapeutic effects. However, this result could 

ot fully reflect the real situation in human body because of 
he different enzymes activity and conversion rates of NTP 
etween species. The actual benefit brought by the Rdv-lips 
erosol needs further exploration through more preclinical 
nd clinical trials. 
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4. Conclusion 

In summary, we developed lyophilized Rdv-lips administered
by pulmonary inhalation for COVID-19 treatment. The
Rdv-lips were uniform and stable with good aerodynamic
properties. Compared to the existing Rdv-cyc injection, even
Rdv-cyc aerosol, Rdv-lips aerosol demonstrated significantly
increased NTP concentration and improved accumulation
in the lung as well as had better safety. The optimization
of in vivo behavior by Rdv-lips aerosol will be beneficial
for remdesivir to overcome the existing limitations and to
exert better therapeutic effects. Additionally, based on the
broad antiviral ability of remdesivir, we hope that remdesivir
liposome aerosols can play a role in more viral diseases, such
as Severe Acute Respiratory Syndrome (SARS) and Middle East
respiratory syndrome (MERS). 
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